CarlosGranados commited on
Commit
3e4b761
·
verified ·
1 Parent(s): c964741

new_model: PPO model trained for 5 and 2000000 steps

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -488.49 +/- 77.68
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 260.94 +/- 19.35
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f16e58d8900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f16e58d89a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f16e58d8a40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f16e58d8ae0>", "_build": "<function ActorCriticPolicy._build at 0x7f16e58d8b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f16e58d8c20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f16e58d8cc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f16e58d8d60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f16e58d8e00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f16e58d8ea0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f16e58d8f40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f16e58d8fe0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f16e58cdd80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 0, "_total_timesteps": 0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 0.0, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": null, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 1.0, "_stats_window_size": 100, "ep_info_buffer": null, "ep_success_buffer": null, "_n_updates": 0, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVGgQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD+KESl2oBc+d1KbUuBk6vL9ZPEAjANpbmOUihAvyBg+RydgiZ1X/0C3sT1hdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1jBpudW1weS5yYW5kb20uYml0X2dlbmVyYXRvcpSMG19fcHl4X3VucGlja2xlX1NlZWRTZXF1ZW5jZZSTlGhEjAxTZWVkU2VxdWVuY2WUk5RKIqLqA06HlFKUKIoR1YHNE7pwjJwC3JOe52sjiQBLAGgRKJYQAAAAAAAAAOQnUhQ4nNey3tl9+R4wc0yUaAiMAnU0lImIh5RSlChLA2gMTk5OSv////9K/////0sAdJRiSwSFlGgZdJRSlEsEKXSUYoaUYoWUUpR1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVqQIAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgbjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCiKEOKAsRmc7R/6H/xL/ltf6niMA2luY5SKEAWREqgidF3VSEya3Lp9qmR1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBfbz6Z8AdYwabnVtcHkucmFuZG9tLmJpdF9nZW5lcmF0b3KUjBtfX3B5eF91bnBpY2tsZV9TZWVkU2VxdWVuY2WUk5RoLYwMU2VlZFNlcXVlbmNllJOUSiKi6gNOh5RSlCiKEZ/5eOd5249TtQsEuHTLxMIASwCME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAADszVbtQSxRzm7jbmo6JOYclGgLjAJ1NJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYksEhZSMAUOUdJRSlEsEKXSUYoaUYoWUUpR1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.153.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Mar 29 23:14:13 UTC 2024", "Python": "3.11.7", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "2.0.0", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6f36990860>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6f36990900>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6f369909a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6f36990a40>", "_build": "<function ActorCriticPolicy._build at 0x7f6f36990ae0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6f36990b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6f36990c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6f36990cc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6f36990d60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6f36990e00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6f36990ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6f36990f40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6f3698d000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 0, "_total_timesteps": 0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 0.0, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": null, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 1.0, "_stats_window_size": 100, "ep_info_buffer": null, "ep_success_buffer": null, "_n_updates": 0, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVGgQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD+KEMd/0kd5tVsL5UQVVbgAZyeMA2luY5SKEVvBQkgompRZf/RkEeSV9ZMAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1jBpudW1weS5yYW5kb20uYml0X2dlbmVyYXRvcpSMG19fcHl4X3VucGlja2xlX1NlZWRTZXF1ZW5jZZSTlGhEjAxTZWVkU2VxdWVuY2WUk5RKIqLqA06HlFKUKIoRk9L/ii1mXorMcAVDqI7nmQBLAGgRKJYQAAAAAAAAAGgmFSDBONvSOXGvOWcLSt2UaAiMAnU0lImIh5RSlChLA2gMTk5OSv////9K/////0sAdJRiSwSFlGgZdJRSlEsEKXSUYoaUYoWUUpR1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVqgIAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgbjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCiKEDuB74o5J6f7MJhjOdEX4DCMA2luY5SKESG4oQaPN1wnwdowVNXN+/EAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigVztLyQAHWMGm51bXB5LnJhbmRvbS5iaXRfZ2VuZXJhdG9ylIwbX19weXhfdW5waWNrbGVfU2VlZFNlcXVlbmNllJOUaC2MDFNlZWRTZXF1ZW5jZZSTlEoiouoDToeUUpQoihEHHHa6XzpKrwNTefZFQw2AAEsAjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolhAAAAAAAAAAFZoURXIDHja13PNFjO1ejpRoC4wCdTSUiYiHlFKUKEsDaA9OTk5K/////0r/////SwB0lGJLBIWUjAFDlHSUUpRLBCl0lGKGlGKFlFKUdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVKwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjIMvaG9tZS9jYXJsb3NncmFuYWRvcy9yZXBvc2l0b3J5L2NvZGVzL2hmX2RlZXBfcmwvcHl0aG9uUHJvamVjdC8udmVudi9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.153.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Mar 29 23:14:13 UTC 2024", "Python": "3.11.7", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "2.0.0", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1bfbd6aca5fe8b6935f16bb794880ae9036780927dcc09c886d268e352ce5bf8
3
- size 56642
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b042c4f86455280252a5d9253249ee7f041c1f88d186b316524aac4199c323ad
3
+ size 144012
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f16e58d8900>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f16e58d89a0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f16e58d8a40>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f16e58d8ae0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f16e58d8b80>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f16e58d8c20>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f16e58d8cc0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f16e58d8d60>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f16e58d8e00>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f16e58d8ea0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f16e58d8f40>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f16e58d8fe0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f16e58cdd80>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -42,7 +42,7 @@
42
  "_n_updates": 0,
43
  "observation_space": {
44
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
45
- ":serialized:": "gAWVGgQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD+KESl2oBc+d1KbUuBk6vL9ZPEAjANpbmOUihAvyBg+RydgiZ1X/0C3sT1hdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1jBpudW1weS5yYW5kb20uYml0X2dlbmVyYXRvcpSMG19fcHl4X3VucGlja2xlX1NlZWRTZXF1ZW5jZZSTlGhEjAxTZWVkU2VxdWVuY2WUk5RKIqLqA06HlFKUKIoR1YHNE7pwjJwC3JOe52sjiQBLAGgRKJYQAAAAAAAAAOQnUhQ4nNey3tl9+R4wc0yUaAiMAnU0lImIh5RSlChLA2gMTk5OSv////9K/////0sAdJRiSwSFlGgZdJRSlEsEKXSUYoaUYoWUUpR1Yi4=",
46
  "dtype": "float32",
47
  "bounded_below": "[ True True True True True True True True]",
48
  "bounded_above": "[ True True True True True True True True]",
@@ -57,7 +57,7 @@
57
  },
58
  "action_space": {
59
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
60
- ":serialized:": "gAWVqQIAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgbjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCiKEOKAsRmc7R/6H/xL/ltf6niMA2luY5SKEAWREqgidF3VSEya3Lp9qmR1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBfbz6Z8AdYwabnVtcHkucmFuZG9tLmJpdF9nZW5lcmF0b3KUjBtfX3B5eF91bnBpY2tsZV9TZWVkU2VxdWVuY2WUk5RoLYwMU2VlZFNlcXVlbmNllJOUSiKi6gNOh5RSlCiKEZ/5eOd5249TtQsEuHTLxMIASwCME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAADszVbtQSxRzm7jbmo6JOYclGgLjAJ1NJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYksEhZSMAUOUdJRSlEsEKXSUYoaUYoWUUpR1Yi4=",
61
  "n": "4",
62
  "start": "0",
63
  "_shape": [],
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6f36990860>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6f36990900>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6f369909a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6f36990a40>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6f36990ae0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6f36990b80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6f36990c20>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6f36990cc0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6f36990d60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6f36990e00>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6f36990ea0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6f36990f40>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f6f3698d000>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
42
  "_n_updates": 0,
43
  "observation_space": {
44
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
45
+ ":serialized:": "gAWVGgQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD+KEMd/0kd5tVsL5UQVVbgAZyeMA2luY5SKEVvBQkgompRZf/RkEeSV9ZMAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1jBpudW1weS5yYW5kb20uYml0X2dlbmVyYXRvcpSMG19fcHl4X3VucGlja2xlX1NlZWRTZXF1ZW5jZZSTlGhEjAxTZWVkU2VxdWVuY2WUk5RKIqLqA06HlFKUKIoRk9L/ii1mXorMcAVDqI7nmQBLAGgRKJYQAAAAAAAAAGgmFSDBONvSOXGvOWcLSt2UaAiMAnU0lImIh5RSlChLA2gMTk5OSv////9K/////0sAdJRiSwSFlGgZdJRSlEsEKXSUYoaUYoWUUpR1Yi4=",
46
  "dtype": "float32",
47
  "bounded_below": "[ True True True True True True True True]",
48
  "bounded_above": "[ True True True True True True True True]",
 
