ChengyouJia
commited on
Commit
·
b6fba5d
1
Parent(s):
9a25537
update
Browse files- modeling_internvl_chat.py +154 -16
modeling_internvl_chat.py
CHANGED
@@ -6,31 +6,46 @@
|
|
6 |
import warnings
|
7 |
from typing import Any, List, Optional, Tuple, Union
|
8 |
|
|
|
9 |
import torch.utils.checkpoint
|
|
|
|
|
|
|
|
|
|
|
10 |
from torch import nn
|
11 |
from torch.nn import CrossEntropyLoss
|
12 |
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
13 |
-
LlamaTokenizer)
|
14 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
15 |
from transformers.modeling_utils import PreTrainedModel
|
16 |
from transformers.utils import ModelOutput, logging
|
17 |
|
18 |
from .configuration_internvl_chat import InternVLChatConfig
|
19 |
-
from .conversation import get_conv_template
|
20 |
from .modeling_intern_vit import InternVisionModel
|
21 |
-
from .modeling_internlm2 import InternLM2ForCausalLM
|
22 |
|
23 |
logger = logging.get_logger(__name__)
|
24 |
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
class InternVLChatModel(PreTrainedModel):
|
27 |
config_class = InternVLChatConfig
|
28 |
main_input_name = 'pixel_values'
|
29 |
-
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer'
|
|
|
|
|
30 |
|
31 |
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
|
32 |
super().__init__(config)
|
33 |
|
|
|
34 |
image_size = config.force_image_size or config.vision_config.image_size
|
35 |
patch_size = config.vision_config.patch_size
|
36 |
self.patch_size = patch_size
|
@@ -39,6 +54,7 @@ class InternVLChatModel(PreTrainedModel):
|
|
39 |
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
40 |
self.downsample_ratio = config.downsample_ratio
|
41 |
self.ps_version = config.ps_version
|
|
|
42 |
|
43 |
logger.info(f'num_image_token: {self.num_image_token}')
|
44 |
logger.info(f'ps_version: {self.ps_version}')
|
@@ -53,6 +69,10 @@ class InternVLChatModel(PreTrainedModel):
|
|
53 |
self.language_model = LlamaForCausalLM(config.llm_config)
|
54 |
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
|
55 |
self.language_model = InternLM2ForCausalLM(config.llm_config)
|
|
|
|
|
|
|
|
|
56 |
else:
|
57 |
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
58 |
|
@@ -67,6 +87,50 @@ class InternVLChatModel(PreTrainedModel):
|
|
67 |
)
|
68 |
|
69 |
self.img_context_token_id = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
def forward(
|
72 |
self,
|
@@ -85,7 +149,7 @@ class InternVLChatModel(PreTrainedModel):
|
|
85 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
86 |
|
87 |
image_flags = image_flags.squeeze(-1)
|
88 |
-
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
89 |
|
90 |
vit_embeds = self.extract_feature(pixel_values)
|
91 |
vit_embeds = vit_embeds[image_flags == 1]
|
@@ -94,19 +158,21 @@ class InternVLChatModel(PreTrainedModel):
|
|
94 |
B, N, C = input_embeds.shape
|
95 |
input_embeds = input_embeds.reshape(B * N, C)
|
96 |
|
97 |
-
if torch.distributed.get_rank() == 0:
|
98 |
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
|
99 |
|
100 |
input_ids = input_ids.reshape(B * N)
|
101 |
selected = (input_ids == self.img_context_token_id)
|
102 |
try:
|
103 |
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
|
|
104 |
except Exception as e:
|
105 |
vit_embeds = vit_embeds.reshape(-1, C)
|
106 |
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
|
107 |
f'vit_embeds.shape={vit_embeds.shape}')
|
108 |
n_token = selected.sum()
|
109 |
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
|
|
110 |
|
111 |
input_embeds = input_embeds.reshape(B, N, C)
|
112 |
|
@@ -134,6 +200,8 @@ class InternVLChatModel(PreTrainedModel):
|
|
134 |
# Enable model parallelism
|
135 |
shift_labels = shift_labels.to(shift_logits.device)
|
136 |
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
|
137 |
|
138 |
if not return_dict:
|
139 |
output = (logits,) + outputs[1:]
|
@@ -183,36 +251,44 @@ class InternVLChatModel(PreTrainedModel):
|
|
183 |
vit_embeds = self.mlp1(vit_embeds)
|
184 |
return vit_embeds
|
185 |
|
186 |
-
def batch_chat(self, tokenizer, pixel_values,
|
187 |
-
|
188 |
-
|
189 |
if history is not None or return_history:
|
190 |
print('Now multi-turn chat is not supported in batch_chat.')
