|
2022-09-22 02:59:26,802 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 02:59:26,806 Model: "SequenceTagger( |
|
(embeddings): StackedEmbeddings( |
|
(list_embedding_0): WordEmbeddings( |
|
'pt' |
|
(embedding): Embedding(592108, 300) |
|
) |
|
(list_embedding_1): FlairEmbeddings( |
|
(lm): LanguageModel( |
|
(drop): Dropout(p=0.5, inplace=False) |
|
(encoder): Embedding(275, 100) |
|
(rnn): LSTM(100, 2048) |
|
(decoder): Linear(in_features=2048, out_features=275, bias=True) |
|
) |
|
) |
|
(list_embedding_2): FlairEmbeddings( |
|
(lm): LanguageModel( |
|
(drop): Dropout(p=0.5, inplace=False) |
|
(encoder): Embedding(275, 100) |
|
(rnn): LSTM(100, 2048) |
|
(decoder): Linear(in_features=2048, out_features=275, bias=True) |
|
) |
|
) |
|
) |
|
(word_dropout): WordDropout(p=0.05) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(embedding2nn): Linear(in_features=4396, out_features=4396, bias=True) |
|
(rnn): LSTM(4396, 256, batch_first=True, bidirectional=True) |
|
(linear): Linear(in_features=512, out_features=31, bias=True) |
|
(loss_function): ViterbiLoss() |
|
(crf): CRF() |
|
)" |
|
2022-09-22 02:59:26,810 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 02:59:26,812 Corpus: "Corpus: 6667 train + 1429 dev + 1430 test sentences" |
|
2022-09-22 02:59:26,815 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 02:59:26,816 Parameters: |
|
2022-09-22 02:59:26,818 - learning_rate: "0.100000" |
|
2022-09-22 02:59:26,820 - mini_batch_size: "32" |
|
2022-09-22 02:59:26,822 - patience: "3" |
|
2022-09-22 02:59:26,824 - anneal_factor: "0.5" |
|
2022-09-22 02:59:26,826 - max_epochs: "70" |
|
2022-09-22 02:59:26,828 - shuffle: "True" |
|
2022-09-22 02:59:26,830 - train_with_dev: "False" |
|
2022-09-22 02:59:26,832 - batch_growth_annealing: "False" |
|
2022-09-22 02:59:26,834 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 02:59:26,836 Model training base path: "resources/taggers/sota-ner-flair" |
|
2022-09-22 02:59:26,838 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 02:59:26,840 Device: cuda:0 |
|
2022-09-22 02:59:26,842 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 02:59:26,844 Embeddings storage mode: cpu |
|
2022-09-22 02:59:26,846 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 02:59:35,823 epoch 1 - iter 20/209 - loss 1.13410593 - samples/sec: 71.33 - lr: 0.100000 |
|
2022-09-22 02:59:48,046 epoch 1 - iter 40/209 - loss 0.71784978 - samples/sec: 52.38 - lr: 0.100000 |
|
2022-09-22 02:59:57,074 epoch 1 - iter 60/209 - loss 0.61528243 - samples/sec: 70.93 - lr: 0.100000 |
|
2022-09-22 03:00:06,243 epoch 1 - iter 80/209 - loss 0.53293891 - samples/sec: 69.84 - lr: 0.100000 |
|
2022-09-22 03:00:16,481 epoch 1 - iter 100/209 - loss 0.46878947 - samples/sec: 62.54 - lr: 0.100000 |
|
2022-09-22 03:00:26,225 epoch 1 - iter 120/209 - loss 0.43495573 - samples/sec: 65.72 - lr: 0.100000 |
|
2022-09-22 03:00:35,107 epoch 1 - iter 140/209 - loss 0.40955810 - samples/sec: 72.09 - lr: 0.100000 |
|
2022-09-22 03:00:44,083 epoch 1 - iter 160/209 - loss 0.38994258 - samples/sec: 71.33 - lr: 0.100000 |
|
2022-09-22 03:00:54,927 epoch 1 - iter 180/209 - loss 0.36711456 - samples/sec: 59.05 - lr: 0.100000 |
|
2022-09-22 03:01:04,767 epoch 1 - iter 200/209 - loss 0.34815392 - samples/sec: 65.08 - lr: 0.100000 |
|
2022-09-22 03:01:09,259 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:01:09,261 EPOCH 1 done: loss 0.3455 - lr 0.100000 |
|
2022-09-22 03:01:31,421 Evaluating as a multi-label problem: False |
