Chemsseddine commited on
Commit
2067301
1 Parent(s): d7bdceb

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - orange_sum
6
+ metrics:
7
+ - rouge
8
+ model-index:
9
+ - name: bert2gpt2SUMM-finetuned-mlsum-finetuned-mlorange_sum
10
+ results:
11
+ - task:
12
+ name: Sequence-to-sequence Language Modeling
13
+ type: text2text-generation
14
+ dataset:
15
+ name: orange_sum
16
+ type: orange_sum
17
+ args: abstract
18
+ metrics:
19
+ - name: Rouge1
20
+ type: rouge
21
+ value: 24.949
22
+ ---
23
+
24
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
25
+ should probably proofread and complete it, then remove this comment. -->
26
+
27
+ # bert2gpt2SUMM-finetuned-mlsum-finetuned-mlorange_sum
28
+
29
+ This model is a fine-tuned version of [Chemsseddine/bert2gpt2SUMM-finetuned-mlsum](https://huggingface.co/Chemsseddine/bert2gpt2SUMM-finetuned-mlsum) on the orange_sum dataset.
30
+ It achieves the following results on the evaluation set:
31
+ - Loss: 3.1773
32
+ - Rouge1: 24.949
33
+ - Rouge2: 7.851
34
+ - Rougel: 18.1575
35
+ - Rougelsum: 18.4114
36
+ - Gen Len: 39.7947
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 2e-05
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 16
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - num_epochs: 1
62
+ - mixed_precision_training: Native AMP
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
67
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:---------:|:-------:|
68
+ | 3.5484 | 1.0 | 1338 | 3.1773 | 24.949 | 7.851 | 18.1575 | 18.4114 | 39.7947 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.20.0
74
+ - Pytorch 1.11.0+cu113
75
+ - Datasets 2.3.2
76
+ - Tokenizers 0.12.1