|
191 |
raise NotImplementedError
|
|
|
|
|
|
|
|
|
|
|
192 |
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
193 |
self.img_context_token_id = img_context_token_id
|
194 |
|
195 |
-
|
|
|
|
|
196 |
|
197 |
queries = []
|
198 |
-
if verbose:
|
199 |
-
image_bs = pixel_values.shape[0]
|
200 |
-
print(f'dynamic ViT batch size: {image_bs}, num_patches_list: {num_patches_list}')
|
201 |
for idx, num_patches in enumerate(num_patches_list):
|
202 |
-
|
203 |
-
|
|
|
204 |
template = get_conv_template(self.template)
|
205 |
template.append_message(template.roles[0], question)
|
206 |
template.append_message(template.roles[1], None)
|
207 |
query = template.get_prompt()
|
|
|
|
|
|
|
208 |
queries.append(query)
|
|
|
209 |
tokenizer.padding_side = 'left'
|
210 |
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
|
211 |
input_ids = model_inputs['input_ids'].cuda()
|
212 |
attention_mask = model_inputs['attention_mask'].cuda()
|
213 |
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
214 |
generation_config['eos_token_id'] = eos_token_id
|
215 |
-
|
216 |
generation_output = self.generate(
|
217 |
pixel_values=pixel_values,
|
218 |
input_ids=input_ids,
|
@@ -226,6 +302,13 @@ class InternVLChatModel(PreTrainedModel):
|
|
226 |
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
227 |
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
|
228 |
verbose=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
if history is None and pixel_values is not None and '<image>' not in question:
|
231 |
question = '<image>\n' + question
|
@@ -238,6 +321,7 @@ class InternVLChatModel(PreTrainedModel):
|
|
238 |
self.img_context_token_id = img_context_token_id
|
239 |
|
240 |
template = get_conv_template(self.template)
|
|
|
241 |
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
242 |
|
243 |
history = [] if history is None else history
|
@@ -278,6 +362,60 @@ class InternVLChatModel(PreTrainedModel):
|
|
278 |
print(query_to_print, response)
|
279 |
return response
|
280 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
@torch.no_grad()
|
282 |
def generate(
|
283 |
self,
|
|
|
6 |
import warnings
|
7 |
from typing import Any, List, Optional, Tuple, Union
|
8 |
|
9 |
+
import torch.distributed as dist
|
10 |
import torch.utils.checkpoint
|
11 |
+
import transformers
|
12 |
+
from internvl.conversation import get_conv_template
|
13 |
+
from internvl.model.internlm2.modeling_internlm2 import InternLM2ForCausalLM
|
14 |
+
from internvl.model.phi3.modeling_phi3 import Phi3ForCausalLM
|
15 |
+
from peft import LoraConfig, get_peft_model
|
16 |
from torch import nn
|
17 |
from torch.nn import CrossEntropyLoss
|
18 |
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
19 |
+
LlamaTokenizer, Qwen2ForCausalLM)
|
20 |
from transformers.modeling_outputs import CausalLMOutputWithPast
|
21 |
from transformers.modeling_utils import PreTrainedModel
|
22 |
from transformers.utils import ModelOutput, logging
|
23 |
|
24 |
from .configuration_internvl_chat import InternVLChatConfig
|
|
|
25 |
from .modeling_intern_vit import InternVisionModel
|
|
|
26 |
|
27 |
logger = logging.get_logger(__name__)
|
28 |
|
29 |
|
30 |
+
def version_cmp(v1, v2, op='eq'):
|
31 |
+
import operator
|
32 |
+
|
33 |
+
from packaging import version
|
34 |
+
op_func = getattr(operator, op)
|
35 |
+
return op_func(version.parse(v1), version.parse(v2))
|
36 |
+
|
37 |
+
|
38 |
class InternVLChatModel(PreTrainedModel):
|
39 |
config_class = InternVLChatConfig
|
40 |
main_input_name = 'pixel_values'
|
41 |
+
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer',
|
42 |
+
'Phi3DecoderLayer', 'Qwen2DecoderLayer']
|
43 |
+
_supports_flash_attn_2 = True
|
44 |
|
45 |
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
|
46 |
super().__init__(config)
|
47 |
|
48 |
+
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
|
49 |
image_size = config.force_image_size or config.vision_config.image_size
|
50 |
patch_size = config.vision_config.patch_size
|
51 |
self.patch_size = patch_size
|
|
|
54 |
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
55 |
self.downsample_ratio = config.downsample_ratio
|
56 |
self.ps_version = config.ps_version
|
57 |
+
self.llm_arch_name = config.llm_config.architectures[0]
|
58 |
|
59 |
logger.info(f'num_image_token: {self.num_image_token}')
|
60 |
logger.info(f'ps_version: {self.ps_version}')
|
|
|
69 |
self.language_model = LlamaForCausalLM(config.llm_config)
|
70 |
elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
