Changhyeon
commited on
Commit
•
49a642b
1
Parent(s):
451fcc9
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 262.12 +/- 22.40
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2ab52bb4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2ab52bb550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2ab52bb5e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2ab52bb670>", "_build": "<function ActorCriticPolicy._build at 0x7f2ab52bb700>", "forward": "<function ActorCriticPolicy.forward at 0x7f2ab52bb790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2ab52bb820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2ab52bb8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2ab52bb940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2ab52bb9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2ab52bba60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2ab52bbaf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2ab5338420>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677387068643282959, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEMPjr7SnJI/ANOBvl24wb6Jt6K+0lxXPQAAAAAAAAAAcNtSvmWh9D4DMEw+LXdbvry3+LwoJd89AAAAAAAAAAAAmF28e9iOuotnS7VEssuvYoIJuwU6RTQAAIA/AACAP5quNL2pQwU/8+dWPVSVor6kedI8ctCFPAAAAAAAAAAAgGwXvTg51buwQuW8Zc3svdFKQr0cmcq+AACAPwAAgD+z9YG94Uykui56E7kxEQC0netJOvWTKTgAAIA/AACAPzNTsjx7wKC6sAk1O1uPYjmSD/i6A3jSuQAAgD8AAIA/mpp+vfFUqD99Sh6/NOjYvhRPHLsQ1QK+AAAAAAAAAADTuB6+8GSgP3jYEL9lo8W+8K9PvshYhb4AAAAAAAAAADOLADvhno66RC09NMr33K8NwiY7OjGQswAAgD8AAIA/GlOsvXg6tT/z7gy/+dshvq5aRL0IjYO+AAAAAAAAAACA1mM+xTiKP/u3VD5b/Ae/RpQ5PjtTErwAAAAAAAAAADOrcDwy/mc+U+/dvVxibr7sb6W8tfJTvQAAAAAAAAAA4P4sPlnntD6rfJm9cwl7vtHb6T1lGmG9AAAAAAAAAADNou89hEUePro6VL5FJYW+Jl7DvLWTfr0AAAAAAAAAAM2inb3J66g/6kxWvo9X3b6vqAW+M33RvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIn1VmSivTcECUhpRSlIwBbJRNPAGMAXSUR0CSFMK3d9DydX2UKGgGaAloD0MIUrezr