|
import functools |
|
import itertools |
|
import math |
|
import os |
|
import re |
|
import shutil |
|
import typing |
|
import urllib |
|
import zipfile |
|
|
|
import datasets |
|
import fsspec |
|
import numpy as np |
|
import tokenizers |
|
import torch |
|
import transformers |
|
import lightning as L |
|
from torch.utils.data import DataLoader, Subset |
|
from functools import partial |
|
import pdb |
|
|
|
import custom_datasets.discretized_cifar10 |
|
import custom_datasets.ten_species_dataset |
|
import utils |
|
|
|
LOGGER = utils.get_logger(__name__) |
|
|
|
|
|
|
|
def lm1b_detokenizer(x): |
|
x = x.replace('http : / / ', 'http://') |
|
x = x.replace('https : / / ', 'https://') |
|
x = re.sub(r' \'(\w+)', r"'\1", x) |
|
x = re.sub(r' (\w+) \. ', r' \1. ', x) |
|
x = re.sub(r' (\w+) \.$', r' \1.', x) |
|
x = x.replace(' ? ', '? ') |
|
x = re.sub(r' \?$', '?', x) |
|
x = x.replace(' ! ', '! ') |
|
x = re.sub(r' \!$', '!', x) |
|
x = x.replace(' , ', ', ') |
|
x = x.replace(' : ', ': ') |
|
x = x.replace(' ; ', '; ') |
|
x = x.replace(' / ', '/') |
|
x = re.sub(r'\" ([^\"]+) \"', r'"\1"', x) |
|
x = re.sub(r'\' ([^\']+) \'', r"'\1'", x) |
|
x = re.sub(r'\( ([^\(\)]+) \)', r"(\1)", x) |
|
x = re.sub(r'\[ ([^\[\]]+) \]', r"[\1]", x) |
|
x = x.replace('$ ', '$') |
|
x = x.replace('£ ', '£') |
|
return x |
|
|
|
|
|
class Text8Tokenizer(transformers.PreTrainedTokenizer): |
|
def __init__( |
|
self, |
|
bos_token='[BOS]', |
|
eos_token='[EOS]', |
|
sep_token='[SEP]', |
|
cls_token='[CLS]', |
|
pad_token='[PAD]', |
|
mask_token='[MASK]', |
|
unk_token='[UNK]', |
|
**kwargs): |
|
self.characters = list('abcdefghijklmnopqrstuvwxyz ') |
|
self._vocab_str_to_int = { |
|
'[CLS]': 0, |
|
'[SEP]': 1, |
|
'[BOS]': 2, |
|
'[EOS]': 3, |
|
'[MASK]': 4, |
|
'[PAD]': 5, |
|
'[RESERVED]': 6, |
|
'[UNK]': 7, |
|
** {ch: i + 8 for i, ch in enumerate(self.characters)}} |
|
self._vocab_int_to_str = { |
|
v: k for k, v in self._vocab_str_to_int.items()} |
|
super().__init__( |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
sep_token=sep_token, |
|
cls_token=cls_token, |
|
pad_token=pad_token, |
|
mask_token=mask_token, |
|
unk_token=unk_token, |
|
**kwargs) |
|
|
|
@property |
|
def vocab_size(self) -> int: |
|
return len(self._vocab_str_to_int) |
|
|
|
def _tokenize(self, text: str, **kwargs) -> typing.List[str]: |
|
return list(text.lower()) |
|
|
|
def _convert_token_to_id(self, token: str) -> int: |
|
return self._vocab_str_to_int.get( |
|
token, self._vocab_str_to_int['[UNK]']) |
|
|
|
def _convert_id_to_token(self, index: int) -> str: |
|
return self._vocab_int_to_str[index] |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
return ''.join(tokens) |
|
|
|
def get_vocab(self) -> typing.Dict[str, int]: |
|
return self._vocab_str_to_int |
|
|
|
|
|
def get_text8_dataset(cache_dir, max_seq_length=256, |
|
drop_last=True, crop_train=False): |
|
"""Adapted from: |
|
https://github.com/google-research/google-research/blob/master/d3pm/text/datasets.py#L344 |
|
|
|
Args: |
|
cache_dir: str, path to cache directory. |
|
max_seq_length: int, maximum length of sequences. |
|
(default: 256, as in D3PM codebase.) |
|
drop_last: bool, whether to drop the last incomplete |
|
batch. (default: True, as in D3PM codebase.) |
|
crop_train: bool, whether to subsample contiguous |
|
subsequences from training example. serves to |
|
make sure transformer models with absolute position |