57
  },
58
  "action_space": {
59
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
60
+ ":serialized:": "gAWVqgIAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlGgbjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIwTbnVtcHkucmFuZG9tLl9wY2c2NJSMBVBDRzY0lJOUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCiKEDuB74o5J6f7MJhjOdEX4DCMA2luY5SKESG4oQaPN1wnwdowVNXN+/EAdYwKaGFzX3VpbnQzMpRLAYwIdWludGVnZXKUigVztLyQAHWMGm51bXB5LnJhbmRvbS5iaXRfZ2VuZXJhdG9ylIwbX19weXhfdW5waWNrbGVfU2VlZFNlcXVlbmNllJOUaC2MDFNlZWRTZXF1ZW5jZZSTlEoiouoDToeUUpQoihEHHHa6XzpKrwNTefZFQw2AAEsAjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolhAAAAAAAAAAFZoURXIDHja13PNFjO1ejpRoC4wCdTSUiYiHlFKUKEsDaA9OTk5K/////0r/////SwB0lGJLBIWUjAFDlHSUUpRLBCl0lGKGlGKFlFKUdWIu",
61
  "n": "4",
62
  "start": "0",
63
  "_shape": [],
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:13dbf41e305d3a0b52e13b973ece0bb28ffca5bcf57636bcf9b68102feec544e
3
- size 1120
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d4ecbb7f4ed2f30df64ece5a527b9a4eea495f1593a8bb4b7f1d74f2b20753a
3
+ size 88490
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e74669ad189608941ab15771ac8500a426097f18a97aa36cf45770b0cfcc585a
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62ce5ec117b7b5b92b016fe128deeca1a060d32c83c34612e80644a95a322bda
3
  size 43762
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -488.4943355169147, "std_reward": 77.68447627533521, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-03T15:54:42.765485"}
 
1
+ {"mean_reward": 260.94367497849385, "std_reward": 19.346288378819274, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-03T15:57:27.523835"}