|
2022-09-22 03:01:31,444 DEV : loss 0.16570232808589935 - f1-score (micro avg) 0.4029 |
|
2022-09-22 03:01:31,573 BAD EPOCHS (no improvement): 0 |
|
2022-09-22 03:01:31,577 saving best model |
|
2022-09-22 03:01:36,030 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:01:41,307 epoch 2 - iter 20/209 - loss 0.16969945 - samples/sec: 122.21 - lr: 0.100000 |
|
2022-09-22 03:01:45,673 epoch 2 - iter 40/209 - loss 0.17413153 - samples/sec: 146.75 - lr: 0.100000 |
|
2022-09-22 03:01:50,856 epoch 2 - iter 60/209 - loss 0.16120805 - samples/sec: 123.61 - lr: 0.100000 |
|
2022-09-22 03:01:55,466 epoch 2 - iter 80/209 - loss 0.15250645 - samples/sec: 138.99 - lr: 0.100000 |
|
2022-09-22 03:01:59,781 epoch 2 - iter 100/209 - loss 0.14887640 - samples/sec: 148.50 - lr: 0.100000 |
|
2022-09-22 03:02:03,887 epoch 2 - iter 120/209 - loss 0.14730730 - samples/sec: 156.07 - lr: 0.100000 |
|
2022-09-22 03:02:07,935 epoch 2 - iter 140/209 - loss 0.14649781 - samples/sec: 158.30 - lr: 0.100000 |
|
2022-09-22 03:02:12,389 epoch 2 - iter 160/209 - loss 0.14828806 - samples/sec: 143.83 - lr: 0.100000 |
|
2022-09-22 03:02:16,377 epoch 2 - iter 180/209 - loss 0.14447967 - samples/sec: 160.67 - lr: 0.100000 |
|
2022-09-22 03:02:21,082 epoch 2 - iter 200/209 - loss 0.13988174 - samples/sec: 136.21 - lr: 0.100000 |
|
2022-09-22 03:02:22,836 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:02:22,839 EPOCH 2 done: loss 0.1393 - lr 0.100000 |
|
2022-09-22 03:02:34,005 Evaluating as a multi-label problem: False |
|
2022-09-22 03:02:34,026 DEV : loss 0.09656457602977753 - f1-score (micro avg) 0.6174 |
|
2022-09-22 03:02:34,157 BAD EPOCHS (no improvement): 0 |
|
2022-09-22 03:02:34,160 saving best model |
|
2022-09-22 03:02:38,504 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:02:43,414 epoch 3 - iter 20/209 - loss 0.13227681 - samples/sec: 130.61 - lr: 0.100000 |
|
2022-09-22 03:02:48,622 epoch 3 - iter 40/209 - loss 0.11212625 - samples/sec: 123.01 - lr: 0.100000 |
|
2022-09-22 03:02:52,549 epoch 3 - iter 60/209 - loss 0.11799034 - samples/sec: 163.14 - lr: 0.100000 |
|
2022-09-22 03:02:56,771 epoch 3 - iter 80/209 - loss 0.11820362 - samples/sec: 151.78 - lr: 0.100000 |
|
2022-09-22 03:03:01,536 epoch 3 - iter 100/209 - loss 0.11197771 - samples/sec: 134.42 - lr: 0.100000 |
|
2022-09-22 03:03:06,360 epoch 3 - iter 120/209 - loss 0.10942162 - samples/sec: 132.85 - lr: 0.100000 |
|
2022-09-22 03:03:11,404 epoch 3 - iter 140/209 - loss 0.10868191 - samples/sec: 127.01 - lr: 0.100000 |
|
2022-09-22 03:03:15,003 epoch 3 - iter 160/209 - loss 0.10540559 - samples/sec: 178.08 - lr: 0.100000 |
|
2022-09-22 03:03:19,070 epoch 3 - iter 180/209 - loss 0.10467736 - samples/sec: 157.57 - lr: 0.100000 |
|
2022-09-22 03:03:23,862 epoch 3 - iter 200/209 - loss 0.10299970 - samples/sec: 133.70 - lr: 0.100000 |
|
2022-09-22 03:03:25,488 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:03:25,491 EPOCH 3 done: loss 0.1014 - lr 0.100000 |
|
2022-09-22 03:03:36,585 Evaluating as a multi-label problem: False |
|
2022-09-22 03:03:36,606 DEV : loss 0.0682184025645256 - f1-score (micro avg) 0.7567 |
|
2022-09-22 03:03:36,736 BAD EPOCHS (no improvement): 0 |
|
2022-09-22 03:03:36,740 saving best model |
|
2022-09-22 03:03:41,082 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:03:45,687 epoch 4 - iter 20/209 - loss 0.09960185 - samples/sec: 139.22 - lr: 0.100000 |
|
2022-09-22 03:03:49,819 epoch 4 - iter 40/209 - loss 0.08214147 - samples/sec: 155.17 - lr: 0.100000 |