|
embeddings do not have incorrect position-wise |
|
marginals. (default: False, but necessary to match D3PM AR) |
|
|
|
Returns: |
|
dataset: dataset.DatasetDict, with keys 'train', |
|
'valid', 'test'. |
|
""" |
|
url = 'http://mattmahoney.net/dc/text8.zip' |
|
if not crop_train: |
|
cache_dir = f'{cache_dir}/text8' |
|
else: |
|
cache_dir = f'{cache_dir}/text8-crop-train' |
|
split_names = ['train', 'validation', 'test'] |
|
if not all([ |
|
utils.fsspec_exists(os.path.join(cache_dir, split)) |
|
for split in split_names |
|
]): |
|
|
|
raw_cache_dir = os.path.join(cache_dir, 'raw_data') |
|
if not all([ |
|
utils.fsspec_exists( |
|
os.path.join(raw_cache_dir, f'text8.{split}.txt')) |
|
for split in split_names |
|
]): |
|
if not utils.fsspec_exists( |
|
os.path.join(raw_cache_dir, 'text8.zip')): |
|
utils.fsspec_mkdirs(raw_cache_dir, exist_ok=True) |
|
LOGGER.info('Downloading text8 from URL {}.'.format(url)) |
|
with (urllib.request.urlopen(url) as in_stream, |
|
open(os.path.join(raw_cache_dir, 'text8.zip'), |
|
'wb') as out_file): |
|
shutil.copyfileobj(in_stream, out_file) |
|
|
|
with fsspec.open( |
|
os.path.join(raw_cache_dir, 'text8.zip'), |
|
'rb') as f: |
|
rawdata = zipfile.ZipFile(f).read( |
|
'text8').decode('utf-8') |
|
|
|
|
|
splits = { |
|
'train': rawdata[:90_000_000], |
|
'validation': rawdata[90_000_000: 95_000_000], |
|
'test': rawdata[95_000_000:], |
|
} |
|
|
|
for split, data in splits.items(): |
|
_path = os.path.join(raw_cache_dir, |
|
f'text8.{split}.txt') |
|
with fsspec.open(_path, 'w') as f: |
|
f.write(data) |
|
else: |
|
splits = {} |
|
for split in split_names: |
|
_path = os.path.join(raw_cache_dir, |
|
f'text8.{split}.txt') |
|
with fsspec.open(_path, 'r') as f: |
|
splits[split] = f.read() |
|
|
|
|
|
def chunks(lst, n): |
|
"""Yield successive n-sized chunks from lst.""" |
|
for i in range(0, len(lst), n): |
|
yield lst[i:i + n] |
|
|
|
dataset_dict = {} |
|
for k, v in splits.items(): |
|
if k == 'train' and crop_train == True: |
|
chunk_size = 2 * max_seq_length |
|
else: |
|
chunk_size = max_seq_length |
|
text = list(chunks(v, chunk_size)) |
|
if drop_last and len(text[-1]) < chunk_size: |
|
text = text[:-1] |
|
dataset_dict[k] = datasets.Dataset.from_dict({'text': text}) |
|
dataset = datasets.DatasetDict(dataset_dict) |
|
dataset.save_to_disk(cache_dir) |
|
else: |
|
dataset = datasets.load_from_disk(cache_dir) |
|
|
|
return dataset |
|
|
|
|
|
def _group_texts(examples, block_size, bos, eos, |
|
add_special_tokens=True): |
|
|
|
concatenated_examples = list(itertools.chain(* examples['input_ids'])) |
|
total_length = len(concatenated_examples) |
|
|
|
|
|
|
|
|
|
|
|
|
|
new_block_size = block_size - (2 if add_special_tokens else 0) |
|
total_length = (total_length // new_block_size) * new_block_size |
|
|
|
result = {} |
|
_values = [] |
|
_attn_masks = [] |
|
for i in range(0, total_length, new_block_size): |
|
if add_special_tokens: |
|
_values.append( |
|
[bos] |
|
+ concatenated_examples[i : i + new_block_size] |
|
+ [eos]) |
|
else: |
|
_values.append( |
|
concatenated_examples[i: i + new_block_size]) |
|
_attn_masks.append(torch.ones(block_size)) |
|
result['input_ids'] = _values |
|
result['attention_mask'] = _attn_masks |
|
return result |
|
|
|
|
|
def get_dataset( |
|
dataset_name, tokenizer, wrap, mode, cache_dir, |
|
block_size=1024, num_proc=len(os.sched_getaffinity(0)), |
|
streaming=False, override_cache=False, |
|
add_special_tokens=True, |
|
label_col=None, label_threshold=None): |
|
if label_col is not None: |
|
label_suffix = f'_label-{label_col}' |
|
if label_threshold is not None: |
|
label_suffix += f'_threshold-{label_threshold}' |
|
else: |
|
label_suffix = '' |
|
if wrap: |
|
filename = f'{dataset_name}_{mode}_bs{block_size}_wrapped{label_suffix}.dat' |
|
else: |
|
filename = f'{dataset_name}_{mode}_bs{block_size}_unwrapped{label_suffix}.dat' |
|
_path = os.path.join(cache_dir, filename) |
|
if utils.fsspec_exists(_path) and not override_cache: |
|
LOGGER.info(f'Loading data from: {_path}') |
|
return datasets.load_from_disk(_path).with_format('torch') |
|
LOGGER.info(f'Generating new data at: {_path}') |
|
|
|
crop_train = dataset_name == 'text8-crop' |
|
if mode == 'train' and crop_train: |
|
|
|
block_size *= 2 |
|
|
|
if dataset_name == 'text8': |
|
assert wrap |
|
dataset = get_text8_dataset( |
|
cache_dir, max_seq_length=block_size) |
|
elif dataset_name == 'amazon_polarity': |
|
dataset = datasets.load_dataset( |
|
'amazon_polarity', |
|
cache_dir=cache_dir, |
|
streaming=streaming) |
|
elif dataset_name == 'qm9': |
|
dataset = datasets.load_dataset( |
|
'yairschiff/qm9', |
|
cache_dir=cache_dir, |
|
streaming=streaming, |
|
split='train') |
|
if label_threshold is not None: |
|
pctiles = label_threshold if isinstance(label_threshold, list) \ |
|
else [label_threshold] |
|
pctile_values = np.percentile(dataset[label_col], |
|
q=pctiles) |
|
threshold = np.ones(len(dataset[label_col])) * len(pctiles) |
|
for i, p in reversed(list(enumerate(sorted(pctile_values)))): |
|
threshold[dataset[label_col] <= p] = i |
|
dataset = dataset.add_column( |
|
f"{label_col}_threshold", threshold.astype(int)) |
|
label_col = f"{label_col}_threshold" |
|
dataset = dataset.train_test_split( |
|
test_size=0.05, seed=42) |
|
dataset = dataset[mode] |
|
elif dataset_name == 'ten_species': |
|
return custom_datasets.ten_species_dataset.TenSpeciesDataset( |
|
split=mode, |
|
tokenizer=tokenizer, |
|
max_length=block_size, |
|
rc_aug=False, |
|
add_special_tokens=add_special_tokens) |
|
else: |
|
dataset = datasets.load_dataset( |
|
dataset_name, |
|
cache_dir=cache_dir, |
|
streaming=streaming) |
|
|
|
if dataset_name == 'qm9': |
|
data = dataset |
|
else: |
|
data = dataset[mode] |
|
|
|
if dataset_name == 'lm1b': |
|
detokenizer = lm1b_detokenizer |
|
else: |
|
detokenizer = None |
|
|
|
def _apply_detokenizer(detoker): |
|
def detok(text): |
|
for j, t in enumerate(text, 0): |
|
text[j] = detoker(t) |
|
return text |
|
return detok |
|
|
|
EOS = tokenizer.encode(tokenizer.eos_token)[0] |
|
BOS = tokenizer.encode(tokenizer.bos_token)[0] |
|
|
|
def preprocess_and_tokenize(example): |
|
if 'amazon_polarity' in dataset_name: |
|
text = example['content'] |
|
elif 'qm9' in dataset_name: |
|
text = example['canonical_smiles'] |
|
elif dataset_name == 'ten_species': |
|
text = example['sequence'] |
|
else: |
|
text = example['text'] |
|
|
|
if detokenizer is not None: |
|
text = _apply_detokenizer(detokenizer)(text) |
|
|
|
tokenizer.padding_side = 'right' |
|
tokenizer.truncation_side = 'right' |
|
|
|
if wrap: |
|
tokens = tokenizer(text, |
|
add_special_tokens=False, |
|
return_attention_mask=False, |
|
return_token_type_ids=False) |
|
if add_special_tokens: |
|
tokens = {'input_ids': |
|
[t + [EOS] for t in tokens['input_ids']]} |
|
|
|
else: |
|