/yxcECUhpRSlGgVTR4BaBZHQJIVRm9QGfR1fZQoaAZoCWgPQwjkEHFzqhJxQJSGlFKUaBVNMwFoFkdAkhWPXK8tgHV9lChoBmgJaA9DCEFkkSbel29AlIaUUpRoFU0eAWgWR0CSFephnanKdX2UKGgGaAloD0MI54nnbIHwcECUhpRSlGgVTToBaBZHQJIWihUR3/x1fZQoaAZoCWgPQwgFU82sZYFxQJSGlFKUaBVNFAFoFkdAkhbm6f8Mu3V9lChoBmgJaA9DCGuBPSYS63FAlIaUUpRoFU0dAWgWR0CSF/MefZmJdX2UKGgGaAloD0MIILWJk7sAcECUhpRSlGgVTR4BaBZHQJIYGZSeiBZ1fZQoaAZoCWgPQwiZgjXOptRvQJSGlFKUaBVNFAFoFkdAkhhfFaSs83V9lChoBmgJaA9DCCC3Xz4Z0nBAlIaUUpRoFU0VAWgWR0CSGHyfthNNdX2UKGgGaAloD0MIsoAJ3LowckCUhpRSlGgVTQEBaBZHQJIZWwzLwF11fZQoaAZoCWgPQwgW3uUi/tVyQJSGlFKUaBVNHgFoFkdAkhoYQWepXXV9lChoBmgJaA9DCMstrYbE4HBAlIaUUpRoFU0AAWgWR0CSGkPdl/YrdX2UKGgGaAloD0MITKq2m6B0cUCUhpRSlGgVTTMBaBZHQJIaxyZKFqV1fZQoaAZoCWgPQwjiI2JKpLJwQJSGlFKUaBVNCgFoFkdAkht5fpljE3V9lChoBmgJaA9DCAVtcvgk1W5AlIaUUpRoFU1cAWgWR0CSHDh37k4ndX2UKGgGaAloD0MIQrRWtLnDb0CUhpRSlGgVS/hoFkdAkhxBQSBbwHV9lChoBmgJaA9DCN3PKchPh25AlIaUUpRoFU0AAWgWR0CSHL+YtxuLdX2UKGgGaAloD0MINe7Nb5hic0CUhpRSlGgVTToBaBZHQJIdpeMQ2/B1fZQoaAZoCWgPQwhjm1Q01oVvQJSGlFKUaBVL/mgWR0CSHgOAy2x6dX2UKGgGaAloD0MI4lgXt9H0RECUhpRSlGgVS9loFkdAkh6MdDIBBHV9lChoBmgJaA9DCBZLkXylAm9AlIaUUpRoFU0iAWgWR0CSHrtHhCMQdX2UKGgGaAloD0MI68iRzoAgcECUhpRSlGgVTQEBaBZHQJIfcSh8IAx1fZQoaAZoCWgPQwgTEJNwYbRwQJSGlFKUaBVNDwFoFkdAkiBBY3eenXV9lChoBmgJaA9DCOAtkKB4EnFAlIaUUpRoFU0mAWgWR0CSIGBNVR1pdX2UKGgGaAloD0MIFcjsLDo1cUCUhpRSlGgVTQgBaBZHQJIhCLYPGyZ1fZQoaAZoCWgPQwiOWmH63opvQJSGlFKUaBVNoAFoFkdAkiHLPdEb53V9lChoBmgJaA9DCPabienCU25AlIaUUpRoFU0ZAWgWR0CSInXAdn01dX2UKGgGaAloD0MIfhr35jecQkCUhpRSlGgVS+JoFkdAkiLX6Q/5cnV9lChoBmgJaA9DCE9ZTdcTv25AlIaUUpRoFU0zAWgWR0CSI80elsP8dX2UKGgGaAloD0MIHVa45WOhcUCUhpRSlGgVTRkBaBZHQJIklx+8Xep1fZQoaAZoCWgPQwi6vg8HCaRyQJSGlFKUaBVNDwFoFkdAkiTWzjWCmXV9lChoBmgJaA9DCKME/YWeom9AlIaUUpRoFU1IAWgWR0CSJThbGFSLdX2UKGgGaAloD0MIi+JV1vbqckCUhpRSlGgVTQwBaBZHQJIlu6ClJpZ1fZQoaAZoCWgPQwgLthFP9hVuQJSGlFKUaBVL8WgWR0CSJdH+IdlvdX2UKGgGaAloD0MIVTAqqROrcECUhpRSlGgVTQwBaBZHQJIm1+DvmYB1fZQoaAZoCWgPQwg3je21oF8vQJSGlFKUaBVL3WgWR0CSJv/nnuAqdX2UKGgGaAloD0MIYeEkzV9YcUCUhpRSlGgVTUMBaBZHQJInzB7/n4h1fZQoaAZoCWgPQwj53An233ltQJSGlFKUaBVNEAFoFkdAkiiiC4Bmw3V9lChoBmgJaA9DCEFEatrFTkNAlIaUUpRoFUvDaBZHQJIo1PAO8TV1fZQoaAZoCWgPQwilFd9QeGxwQJSGlFKUaBVNLQFoFkdAkiorCBPKuHV9lChoBmgJaA9DCDOLUGyFynFAlIaUUpRoFU0XAWgWR0CSKk2MsH0LdX2UKGgGaAloD0MIArovZ3YCc0CUhpRSlGgVTQUBaBZHQJIqcJu2qkx1fZQoaAZoCWgPQwhNgjekEb1xQJSGlFKUaBVNIwFoFkdAkkXeogmqpHV9lChoBmgJaA9DCJQVw9WBUm9AlIaUUpRoFU0RAWgWR0CSRmjn3cpLdX2UKGgGaAloD0MIVaAWg4eKcECUhpRSlGgVTR8BaBZHQJJGounMt9R1fZQoaAZoCWgPQwhWuVD5l/tyQJSGlFKUaBVNLgFoFkdAkkfgXdj5K3V9lChoBmgJaA9DCLnhd9OthnBAlIaUUpRoFUv2aBZHQJJH6g00m+l1fZQoaAZoCWgPQwh5XFSLyAlxQJSGlFKUaBVN9wFoFkdAkkgxzFMqSXV9lChoBmgJaA9DCMyXF2Cfe25AlIaUUpRoFU0/AWgWR0CSSP/UvwmWdX2UKGgGaAloD0MITOKsiBrRcECUhpRSlGgVTREBaBZHQJJJt4iX6ZZ1fZQoaAZoCWgPQwhFRgck4VlvQJSGlFKUaBVNVgFoFkdAkknYkRjBmHV9lChoBmgJaA9DCPVnP1IEpnBAlIaUUpRoFUv9aBZHQJJKMWXTmXB1fZQoaAZoCWgPQwgU7L/OjTxwQJSGlFKUaBVNRgFoFkdAkkphbwBo3HV9lChoBmgJaA9DCJlLqrbbOnFAlIaUUpRoFU0tAWgWR0CSS1gDzRQadX2UKGgGaAloD0MIHJYGftTMb0CUhpRSlGgVTQIBaBZHQJJLss+V1Ol1fZQoaAZoCWgPQwh7vJAOj8xuQJSGlFKUaBVNBAFoFkdAkkvddu5z53V9lChoBmgJaA9DCAdEiCtnAm9AlIaUUpRoFU0PAWgWR0CSS/Dn/1g6dX2UKGgGaAloD0MIDB8RU2KocUCUhpRSlGgVTQMBaBZHQJJNwTHsC1Z1fZQoaAZoCWgPQwiY+nlTkQdvQJSGlFKUaBVNAQFoFkdAkk5R11W8y3V9lChoBmgJaA9DCJW3I5zWY3JAlIaUUpRoFU0DAWgWR0CST3RjSXt0dX2UKGgGaAloD0MIychZ2JP8cECUhpRSlGgVTTUBaBZHQJJPtPgvUSZ1fZQoaAZoCWgPQwhlOQmlL3xxQJSGlFKUaBVNDwFoFkdAkk/MrmQr+nV9lChoBmgJaA9DCEnXTL5ZUm5AlIaUUpRoFU0TAWgWR0CSUDQRPGhmdX2UKGgGaAloD0MISWdg5GXNcUCUhpRSlGgVS/JoFkdAklCsX3xnWnV9lChoBmgJaA9DCO8eoPsyrXJAlIaUUpRoFU0XAWgWR0CSUQfvF3pwdX2UKGgGaAloD0MIwXPv4ZI3WUCUhpRSlGgVTegDaBZHQJJRUZqEeyR1fZQoaAZoCWgPQwjChNGsrJRxQJSGlFKUaBVNCwFoFkdAklFRcRlH0HV9lChoBmgJaA9DCA+aXffWt29AlIaUUpRoFUv4aBZHQJJRYgbIcR11fZQoaAZoCWgPQwjx9iAEZBtwQJSGlFKUaBVL8GgWR0CSUol4keIVdX2UKGgGaAloD0MITYHMzuK6cUCUhpRSlGgVTTIBaBZHQJJSuDRMN+d1fZQoaAZoCWgPQwgTDr3FQ5tuQJSGlFKUaBVL/WgWR0CSUvy5Zr57dX2UKGgGaAloD0MIs5YC0j72cECUhpRSlGgVTTABaBZHQJJUJ0Lc9GJ1fZQoaAZoCWgPQwgq/YSzm4ByQJSGlFKUaBVNQwFoFkdAklRXeenQ6nV9lChoBmgJaA9DCJQRF4BGSm5AlIaUUpRoFU0SAWgWR0CSVYk690zTdX2UKGgGaAloD0MIMVwdAHFkcUCUhpRSlGgVTSIBaBZHQJJWoGLUCq91fZQoaAZoCWgPQwggmQ6d3r1yQJSGlFKUaBVNAQFoFkdAklcMPjGT93V9lChoBmgJaA9DCPuVzofnU3NAlIaUUpRoFUv6aBZHQJJXX3VTaTR1fZQoaAZoCWgPQwjNBplkZPZxQJSGlFKUaBVNFQFoFkdAkld1UZNwi3V9lChoBmgJaA9DCMIxy55ExnBAlIaUUpRoFU0WAWgWR0CSV9JxNqQBdX2UKGgGaAloD0MIcLA3MaR2cECUhpRSlGgVTRsBaBZHQJJY4MSbpeN1fZQoaAZoCWgPQwizzY3pSb5xQJSGlFKUaBVNLQFoFkdAklnQGr0aqHV9lChoBmgJaA9DCK1OzlAcUnBAlIaUUpRoFU0lAWgWR0CSWfBNEgGKdX2UKGgGaAloD0MItr+zPTrgckCUhpRSlGgVTSwBaBZHQJJaFuVHFxZ1fZQoaAZoCWgPQwhmv+5053VsQJSGlFKUaBVNAAFoFkdAklqjDCP6sXV9lChoBmgJaA9DCLoSgeofvnJAlIaUUpRoFU1LAWgWR0CSWvMNMGordX2UKGgGaAloD0MIbLBwkqb2cUCUhpRSlGgVTR0BaBZHQJJbJOwgTyt1fZQoaAZoCWgPQwijI7n8h4ZyQJSGlFKUaBVNJQFoFkdAkls1EJBw/HV9lChoBmgJaA9DCAfTMHyEYXBAlIaUUpRoFU0dAWgWR0CSXJXIlt0ndX2UKGgGaAloD0MI/kgRGVaKUUCUhpRSlGgVS8doFkdAkl1niBGx2XV9lChoBmgJaA9DCKYPXVAf93JAlIaUUpRoFU1WAWgWR0CSXhZpBX0YdX2UKGgGaAloD0MIwa27eSrwcECUhpRSlGgVTQgBaBZHQJJeSR4hUzd1fZQoaAZoCWgPQwjIQnQInHFuQJSGlFKUaBVNDgFoFkdAkl8ptzjm0XV9lChoBmgJaA9DCAKCOXp8m25AlIaUUpRoFU1MAWgWR0CSX05LRKHxdX2UKGgGaAloD0MIsJC5Mii2bkCUhpRSlGgVTQkBaBZHQJJgkkZ75VR1fZQoaAZoCWgPQwirBmFut0VxQJSGlFKUaBVL92gWR0CSYPU83dbgdX2UKGgGaAloD0MIvK/KhUqpbUCUhpRSlGgVTWMBaBZHQJJhmubI91V1fZQoaAZoCWgPQwiZKhiV1AtvQJSGlFKUaBVNZQFoFkdAkmIJjhDPW3V9lChoBmgJaA9DCLYvoBfulXBAlIaUUpRoFU0gAWgWR0CSYlyMUAT7dX2UKGgGaAloD0MIbvse9Vd/cUCUhpRSlGgVTQsBaBZHQJJifsHB1tB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fcd40dc086abab819784531a9e9153f37f7a7243281d00f799cd93f5a06b62f9
|
3 |
+
size 147404