|
71 |
self.language_model = InternLM2ForCausalLM(config.llm_config)
|
72 |
+
elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
|
73 |
+
self.language_model = Phi3ForCausalLM(config.llm_config)
|
74 |
+
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
|
75 |
+
self.language_model = Qwen2ForCausalLM(config.llm_config)
|
76 |
else:
|
77 |
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
78 |
|
|
|
87 |
)
|
88 |
|
89 |
self.img_context_token_id = None
|
90 |
+
self.conv_template = get_conv_template(self.template)
|
91 |
+
if hasattr(config, 'system_message'):
|
92 |
+
self.system_message = config.system_message
|
93 |
+
else:
|
94 |
+
self.system_message = self.conv_template.system_message
|
95 |
+
self.num_samples = 0
|
96 |
+
|
97 |
+
if config.use_backbone_lora:
|
98 |
+
self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=2 * config.use_backbone_lora)
|
99 |
+
|
100 |
+
if config.use_llm_lora:
|
101 |
+
self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=2 * config.use_llm_lora)
|
102 |
+
|
103 |
+
def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
|
104 |
+
lora_config = LoraConfig(
|
105 |
+
r=r,
|
106 |
+
target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
|
107 |
+
lora_alpha=lora_alpha,
|
108 |
+
lora_dropout=lora_dropout,
|
109 |
+
)
|
110 |
+
self.vision_model = get_peft_model(self.vision_model, lora_config)
|
111 |
+
self.vision_model.print_trainable_parameters()
|
112 |
+
|
113 |
+
def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
|
114 |
+
# Determine the target modules based on the architecture of the language model
|
115 |
+
if self.llm_arch_name == 'InternLM2ForCausalLM':
|
116 |
+
target_modules = ['attention.wqkv', 'attention.wo', 'feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3']
|
117 |
+
elif self.llm_arch_name == 'Phi3ForCausalLM':
|
118 |
+
target_modules = ['mlp.down_proj', 'mlp.gate_up_proj', 'self_attn.o_proj', 'self_attn.qkv_proj']
|
119 |
+
elif self.llm_arch_name in ['Qwen2ForCausalLM', 'LlamaForCausalLM']:
|
120 |
+
target_modules = ['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
|
121 |
+
'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj']
|
122 |
+
else:
|
123 |
+
raise NotImplemented
|
124 |
+
lora_config = LoraConfig(
|
125 |
+
r=r,
|
126 |
+
target_modules=target_modules,
|
127 |
+
lora_alpha=lora_alpha,
|
128 |
+
lora_dropout=lora_dropout,
|
129 |
+
task_type='CAUSAL_LM'
|
130 |
+
)
|
131 |
+
self.language_model = get_peft_model(self.language_model, lora_config)
|
132 |
+
self.language_model.enable_input_require_grads()
|
133 |
+
self.language_model.print_trainable_parameters()
|
134 |
|
135 |
def forward(
|
136 |
self,
|
|
|
149 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
150 |
|
151 |
image_flags = image_flags.squeeze(-1)
|
152 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
|
153 |
|
154 |
vit_embeds = self.extract_feature(pixel_values)
|
155 |
vit_embeds = vit_embeds[image_flags == 1]
|
|
|
158 |
B, N, C = input_embeds.shape
|
159 |
input_embeds = input_embeds.reshape(B * N, C)
|
160 |
|
161 |
+
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
|
162 |
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
|
163 |
|
164 |
input_ids = input_ids.reshape(B * N)
|
165 |
selected = (input_ids == self.img_context_token_id)
|
166 |
try:
|
167 |
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
168 |
+
ignore_flag = False
|
169 |
except Exception as e:
|
170 |
vit_embeds = vit_embeds.reshape(-1, C)
|
171 |
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
|
172 |
f'vit_embeds.shape={vit_embeds.shape}')
|
173 |
n_token = selected.sum()
|
174 |
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
175 |
+
ignore_flag = True
|
176 |
|
177 |
input_embeds = input_embeds.reshape(B, N, C)
|
178 |
|
|
|
200 |
# Enable model parallelism
|
201 |
shift_labels = shift_labels.to(shift_logits.device)
|
202 |
loss = loss_fct(shift_logits, shift_labels)
|
203 |
+
if ignore_flag:
|
204 |
+
loss = loss * 0.0
|
205 |
|
206 |
if not return_dict:
|
207 |
output = (logits,) + outputs[1:]
|
|
|
251 |
vit_embeds = self.mlp1(vit_embeds)
|
252 |
return vit_embeds
|
253 |
|
254 |
+
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
|
255 |
+
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
|
256 |
+
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
|
257 |
if history is not None or return_history:
|
258 |
print('Now multi-turn chat is not supported in batch_chat.')