tokens = {'input_ids': tokens['input_ids']} |
|
else: |
|
tokens = tokenizer(text, |
|
max_length=block_size, |
|
padding='max_length', |
|
truncation=True, |
|
add_special_tokens=add_special_tokens, |
|
return_attention_mask=True, |
|
return_token_type_ids=add_special_tokens) |
|
return tokens |
|
|
|
if streaming: |
|
tokenized_dataset = data.map( |
|
preprocess_and_tokenize, |
|
batched=True, |
|
desc='Tokenizing') |
|
else: |
|
tokenized_dataset = data.map( |
|
preprocess_and_tokenize, |
|
batched=True, |
|
num_proc=num_proc, |
|
load_from_cache_file=True, |
|
desc='Tokenizing') |
|
keep_cols = ['input_ids', 'token_type_ids', |
|
'attention_mask'] |
|
if label_col is not None: |
|
keep_cols.append(label_col) |
|
tokenized_dataset = tokenized_dataset.remove_columns( |
|
[col for col in tokenized_dataset.column_names |
|
if col not in keep_cols]) |
|
|
|
if not wrap: |
|
tokenized_dataset.save_to_disk(_path) |
|
return tokenized_dataset.with_format('torch') |
|
|
|
group_texts = functools.partial( |
|
_group_texts, block_size=block_size, bos=BOS, eos=EOS, |
|
add_special_tokens=add_special_tokens) |
|
if streaming: |
|
chunked_dataset = tokenized_dataset.map( |
|
group_texts, |
|
batched=True, |
|
desc='Grouping') |
|
else: |
|
chunked_dataset = tokenized_dataset.map( |
|
group_texts, |
|
batched=True, |
|
num_proc=num_proc, |
|
load_from_cache_file=True, |
|
desc='Grouping') |
|
chunked_dataset.save_to_disk(_path) |
|
chunked_dataset = chunked_dataset.with_format('torch') |
|
return chunked_dataset |
|
|
|
|
|
def get_tokenizer(config): |
|
if config.data.tokenizer_name_or_path == 'text8': |
|
tokenizer = Text8Tokenizer() |
|
elif config.data.tokenizer_name_or_path == 'bert-base-uncased': |
|
tokenizer = transformers.BertTokenizer.\ |
|
from_pretrained('bert-base-uncased') |
|
elif config.data.tokenizer_name_or_path == 'raw_pixels': |
|
tokenizer = custom_datasets.discretized_cifar10.DummyVisionTokenizer( |
|
256, 32, |
|
add_mask_token=config.data.add_mask_token, |
|
add_special_tokens=config.data.add_special_tokens) |
|
else: |
|
tokenizer = transformers.AutoTokenizer.from_pretrained( |
|
config.data.tokenizer_name_or_path, |
|
trust_remote_code=True) |
|
|
|
if (isinstance(tokenizer, transformers.GPT2TokenizerFast) |
|
or isinstance(tokenizer, transformers.GPT2Tokenizer)): |
|
tokenizer._tokenizer.post_processor = tokenizers.processors.BertProcessing( |
|
(tokenizer.bos_token, tokenizer.bos_token_id), |
|
(tokenizer.eos_token, tokenizer.eos_token_id)) |
|
|
|
|
|
|
|
|
|
if tokenizer.bos_token is None: |
|
if tokenizer.cls_token is None: |
|
raise AttributeError( |
|
'Tokenizer must have a bos_token or ' |
|
f'cls_token: {tokenizer}') |
|
tokenizer.bos_token = tokenizer.cls_token |
|
if tokenizer.eos_token is None: |
|
if tokenizer.sep_token is None: |
|
raise AttributeError( |
|
'Tokenizer must have a eos_token ' |
|
f'or sep_token: {tokenizer}') |
|
tokenizer.eos_token = tokenizer.sep_token |
|
if tokenizer.pad_token is None and not config.is_vision: |
|
tokenizer.add_special_tokens({'pad_token': '[PAD]'}) |
|
|
|
return tokenizer |
|
|
|
|
|
def get_dataloaders(config, tokenizer, skip_train=False, |
|
skip_valid=False, valid_seed=None): |
|
num_gpus = torch.cuda.device_count() |
|
assert (config.loader.global_batch_size |
|
== (config.loader.batch_size |
|
* config.trainer.num_nodes |
|
* num_gpus |
|
* config.trainer.accumulate_grad_batches)) |
|
