Chemsseddine commited on
Commit
7d0fdb3
1 Parent(s): 45bfee0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - cord-layoutlmv3
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: layoutlmv3-finetuned-cord_100
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: cord-layoutlmv3
20
+ type: cord-layoutlmv3
21
+ config: cord
22
+ split: train
23
+ args: cord
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.9328908554572272
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.9468562874251497
31
+ - name: F1
32
+ type: f1
33
+ value: 0.9398216939078752
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9516129032258065
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # layoutlmv3-finetuned-cord_100
43
+
44
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.2213
47
+ - Precision: 0.9329
48
+ - Recall: 0.9469
49
+ - F1: 0.9398
50
+ - Accuracy: 0.9516
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 1e-05
70
+ - train_batch_size: 5
71
+ - eval_batch_size: 5
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - training_steps: 2500
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.56 | 250 | 1.0664 | 0.6765 | 0.7530 | 0.7127 | 0.7818 |
82
+ | 1.4379 | 3.12 | 500 | 0.6115 | 0.8199 | 0.8518 | 0.8355 | 0.8646 |
83
+ | 1.4379 | 4.69 | 750 | 0.4192 | 0.8794 | 0.9004 | 0.8898 | 0.9028 |
84
+ | 0.4232 | 6.25 | 1000 | 0.3239 | 0.9180 | 0.9296 | 0.9238 | 0.9304 |
85
+ | 0.4232 | 7.81 | 1250 | 0.2840 | 0.9197 | 0.9341 | 0.9268 | 0.9389 |
86
+ | 0.2273 | 9.38 | 1500 | 0.2562 | 0.9217 | 0.9341 | 0.9279 | 0.9376 |
87
+ | 0.2273 | 10.94 | 1750 | 0.2574 | 0.9304 | 0.9401 | 0.9352 | 0.9410 |
88
+ | 0.157 | 12.5 | 2000 | 0.2327 | 0.9293 | 0.9439 | 0.9365 | 0.9482 |
89
+ | 0.157 | 14.06 | 2250 | 0.2217 | 0.9351 | 0.9491 | 0.9421 | 0.9520 |
90
+ | 0.1208 | 15.62 | 2500 | 0.2213 | 0.9329 | 0.9469 | 0.9398 | 0.9516 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.23.1
96
+ - Pytorch 1.12.1+cu113
97
+ - Datasets 2.6.1
98
+ - Tokenizers 0.13.1