ppo_LunarLander_v2 / config.json
Chaabman98's picture
first LunarLander-v2 ppo implementation from unit 1
fcbc29c verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c4560d317e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c4560d31870>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c4560d31900>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c4560d31990>", "_build": "<function ActorCriticPolicy._build at 0x7c4560d31a20>", "forward": "<function ActorCriticPolicy.forward at 0x7c4560d31ab0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c4560d31b40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c4560d31bd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c4560d31c60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c4560d31cf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c4560d31d80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c4560d31e10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c4560ce4d80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718617185899515684, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0RTL0Volc/JJyXvdffeL6gn2O8y6FOvAAAAAAAAAAAJlePPbZ+Q7w6Uv48keJGvoz7WLyanxC/AACAPwAAgD/zrf29kCAOP31/Mr0DCo6+m3GSvf9CCz0AAAAAAAAAAK3yL74V6EE+3h4cPsIbeb6Xa9e6nbMEPgAAAAAAAAAAJjURvh+fi7u2Ks2877WgumE0yzyqlIk7AACAPwAAgD/NJY4+YxpfP7HVh73s3nS+XuvZPSagUb0AAAAAAAAAAACsmL6+N5g/WkIUvkn7cb6kDF6+hOaoPQAAAAAAAAAAADNIvnYMHz8rbAk+Ns5ovoNUFD2fBKU9AAAAAAAAAADzw4q9XBtmuugD+rgmR/azpntlO1LfEjgAAIA/AACAP/MtAb7Rwro9sK+cPVLmNr5bpfC8VTwgPQAAAAAAAAAARYWJvgnwhj/NHuW9MNiLvnANBb50Xzo+AAAAAAAAAAAzK/Q8wNZLPxQQCj2uyJG+GTZqPf7QJz0AAAAAAAAAADPRrLw2ObU/ozwzv78wPj017Zg8LruvPQAAAAAAAAAAzRjEvDqgsD7j7RW+OiKIvgLCir16k489AAAAAAAAAABNqOi9XwLLPo7ZKr0G4HO+I81BvYfxsrwAAAAAAAAAAIZ+M778H+4+XT5PPWD1Kb4V/ee8m19WPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG56yLZSNwSMAWyUTXQBjAF0lEdAmJ0p1RtP6HV9lChoBkdAcMfu4PPLPmgHTZUBaAhHQJidVvvSc9Z1fZQoaAZHQGyaivovBadoB02LAWgIR0CYnZsnAqNIdX2UKGgGR0BuvL7655JLaAdNQwFoCEdAmJ5eQU5+6XV9lChoBkdAbXC74BV+7WgHTd4BaAhHQJifJJL/S6V1fZQoaAZHQHFCM5bQkX1oB01vAWgIR0CYoFgUDdP+dX2UKGgGR0BuGuEIw/PgaAdNcgFoCEdAmKIZRwZOz3V9lChoBkdAb10Jng5zYGgHTYABaAhHQJi2nOGCZnd1fZQoaAZHQGCyWSEDhcZoB03oA2gIR0CYtur+YMOPdX2UKGgGR0ByEHkcS5AhaAdNOQFoCEdAmLdT/IbOvHV9lChoBkdAcZTKyfL9uWgHTY8BaAhHQJi3Za0QbuN1fZQoaAZHQHD4W3nZCfJoB00/AWgIR0CYt6SBshxHdX2UKGgGR0BwKcbFS88LaAdNcQFoCEdAmLfx3V09yXV9lChoBkdAcTy+ajN6gWgHTWQBaAhHQJi4erIYFaB1fZQoaAZHQHEa+3lS0jVoB01uAWgIR0CYumGdI5HVdX2UKGgGR0BDESy2QXANaAdNNgFoCEdAmLyeGGmDUXV9lChoBkdAbr0vQnhKlGgHTXcBaAhHQJi8x1Ng0CR1fZQoaAZHQG93OinHeadoB01oAWgIR0CYvkAVwgkkdX2UKGgGR0Bso1fw7T2GaAdNQAFoCEdAmL88W0qpcXV9lChoBkdAbNMxCY1HfGgHTX0BaAhHQJi/PQgLZzx1fZQoaAZHQG7qtzr/sE9oB02OAWgIR0CYwLdZaFEidX2UKGgGR0Bu90JUo8ZDaAdNZQFoCEdAmMHg4CIUJ3V9lChoBkdAcHhNB4Uvf2gHTUABaAhHQJjCBY6nzhB1fZQoaAZHQHFx0btJFspoB02jAWgIR0CYwg8/D+BIdX2UKGgGR0Bul7QmeDnOaAdNVwFoCEdAmMKEu+RHPXV9lChoBkdAbcSONHYpUmgHTVsBaAhHQJjDNTVDrqt1fZQoaAZHQHC9gzpHI6toB01GAWgIR0CYwzVghKUWdX2UKGgGR0BxHUw8GLUDaAdNVQFoCEdAmMNRczImxHV9lChoBkdAcZZJIDoyK2gHTWIBaAhHQJjDcNSZSel1fZQoaAZHQG96RGc4HX5oB01TAWgIR0CYxAYT0xubdX2UKGgGR0BwRvEfkmx/aAdNYgFoCEdAmMYdETg2qHV9lChoBkdAcLdVWS2Yv2gHTVcBaAhHQJjH2VPepGZ1fZQoaAZHQEXFYnv2GqRoB00BAWgIR0CYykn5i3G5dX2UKGgGR0BwqUr8R+SbaAdNYAFoCEdAmMuIIv8IiXV9lChoBkdATtFWZJCjUWgHTTkBaAhHQJjLk5myxA11fZQoaAZHQHAGFWKdhApoB01mAWgIR0CYy8nied08dX2UKGgGR0Bx4qnXNC7caAdNkQFoCEdAmMx8ewLVnXV9lChoBkdAbMg3IdU83mgHTUwBaAhHQJjOWzfJmul1fZQoaAZHQG0uyA6Mir1oB01LAWgIR0CYz3fcN6PbdX2UKGgGR0BxixXdTHbRaAdNSAFoCEdAmM+HkLhJiHV9lChoBkdAb74QuEmICWgHTX8BaAhHQJjP4Ia99MN1fZQoaAZHQHEOPeYUnG9oB01BAWgIR0CY0FHwgDA8dX2UKGgGR0BwRWdXko4NaAdNcgFoCEdAmNDUzbeuWHV9lChoBkdAcZ2LAHmig2gHTYIBaAhHQJjRoLH+6y11fZQoaAZHQGvjixNZeRhoB03aAWgIR0CY0zqfvnbJdX2UKGgGR0Bu9QClrM1TaAdNigFoCEdAmNZr349HMHV9lChoBkdAcWFgkTpPh2gHTSsBaAhHQJjX+R7qptJ1fZQoaAZHQHGJEQTVUddoB012AWgIR0CY2AgXMyJsdX2UKGgGR0Bv6p1/2Cd0aAdNTgFoCEdAmNimIwdsBXV9lChoBkdAcMmGTcIqsmgHTUUBaAhHQJjadw2l2vB1fZQoaAZHQHCw1VcUuctoB01nAWgIR0CY2wD1GsmwdX2UKGgGR0BxzdtgrpaBaAdNawFoCEdAmNt1hCtzS3V9lChoBkdAck4YPoV2zWgHTVoBaAhHQJjuotg8bJh1fZQoaAZHQHIYPp+tr9FoB00wAWgIR0CY7r2g3974dX2UKGgGR0BwXnwqiGnGaAdNQgFoCEdAmO7wDifg8HV9lChoBkdAce+7oSteU2gHTVgBaAhHQJjvWt3fQ8h1fZQoaAZHQHFvpSJj2BdoB019AWgIR0CY8H3BpHqedX2UKGgGR0BsHFuzhP0qaAdNgwFoCEdAmPIG07bL2nV9lChoBkdAbSiEUTL4e2gHTVIBaAhHQJjypt/FzdV1fZQoaAZHQG+FM9B8hLZoB02NAWgIR0CY80hysCDFdX2UKGgGR0BfJ/L9uP3jaAdN6ANoCEdAmPSDBdld1XV9lChoBkdAcNb21D0Dl2gHTVMBaAhHQJj1LrC3w1B1fZQoaAZHQHCxJ7TlT3toB01KAWgIR0CY9gvfCQ9zdX2UKGgGR0BMxcophF3IaAdNBgFoCEdAmPYWLP2PDHV9lChoBkdAb2x4u9OARWgHTVQBaAhHQJj2XoJRfnh1fZQoaAZHQG9Nv0qYqoZoB01OAWgIR0CY9p4yoGY8dX2UKGgGR0BupW14Pf8/aAdNVAFoCEdAmPfxASnLq3V9lChoBkdAb8e31BdD6WgHTVUBaAhHQJj4VTfixV11fZQoaAZHv+hWK/EfkmxoB00TAWgIR0CY+d1loUSJdX2UKGgGR0BRHiuMdcSoaAdNVQFoCEdAmPoxH5Jsf3V9lChoBkdAcLY3vQWvbGgHTWQBaAhHQJj7BoexOcl1fZQoaAZHQGwA/x+az/poB01pAWgIR0CY+7Ve8f3fdX2UKGgGR0BvVWbsniNsaAdNiAFoCEdAmPwqZx7zCnV9lChoBkdAbjkhPj4pMGgHTTsBaAhHQJj82ziS7oV1fZQoaAZHQHIJg3kxREZoB006AWgIR0CY/WAY51eTdX2UKGgGR0BurQBFNL13aAdNXAFoCEdAmP8aPCEYfnV9lChoBkdAcCwLxZuAJGgHTWcBaAhHQJkA2hPCVKR1fZQoaAZHQHBBz6SDAahoB01XAWgIR0CZAPcmjTKDdX2UKGgGR0Buzb67/XGwaAdNSgFoCEdAmQFVbiZOSHV9lChoBkdAcXdMrmQr+mgHTUUBaAhHQJkBdp7CzkZ1fZQoaAZHQHDhog3cYZVoB01vAWgIR0CZAomCyyD7dX2UKGgGR0BrYPlhgE2YaAdNOwFoCEdAmQK6y8jAz3V9lChoBkdAcNiV8kUsWmgHTWgBaAhHQJkC1ASnLq51fZQoaAZHQG+BIKMNtqJoB01rAWgIR0CZBKJC0F8pdX2UKGgGR0Byx+XiR4hVaAdNYgFoCEdAmQZlu76HkHV9lChoBkdAcPxtRNyo42gHTVMBaAhHQJkHP0aqCH11fZQoaAZHQHGYs76pHZtoB02IAWgIR0CZCNAI6bONdX2UKGgGR0Bw+Xx9XtBwaAdNaQFoCEdAmQnoQnQY13V9lChoBkdAbYK1KGtZFGgHTYEBaAhHQJkKdOEdvKl1fZQoaAZHQHFQp/wy6+ZoB009AWgIR0CZDDQr+YMOdX2UKGgGR0BwOGu3c580aAdNggFoCEdAmQxCCJ40M3V9lChoBkdAbz89FF2FFmgHTYMBaAhHQJkNEx33Ycx1fZQoaAZHQDPdgssg+yJoB0v0aAhHQJkNscPvrnl1fZQoaAZHQHEh5Rjz7MxoB01FAWgIR0CZDqeE7GNrdX2UKGgGR0BuNAEfT1CgaAdNSQFoCEdAmQ946Oo5xXV9lChoBkdAcCwlkpZwGWgHTWQBaAhHQJkQfWqcVgx1fZQoaAZHQG8+5Ukv9LpoB01HAWgIR0CZEN4593KTdX2UKGgGR0BxHbyCnP3SaAdNlwFoCEdAmRH51vES/XV9lChoBkdAUDYONHYpUmgHS+9oCEdAmRIZIpYs/nV9lChoBkdAcP+SW7e2u2gHTZ4BaAhHQJkT9HOKO1h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}