if config.loader.global_batch_size % ( |
|
num_gpus * config.trainer.accumulate_grad_batches) != 0: |
|
raise ValueError( |
|
f'Train Batch Size {config.training.batch_size}' |
|
f'not divisible by {num_gpus} gpus with accumulation ' |
|
f'{config.trainer.accumulate_grad_batches}.') |
|
if config.loader.eval_global_batch_size % num_gpus != 0: |
|
raise ValueError( |
|
f'Eval Batch Size for {config.eval.batch_size} ' |
|
f'not divisible by {num_gpus}.') |
|
label_col = getattr(config.data, 'label_col', None) |
|
if skip_train: |
|
train_set = None |
|
else: |
|
if 'cifar10' in config.data.train: |
|
train_set = custom_datasets.discretized_cifar10.DiscreteCIFAR10( |
|
config.data.train, train=True, download=True) |
|
else: |
|
train_set = get_dataset( |
|
config.data.train, |
|
tokenizer, |
|
mode='train', |
|
wrap=config.data.wrap, |
|
cache_dir=config.data.cache_dir, |
|
block_size=config.model.length, |
|
override_cache=config.data.override_cache, |
|
add_special_tokens=config.data.add_special_tokens, |
|
label_col=label_col, |
|
label_threshold=getattr(config.data, |
|
'label_col_pctile', None)) |
|
if config.data.valid in [ |
|
'text8', 'lm1b', 'amazon_polarity', 'qm9', |
|
'ten_species']: |
|
validation_split = 'test' |
|
else: |
|
validation_split = 'validation' |
|
if skip_valid: |
|
valid_set = None |
|
else: |
|
if 'cifar10' in config.data.train: |
|
valid_set = custom_datasets.discretized_cifar10.DiscreteCIFAR10( |
|
config.data.valid, train=False, download=True) |
|
else: |
|
valid_set = get_dataset( |
|
config.data.valid, |
|
tokenizer, |
|
wrap=config.data.wrap, |
|
mode=validation_split, |
|
cache_dir=config.data.cache_dir, |
|
block_size=config.model.length, |
|
streaming=False, |
|
override_cache=config.data.override_cache, |
|
add_special_tokens=config.data.add_special_tokens, |
|
label_col=label_col, |
|
label_threshold=getattr(config.data, |
|
'label_col_pctile', None)) |
|
|
|
if skip_train: |
|
train_loader = None |
|
else: |
|
train_loader = torch.utils.data.DataLoader( |
|
train_set, |
|
batch_size=config.loader.batch_size, |
|
num_workers=config.loader.num_workers, |
|
pin_memory=config.loader.pin_memory, |
|
shuffle=not config.data.streaming, |
|
persistent_workers=config.loader.persistent_workers |
|
) |
|
train_loader.tokenizer = tokenizer |
|
if skip_valid: |
|
valid_loader = None |
|
else: |
|
if valid_seed is None: |
|
shuffle_valid = False |
|
generator = None |
|
else: |
|
shuffle_valid = True |
|
generator = torch.Generator().manual_seed(valid_seed) |
|
valid_loader = torch.utils.data.DataLoader( |
|
valid_set, |
|
batch_size=config.loader.eval_batch_size, |
|
num_workers=config.loader.num_workers, |
|
pin_memory=config.loader.pin_memory, |
|
shuffle=shuffle_valid, |
|
generator=generator) |
|
|
|
valid_loader.tokenizer = tokenizer |
|
|
|
return train_loader, valid_loader |
|
|
|
|
|
|
|
class RandomFaultTolerantSampler(torch.utils.data.RandomSampler): |
|
|
|
def __init__(self, *args, generator=None, **kwargs): |
|
|
|
|
|
|
|
|
|
if generator is None: |
|
seed = int(torch.empty((), dtype=torch.int64).random_().item()) |
|
generator = torch.Generator().manual_seed(seed) |
|
kwargs.pop('shuffle', None) |
|
super().__init__(*args, generator=generator, **kwargs) |
|
self.counter = 0 |
|
self.restarting = False |
|
|
|
def state_dict(self): |
|
return {'random_state': self.generator.get_state(), |
|
'counter': self.counter} |
|
|
|
def load_state_dict(self, state_dict): |
