Chemsseddine
commited on
Commit
•
7d0fdb3
1
Parent(s):
45bfee0
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- cord-layoutlmv3
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: layoutlmv3-finetuned-cord_100
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: cord-layoutlmv3
|
20 |
+
type: cord-layoutlmv3
|
21 |
+
config: cord
|
22 |
+
split: train
|
23 |
+
args: cord
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.9328908554572272
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.9468562874251497
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.9398216939078752
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9516129032258065
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# layoutlmv3-finetuned-cord_100
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.2213
|
47 |
+
- Precision: 0.9329
|
48 |
+
- Recall: 0.9469
|
49 |
+
- F1: 0.9398
|
50 |
+
- Accuracy: 0.9516
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 1e-05
|
70 |
+
- train_batch_size: 5
|
71 |
+
- eval_batch_size: 5
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- training_steps: 2500
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 1.56 | 250 | 1.0664 | 0.6765 | 0.7530 | 0.7127 | 0.7818 |
|
82 |
+
| 1.4379 | 3.12 | 500 | 0.6115 | 0.8199 | 0.8518 | 0.8355 | 0.8646 |
|
83 |
+
| 1.4379 | 4.69 | 750 | 0.4192 | 0.8794 | 0.9004 | 0.8898 | 0.9028 |
|
84 |
+
| 0.4232 | 6.25 | 1000 | 0.3239 | 0.9180 | 0.9296 | 0.9238 | 0.9304 |
|
85 |
+
| 0.4232 | 7.81 | 1250 | 0.2840 | 0.9197 | 0.9341 | 0.9268 | 0.9389 |
|
86 |
+
| 0.2273 | 9.38 | 1500 | 0.2562 | 0.9217 | 0.9341 | 0.9279 | 0.9376 |
|
87 |
+
| 0.2273 | 10.94 | 1750 | 0.2574 | 0.9304 | 0.9401 | 0.9352 | 0.9410 |
|
88 |
+
| 0.157 | 12.5 | 2000 | 0.2327 | 0.9293 | 0.9439 | 0.9365 | 0.9482 |
|
89 |
+
| 0.157 | 14.06 | 2250 | 0.2217 | 0.9351 | 0.9491 | 0.9421 | 0.9520 |
|
90 |
+
| 0.1208 | 15.62 | 2500 | 0.2213 | 0.9329 | 0.9469 | 0.9398 | 0.9516 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.23.1
|
96 |
+
- Pytorch 1.12.1+cu113
|
97 |
+
- Datasets 2.6.1
|
98 |
+
- Tokenizers 0.13.1
|