LauraWang1107
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -13,15 +13,26 @@ Here's how to extract PepDoRA embeddings for your input peptide:
|
|
13 |
|
14 |
```
|
15 |
import torch
|
16 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
# Load the model and tokenizer
|
19 |
model_name = "ChatterjeeLab/PepDoRA"
|
|
|
|
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
-
model = AutoModel.from_pretrained(model_name
|
22 |
-
|
23 |
|
24 |
-
# Input peptide sequence
|
25 |
peptide = "CC(C)C[C@H]1NC(=O)[C@@H](C)NCCCCCCNC(=O)[C@H](CO)NC1=O"
|
26 |
|
27 |
# Tokenize the peptide
|
|
|
13 |
|
14 |
```
|
15 |
import torch
|
16 |
+
from transformers import AutoModel,AutoModelForCausalLM, AutoTokenizer
|
17 |
+
from peft import PeftModel, PeftConfig
|
18 |
+
|
19 |
+
|
20 |
+
# Merge the adapter with the base model
|
21 |
+
base_model = "DeepChem/ChemBERTa-77M-MLM"
|
22 |
+
adapter_model = "ChatterjeeLab/PepDoRA"
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(base_model)
|
24 |
+
model = PeftModel.from_pretrained(model, adapter_model)
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
26 |
+
|
27 |
+
|
28 |
+
from transformers import AutoModel
|
29 |
|
|
|
30 |
model_name = "ChatterjeeLab/PepDoRA"
|
31 |
+
|
32 |
+
# Load the model and the tokenizer using AutoModel
|
33 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
34 |
+
model = AutoModel.from_pretrained(model_name)
|
|
|
35 |
|
|
|
36 |
peptide = "CC(C)C[C@H]1NC(=O)[C@@H](C)NCCCCCCNC(=O)[C@H](CO)NC1=O"
|
37 |
|
38 |
# Tokenize the peptide
|