|
self.generator.set_state(state_dict.get('random_state')) |
|
self.counter = state_dict['counter'] |
|
|
|
self.restarting = True |
|
|
|
|
|
|
|
|
|
def __iter__(self) -> typing.Iterator[int]: |
|
n = len(self.data_source) |
|
|
|
self.state = self.generator.get_state() |
|
indices = torch.randperm(n, generator=self.generator).tolist() |
|
|
|
if not self.restarting: |
|
self.counter = 0 |
|
else: |
|
indices = indices[self.counter:] |
|
self.restarting = False |
|
|
|
for index in indices: |
|
self.counter += 1 |
|
yield index |
|
|
|
self.counter = 0 |
|
|
|
|
|
class FaultTolerantDistributedSampler(torch.utils.data.DistributedSampler): |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.counter = 0 |
|
self.restarting = False |
|
|
|
def state_dict(self): |
|
return {'epoch': self.epoch, 'counter': self.counter} |
|
|
|
def load_state_dict(self, state_dict): |
|
self.epoch = state_dict['epoch'] |
|
self.counter = state_dict['counter'] |
|
self.restarting = True |
|
|
|
|
|
|
|
def __iter__(self): |
|
if self.shuffle: |
|
|
|
g = torch.Generator() |
|
g.manual_seed(self.seed + self.epoch) |
|
indices = torch.randperm(len(self.dataset), generator=g).tolist() |
|
else: |
|
indices = list(range(len(self.dataset))) |
|
|
|
if not self.drop_last: |
|
|
|
padding_size = self.total_size - len(indices) |
|
if padding_size <= len(indices): |
|
indices += indices[:padding_size] |
|
else: |
|
indices += (indices * math.ceil( |
|
padding_size / len(indices)))[:padding_size] |
|
else: |
|
|
|
indices = indices[:self.total_size] |
|
assert len(indices) == self.total_size |
|
|
|
|
|
indices = indices[self.rank:self.total_size:self.num_replicas] |
|
assert len(indices) == self.num_samples |
|
|
|
if not self.restarting: |
|
self.counter = 0 |
|
else: |
|
indices = indices[self.counter:] |
|
self.restarting = False |
|
|
|
for index in indices: |
|
self.counter += 1 |
|
yield index |
|
|
|
self.counter = 0 |
|
|
|
|
|
def collate_fn(batch): |
|
input_ids = torch.tensor(batch[0]['input_ids']) |
|
attention_mask = torch.tensor(batch[0]['attention_mask']) |
|
return { |
|
'input_ids': input_ids, |
|
'attention_mask': attention_mask |
|
} |
|
|
|
class CustomDataModule(L.LightningDataModule): |
|
def __init__(self, train_dataset, val_dataset, test_dataset, tokenizer, config, batch_size: int=8, collate_fn=collate_fn): |
|
super().__init__() |
|
self.train_dataset = train_dataset |
|
self.val_dataset = val_dataset |
|
self.test_dataset = test_dataset |
|
self.batch_size = batch_size |
|
self.tokenizer = tokenizer |
|
self.collate_fn = collate_fn |
|
self.config = config |
|
|
|
def train_dataloader(self): |
|
return DataLoader(self.train_dataset, |
|
collate_fn=partial(self.collate_fn), |
|
num_workers=self.config.loader.num_workers, |
|
pin_memory=self.config.loader.pin_memory, |
|
shuffle=not self.config.data.streaming, |
|
persistent_workers=self.config.loader.persistent_workers) |
|
|
|
def val_dataloader(self): |
|
return DataLoader(self.val_dataset, |
|
collate_fn=partial(self.collate_fn), |
|
num_workers=self.config.loader.num_workers, |
|
pin_memory=self.config.loader.pin_memory, |
|
shuffle=False) |
|
|
|
def test_dataloader(self): |
|
return DataLoader(self.test_dataset, |
|
collate_fn=partial(self.collate_fn), |
|
num_workers=self.config.loader.num_workers, |
|
pin_memory=self.config.loader.pin_memory, |
|
shuffle=not self.config.data.streaming) |