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2ab52bb4c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2ab52bb550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2ab52bb5e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2ab52bb670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2ab52bb700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2ab52bb790>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2ab52bb820>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2ab52bb8b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2ab52bb940>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2ab52bb9d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2ab52bba60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2ab52bbaf0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f2ab5338420>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1677387068643282959,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEMPjr7SnJI/ANOBvl24wb6Jt6K+0lxXPQAAAAAAAAAAcNtSvmWh9D4DMEw+LXdbvry3+LwoJd89AAAAAAAAAAAAmF28e9iOuotnS7VEssuvYoIJuwU6RTQAAIA/AACAP5quNL2pQwU/8+dWPVSVor6kedI8ctCFPAAAAAAAAAAAgGwXvTg51buwQuW8Zc3svdFKQr0cmcq+AACAPwAAgD+z9YG94Uykui56E7kxEQC0netJOvWTKTgAAIA/AACAPzNTsjx7wKC6sAk1O1uPYjmSD/i6A3jSuQAAgD8AAIA/mpp+vfFUqD99Sh6/NOjYvhRPHLsQ1QK+AAAAAAAAAADTuB6+8GSgP3jYEL9lo8W+8K9PvshYhb4AAAAAAAAAADOLADvhno66RC09NMr33K8NwiY7OjGQswAAgD8AAIA/GlOsvXg6tT/z7gy/+dshvq5aRL0IjYO+AAAAAAAAAACA1mM+xTiKP/u3VD5b/Ae/RpQ5PjtTErwAAAAAAAAAADOrcDwy/mc+U+/dvVxibr7sb6W8tfJTvQAAAAAAAAAA4P4sPlnntD6rfJm9cwl7vtHb6T1lGmG9AAAAAAAAAADNou89hEUePro6VL5FJYW+Jl7DvLWTfr0AAAAAAAAAAM2inb3J66g/6kxWvo9X3b6vqAW+M33RvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIn1VmSivTcECUhpRSlIwBbJRNPAGMAXSUR0CSFMK3d9DydX2UKGgGaAloD0MIUrezr/yxcECUhpRSlGgVTR4BaBZHQJIVRm9QGfR1fZQoaAZoCWgPQwjkEHFzqhJxQJSGlFKUaBVNMwFoFkdAkhWPXK8tgHV9lChoBmgJaA9DCEFkkSbel29AlIaUUpRoFU0eAWgWR0CSFephnanKdX2UKGgGaAloD0MI54nnbIHwcECUhpRSlGgVTToBaBZHQJIWihUR3/x1fZQoaAZoCWgPQwgFU82sZYFxQJSGlFKUaBVNFAFoFkdAkhbm6f8Mu3V9lChoBmgJaA9DCGuBPSYS63FAlIaUUpRoFU0dAWgWR0CSF/MefZmJdX2UKGgGaAloD0MIILWJk7sAcECUhpRSlGgVTR4BaBZHQJIYGZSeiBZ1fZQoaAZoCWgPQwiZgjXOptRvQJSGlFKUaBVNFAFoFkdAkhhfFaSs83V9lChoBmgJaA9DCCC3Xz4Z0nBAlIaUUpRoFU0VAWgWR0CSGHyfthNNdX2UKGgGaAloD0MIsoAJ3LowckCUhpRSlGgVTQEBaBZHQJIZWwzLwF11fZQoaAZoCWgPQwgW3uUi/tVyQJSGlFKUaBVNHgFoFkdAkhoYQWepXXV9lChoBmgJaA9DCMstrYbE4HBAlIaUUpRoFU0AAWgWR0CSGkPdl/YrdX2UKGgGaAloD0MITKq2m6B0cUCUhpRSlGgVTTMBaBZHQJIaxyZKFqV1fZQoaAZoCWgPQwjiI2JKpLJwQJSGlFKUaBVNCgFoFkdAkht5fpljE3V9lChoBmgJaA9DCAVtcvgk1W5AlIaUUpRoFU1cAWgWR0CSHDh37k4ndX2UKGgGaAloD0MIQrRWtLnDb0CUhpRSlGgVS/hoFkdAkhxBQSBbwHV9lChoBmgJaA9DCN3PKchPh25AlIaUUpRoFU0AAWgWR0CSHL+YtxuLdX2UKGgGaAloD0MINe7Nb5hic0CUhpRSlGgVTToBaBZHQJIdpeMQ2/B1fZQoaAZoCWgPQwhjm1Q01oVvQJSGlFKUaBVL/mgWR0CSHgOAy2x6dX2UKGgGaAloD0MI4lgXt9H0RECUhpRSlGgVS9loFkdAkh6MdDIBBHV9lChoBmgJaA9DCBZLkXylAm9AlIaUUpRoFU0iAWgWR0CSHrtHhCMQdX2UKGgGaAloD0MI68iRzoAgcECUhpRSlGgVTQEBaBZHQJIfcSh8IAx1fZQoaAZoCWgPQwgTEJNwYbRwQJSGlFKUaBVNDwFoFkdAkiBBY3eenXV9lChoBmgJaA9DCOAtkKB4EnFAlIaUUpRoFU0mAWgWR0CSIGBNVR1pdX2UKGgGaAloD0MIFcjsLDo1cUCUhpRSlGgVTQgBaBZHQJIhCLYPGyZ1fZQoaAZoCWgPQwiOWmH63opvQJSGlFKUaBVNoAFoFkdAkiHLPdEb53V9lChoBmgJaA9DCPabienCU25AlIaUUpRoFU0ZAWgWR0CSInXAdn01dX2UKGgGaAloD0MIfhr35jecQkCUhpRSlGgVS+JoFkdAkiLX6Q/5cnV9lChoBmgJaA9DCE9ZTdcTv25AlIaUUpRoFU0zAWgWR0CSI80elsP8dX2UKGgGaAloD0MIHVa45WOhcUCUhpRSlGgVTRkBaBZHQJIklx+8Xep1fZQoaAZoCWgPQwi6vg8HCaRyQJSGlFKUaBVNDwFoFkdAkiTWzjWCmXV9lChoBmgJaA9DCKME/YWeom9AlIaUUpRoFU1IAWgWR0CSJThbGFSLdX2UKGgGaAloD0MIi+JV1vbqckCUhpRSlGgVTQwBaBZHQJIlu6ClJpZ1fZQoaAZoCWgPQwgLthFP9hVuQJSGlFKUaBVL8WgWR0CSJdH+IdlvdX2UKGgGaAloD0MIVTAqqROrcECUhpRSlGgVTQwBaBZHQJIm1+DvmYB1fZQoaAZoCWgPQwg3je21oF8vQJSGlFKUaBVL3WgWR0CSJv/nnuAqdX2UKGgGaAloD0MIYeEkzV9YcUCUhpRSlGgVTUMBaBZHQJInzB7/n4h1fZQoaAZoCWgPQwj53An233ltQJSGlFKUaBVNEAFoFkdAkiiiC4Bmw3V9lChoBmgJaA9DCEFEatrFTkNAlIaUUpRoFUvDaBZHQJIo1PAO8TV1fZQoaAZoCWgPQwilFd9QeGxwQJSGlFKUaBVNLQFoFkdAkiorCBPKuHV9lChoBmgJaA9DCDOLUGyFynFAlIaUUpRoFU0XAWgWR0CSKk2MsH0LdX2UKGgGaAloD0MIArovZ3YCc0CUhpRSlGgVTQUBaBZHQJIqcJu2qkx1fZQoaAZoCWgPQwhNgjekEb1xQJSGlFKUaBVNIwFoFkdAkkXeogmqpHV9lChoBmgJaA9DCJQVw9WBUm9AlIaUUpRoFU0RAWgWR0CSRmjn3cpLdX2UKGgGaAloD0MIVaAWg4eKcECUhpRSlGgVTR8BaBZHQJJGounMt9R1fZQoaAZoCWgPQwhWuVD5l/tyQJSGlFKUaBVNLgFoFkdAkkfgXdj5K3V9lChoBmgJaA9DCLnhd9OthnBAlIaUUpRoFUv2aBZHQJJH6g00m+l1fZQoaAZoCWgPQwh5XFSLyAlxQJSGlFKUaBVN9wFoFkdAkkgxzFMqSXV9lChoBmgJaA9DCMyXF2Cfe25AlIaUUpRoFU0/AWgWR0CSSP/UvwmWdX2UKGgGaAloD0MITOKsiBrRcECUhpRSlGgVTREBaBZHQJJJt4iX6ZZ1fZQoaAZoCWgPQwhFRgck4VlvQJSGlFKUaBVNVgFoFkdAkknYkRjBmHV9lChoBmgJaA9DCPVnP1IEpnBAlIaUUpRoFUv9aBZHQJJKMWXTmXB1fZQoaAZoCWgPQwgU7L/OjTxwQJSGlFKUaBVNRgFoFkdAkkphbwBo3HV9lChoBmgJaA9DCJlLqrbbOnFAlIaUUpRoFU0tAWgWR0CSS1gDzRQadX2UKGgGaAloD0MIHJYGftTMb0CUhpRSlGgVTQIBaBZHQJJLss+V1Ol1fZQoaAZoCWgPQwh7vJAOj8xuQJSGlFKUaBVNBAFoFkdAkkvddu5z53V9lChoBmgJaA9DCAdEiCtnAm9AlIaUUpRoFU0PAWgWR0CSS/Dn/1g6dX2UKGgGaAloD0MIDB8RU2KocUCUhpRSlGgVTQMBaBZHQJJNwTHsC1Z1fZQoaAZoCWgPQwiY+nlTkQdvQJSGlFKUaBVNAQFoFkdAkk5R11W8y3V9lChoBmgJaA9DCJW3I5zWY3JAlIaUUpRoFU0DAWgWR0CST3RjSXt0dX2UKGgGaAloD0MIychZ2JP8cECUhpRSlGgVTTUBaBZHQJJPtPgvUSZ1fZQoaAZoCWgPQwhlOQmlL3xxQJSGlFKUaBVNDwFoFkdAkk/MrmQr+nV9lChoBmgJaA9DCEnXTL5ZUm5AlIaUUpRoFU0TAWgWR0CSUDQRPGhmdX2UKGgGaAloD0MISWdg5GXNcUCUhpRSlGgVS/JoFkdAklCsX3xnWnV9lChoBmgJaA9DCO8eoPsyrXJAlIaUUpRoFU0XAWgWR0CSUQfvF3pwdX2UKGgGaAloD0MIwXPv4ZI3WUCUhpRSlGgVTegDaBZHQJJRUZqEeyR1fZQoaAZoCWgPQwjChNGsrJRxQJSGlFKUaBVNCwFoFkdAklFRcRlH0HV9lChoBmgJaA9DCA+aXffWt29AlIaUUpRoFUv4aBZHQJJRYgbIcR11fZQoaAZoCWgPQwjx9iAEZBtwQJSGlFKUaBVL8GgWR0CSUol4keIVdX2UKGgGaAloD0MITYHMzuK6cUCUhpRSlGgVTTIBaBZHQJJSuDRMN+d1fZQoaAZoCWgPQwgTDr3FQ5tuQJSGlFKUaBVL/WgWR0CSUvy5Zr57dX2UKGgGaAloD0MIs5YC0j72cECUhpRSlGgVTTABaBZHQJJUJ0Lc9GJ1fZQoaAZoCWgPQwgq/YSzm4ByQJSGlFKUaBVNQwFoFkdAklRXeenQ6nV9lChoBmgJaA9DCJQRF4BGSm