Upload train.py
Browse files- scripts/train.py +35 -11
scripts/train.py
CHANGED
|
@@ -1,24 +1,48 @@
|
|
| 1 |
import pytorch_lightning as L
|
| 2 |
from pytorch_lightning.strategies import DDPStrategy
|
| 3 |
-
from
|
| 4 |
-
|
| 5 |
-
from
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Get dataloaders
|
| 8 |
-
train_loader, val_loader, _ = get_dataloaders(
|
| 9 |
|
| 10 |
-
# Initialize model
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Initialize trainer
|
| 14 |
trainer = L.Trainer(
|
| 15 |
-
max_epochs=
|
| 16 |
-
|
| 17 |
-
|
|
|
|
| 18 |
strategy=DDPStrategy(find_unused_parameters=False),
|
| 19 |
-
accumulate_grad_batches=
|
| 20 |
-
default_root_dir=
|
|
|
|
| 21 |
)
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
# Train the model
|
| 24 |
trainer.fit(latent_diffusion_model, train_loader, val_loader)
|
|
|
|
|
|
| 1 |
import pytorch_lightning as L
|
| 2 |
from pytorch_lightning.strategies import DDPStrategy
|
| 3 |
+
from pytorch_lightning.callbacks import ModelCheckpoint
|
| 4 |
+
import config
|
| 5 |
+
from data_loader import get_dataloaders
|
| 6 |
+
from esm_utils import load_esm2_model
|
| 7 |
+
from diffusion import Diffusion
|
| 8 |
+
import sys
|
| 9 |
|
| 10 |
# Get dataloaders
|
| 11 |
+
train_loader, val_loader, _ = get_dataloaders(config)
|
| 12 |
|
| 13 |
+
# Initialize ESM tokenizer and model
|
| 14 |
+
tokenizer, model = load_esm2_model(config.MODEL_NAME)
|
| 15 |
+
|
| 16 |
+
# Initialize diffusion model
|
| 17 |
+
latent_diffusion_model = Diffusion(config, latent_dim=config.LATENT_DIM, tokenizer=tokenizer)
|
| 18 |
+
print(latent_diffusion_model)
|
| 19 |
+
sys.stdout.flush()
|
| 20 |
+
|
| 21 |
+
# Define checkpoints to save best model by minimum validation loss
|
| 22 |
+
checkpoint_callback = ModelCheckpoint(
|
| 23 |
+
monitor='val_loss',
|
| 24 |
+
save_top_k=1,
|
| 25 |
+
mode='min',
|
| 26 |
+
dirpath="/workspace/a03-sgoel/MDpLM/",
|
| 27 |
+
filename="best_model_epoch{epoch:02d}"
|
| 28 |
+
)
|
| 29 |
|
| 30 |
# Initialize trainer
|
| 31 |
trainer = L.Trainer(
|
| 32 |
+
max_epochs=config.Training.NUM_EPOCHS,
|
| 33 |
+
precision=config.Training.PRECISION,
|
| 34 |
+
devices=1,
|
| 35 |
+
accelerator='gpu',
|
| 36 |
strategy=DDPStrategy(find_unused_parameters=False),
|
| 37 |
+
accumulate_grad_batches=config.Training.ACCUMULATE_GRAD_BATCHES,
|
| 38 |
+
default_root_dir=config.Training.SAVE_DIR,
|
| 39 |
+
callbacks=[checkpoint_callback]
|
| 40 |
)
|
| 41 |
|
| 42 |
+
print(trainer)
|
| 43 |
+
print("Training model...")
|
| 44 |
+
sys.stdout.flush()
|
| 45 |
+
|
| 46 |
# Train the model
|
| 47 |
trainer.fit(latent_diffusion_model, train_loader, val_loader)
|
| 48 |
+
|