|
259 |
raise NotImplementedError
|
260 |
+
|
261 |
+
if image_counts is not None:
|
262 |
+
num_patches_list = image_counts
|
263 |
+
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
|
264 |
+
|
265 |
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
266 |
self.img_context_token_id = img_context_token_id
|
267 |
|
268 |
+
if verbose and pixel_values is not None:
|
269 |
+
image_bs = pixel_values.shape[0]
|
270 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
271 |
|
272 |
queries = []
|
|
|
|
|
|
|
273 |
for idx, num_patches in enumerate(num_patches_list):
|
274 |
+
question = questions[idx]
|
275 |
+
if pixel_values is not None and '<image>' not in question:
|
276 |
+
question = '<image>\n' + question
|
277 |
template = get_conv_template(self.template)
|
278 |
template.append_message(template.roles[0], question)
|
279 |
template.append_message(template.roles[1], None)
|
280 |
query = template.get_prompt()
|
281 |
+
|
282 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
283 |
+
query = query.replace('<image>', image_tokens, 1)
|
284 |
queries.append(query)
|
285 |
+
|
286 |
tokenizer.padding_side = 'left'
|
287 |
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
|
288 |
input_ids = model_inputs['input_ids'].cuda()
|
289 |
attention_mask = model_inputs['attention_mask'].cuda()
|
290 |
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
291 |
generation_config['eos_token_id'] = eos_token_id
|
|
|
292 |
generation_output = self.generate(
|
293 |
pixel_values=pixel_values,
|
294 |
input_ids=input_ids,
|
|
|
302 |
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
303 |
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
|
304 |
verbose=False):
|
305 |
+
|
306 |
+
# add
|
307 |
+
if generation_config.get('token_enable', False):
|
308 |
+
self.language_model.token_enable = True
|
309 |
+
else:
|
310 |
+
self.language_model.token_enable = False
|
311 |
+
generation_config.pop('token_enable', None)
|
312 |
|
313 |
if history is None and pixel_values is not None and '<image>' not in question:
|
314 |
question = '<image>\n' + question
|
|
|
321 |
self.img_context_token_id = img_context_token_id
|
322 |
|
323 |
template = get_conv_template(self.template)
|
324 |
+
template.system_message = self.system_message
|
325 |
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
326 |
|
327 |
history = [] if history is None else history
|
|
|
362 |
print(query_to_print, response)
|
363 |
return response
|
364 |
|
365 |
+
def return_top(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
366 |
+
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
|
367 |
+
verbose=False):
|
368 |
+
|
369 |
+
# add
|
370 |
+
if generation_config.get('token_enable', False):
|
371 |
+
self.language_model.token_enable = True
|
372 |
+
else:
|
373 |
+
self.language_model.token_enable = False
|
374 |
+
generation_config.pop('token_enable', None)
|
375 |
+
|
376 |
+
if history is None and pixel_values is not None and '<image>' not in question:
|
377 |
+
question = '<image>\n' + question
|
378 |
+
|
379 |
+
if num_patches_list is None:
|
380 |
+
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
|
381 |
+
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
382 |
+
|
383 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
384 |
+
self.img_context_token_id = img_context_token_id
|
385 |
+
|
386 |
+
template = get_conv_template(self.template)
|
387 |
+
template.system_message = self.system_message
|
388 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
|
389 |
+
|
390 |
+
history = [] if history is None else history
|
391 |
+
for (old_question, old_answer) in history:
|
392 |
+
template.append_message(template.roles[0], old_question)
|
393 |
+
template.append_message(template.roles[1], old_answer)
|
394 |
+
template.append_message(template.roles[0], question)
|
395 |
+
template.append_message(template.roles[1], None)
|
396 |
+
query = template.get_prompt()
|
397 |
+
|
398 |
+
if verbose and pixel_values is not None:
|
399 |
+
image_bs = pixel_values.shape[0]
|
400 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
401 |
+
|
402 |
+
for num_patches in num_patches_list:
|
403 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
404 |
+
query = query.replace('<image>', image_tokens, 1)
|
405 |
+
|
406 |
+
model_inputs = tokenizer(query, return_tensors='pt')
|
407 |
+
input_ids = model_inputs['input_ids'].cuda()
|
408 |
+
attention_mask = model_inputs['attention_mask'].cuda()
|
409 |
+
generation_config['eos_token_id'] = eos_token_id
|
410 |
+
generation_output = self.generate(
|
411 |
+
pixel_values=pixel_values,
|
412 |
+
input_ids=input_ids,
|
413 |
+
attention_mask=attention_mask,
|
414 |
+
**generation_config
|
415 |
+
)
|
416 |
+
|
417 |
+
return generation_output
|
418 |
+
|
419 |
@torch.no_grad()
|
420 |
def generate(
|
421 |
self,
|