5AlIaUUpRoFU0SAWgWR0CSVYk690zTdX2UKGgGaAloD0MIMVwdAHFkcUCUhpRSlGgVTSIBaBZHQJJWoGLUCq91fZQoaAZoCWgPQwggmQ6d3r1yQJSGlFKUaBVNAQFoFkdAklcMPjGT93V9lChoBmgJaA9DCPuVzofnU3NAlIaUUpRoFUv6aBZHQJJXX3VTaTR1fZQoaAZoCWgPQwjNBplkZPZxQJSGlFKUaBVNFQFoFkdAkld1UZNwi3V9lChoBmgJaA9DCMIxy55ExnBAlIaUUpRoFU0WAWgWR0CSV9JxNqQBdX2UKGgGaAloD0MIcLA3MaR2cECUhpRSlGgVTRsBaBZHQJJY4MSbpeN1fZQoaAZoCWgPQwizzY3pSb5xQJSGlFKUaBVNLQFoFkdAklnQGr0aqHV9lChoBmgJaA9DCK1OzlAcUnBAlIaUUpRoFU0lAWgWR0CSWfBNEgGKdX2UKGgGaAloD0MItr+zPTrgckCUhpRSlGgVTSwBaBZHQJJaFuVHFxZ1fZQoaAZoCWgPQwhmv+5053VsQJSGlFKUaBVNAAFoFkdAklqjDCP6sXV9lChoBmgJaA9DCLoSgeofvnJAlIaUUpRoFU1LAWgWR0CSWvMNMGordX2UKGgGaAloD0MIbLBwkqb2cUCUhpRSlGgVTR0BaBZHQJJbJOwgTyt1fZQoaAZoCWgPQwijI7n8h4ZyQJSGlFKUaBVNJQFoFkdAkls1EJBw/HV9lChoBmgJaA9DCAfTMHyEYXBAlIaUUpRoFU0dAWgWR0CSXJXIlt0ndX2UKGgGaAloD0MI/kgRGVaKUUCUhpRSlGgVS8doFkdAkl1niBGx2XV9lChoBmgJaA9DCKYPXVAf93JAlIaUUpRoFU1WAWgWR0CSXhZpBX0YdX2UKGgGaAloD0MIwa27eSrwcECUhpRSlGgVTQgBaBZHQJJeSR4hUzd1fZQoaAZoCWgPQwjIQnQInHFuQJSGlFKUaBVNDgFoFkdAkl8ptzjm0XV9lChoBmgJaA9DCAKCOXp8m25AlIaUUpRoFU1MAWgWR0CSX05LRKHxdX2UKGgGaAloD0MIsJC5Mii2bkCUhpRSlGgVTQkBaBZHQJJgkkZ75VR1fZQoaAZoCWgPQwirBmFut0VxQJSGlFKUaBVL92gWR0CSYPU83dbgdX2UKGgGaAloD0MIvK/KhUqpbUCUhpRSlGgVTWMBaBZHQJJhmubI91V1fZQoaAZoCWgPQwiZKhiV1AtvQJSGlFKUaBVNZQFoFkdAkmIJjhDPW3V9lChoBmgJaA9DCLYvoBfulXBAlIaUUpRoFU0gAWgWR0CSYlyMUAT7dX2UKGgGaAloD0MIbvse9Vd/cUCUhpRSlGgVTQsBaBZHQJJifsHB1tB1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7571e6361f18863b15e1199d3d81659287b52976b7494ba1a732eed0d1445610
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2d4f8238e8ae62f58234fdc38b8199cb60c1e91e05eb676d6da37cf9ef9d8f9
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (223 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 262.12299686540416, "std_reward": 22.400261052530432, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-26T05:11:48.917113"}
|