|
2022-09-22 03:03:54,482 epoch 4 - iter 60/209 - loss 0.08589161 - samples/sec: 137.37 - lr: 0.100000 |
|
2022-09-22 03:03:59,028 epoch 4 - iter 80/209 - loss 0.08516185 - samples/sec: 140.94 - lr: 0.100000 |
|
2022-09-22 03:04:03,151 epoch 4 - iter 100/209 - loss 0.08198608 - samples/sec: 155.46 - lr: 0.100000 |
|
2022-09-22 03:04:07,339 epoch 4 - iter 120/209 - loss 0.07909205 - samples/sec: 152.99 - lr: 0.100000 |
|
2022-09-22 03:04:11,580 epoch 4 - iter 140/209 - loss 0.07968311 - samples/sec: 151.13 - lr: 0.100000 |
|
2022-09-22 03:04:16,826 epoch 4 - iter 160/209 - loss 0.07828966 - samples/sec: 122.13 - lr: 0.100000 |
|
2022-09-22 03:04:21,217 epoch 4 - iter 180/209 - loss 0.07688004 - samples/sec: 145.91 - lr: 0.100000 |
|
2022-09-22 03:04:25,737 epoch 4 - iter 200/209 - loss 0.07680107 - samples/sec: 141.74 - lr: 0.100000 |
|
2022-09-22 03:04:27,481 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:04:27,483 EPOCH 4 done: loss 0.0770 - lr 0.100000 |
|
2022-09-22 03:04:39,322 Evaluating as a multi-label problem: False |
|
2022-09-22 03:04:39,340 DEV : loss 0.05980030819773674 - f1-score (micro avg) 0.819 |
|
2022-09-22 03:04:39,471 BAD EPOCHS (no improvement): 0 |
|
2022-09-22 03:04:39,474 saving best model |
|
2022-09-22 03:04:43,869 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:04:48,996 epoch 5 - iter 20/209 - loss 0.06801026 - samples/sec: 124.99 - lr: 0.100000 |
|
2022-09-22 03:04:53,385 epoch 5 - iter 40/209 - loss 0.07502768 - samples/sec: 146.01 - lr: 0.100000 |
|
2022-09-22 03:04:57,213 epoch 5 - iter 60/209 - loss 0.07149049 - samples/sec: 167.43 - lr: 0.100000 |
|
2022-09-22 03:05:01,403 epoch 5 - iter 80/209 - loss 0.07017438 - samples/sec: 152.91 - lr: 0.100000 |
|
2022-09-22 03:05:06,419 epoch 5 - iter 100/209 - loss 0.07111710 - samples/sec: 127.72 - lr: 0.100000 |
|
2022-09-22 03:05:10,537 epoch 5 - iter 120/209 - loss 0.06963243 - samples/sec: 155.58 - lr: 0.100000 |
|
2022-09-22 03:05:14,880 epoch 5 - iter 140/209 - loss 0.06989449 - samples/sec: 147.50 - lr: 0.100000 |
|
2022-09-22 03:05:19,256 epoch 5 - iter 160/209 - loss 0.06964494 - samples/sec: 146.45 - lr: 0.100000 |
|
2022-09-22 03:05:24,250 epoch 5 - iter 180/209 - loss 0.07145644 - samples/sec: 128.30 - lr: 0.100000 |
|
2022-09-22 03:05:28,834 epoch 5 - iter 200/209 - loss 0.06956947 - samples/sec: 139.78 - lr: 0.100000 |
|
2022-09-22 03:05:30,669 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:05:30,670 EPOCH 5 done: loss 0.0687 - lr 0.100000 |
|
2022-09-22 03:05:41,782 Evaluating as a multi-label problem: False |
|
2022-09-22 03:05:41,806 DEV : loss 0.05544961616396904 - f1-score (micro avg) 0.7985 |
|
2022-09-22 03:05:41,962 BAD EPOCHS (no improvement): 1 |
|
2022-09-22 03:05:41,966 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:05:46,466 epoch 6 - iter 20/209 - loss 0.05778742 - samples/sec: 142.54 - lr: 0.100000 |
|
2022-09-22 03:05:50,638 epoch 6 - iter 40/209 - loss 0.05155533 - samples/sec: 153.58 - lr: 0.100000 |
|
2022-09-22 03:05:55,031 epoch 6 - iter 60/209 - loss 0.05197817 - samples/sec: 145.82 - lr: 0.100000 |
|
2022-09-22 03:05:59,266 epoch 6 - iter 80/209 - loss 0.05693943 - samples/sec: 151.31 - lr: 0.100000 |
|
2022-09-22 03:06:03,493 epoch 6 - iter 100/209 - loss 0.05538277 - samples/sec: 151.56 - lr: 0.100000 |
|
2022-09-22 03:06:07,936 epoch 6 - iter 120/209 - loss 0.05687833 - samples/sec: 144.21 - lr: 0.100000 |
|
2022-09-22 03:06:12,492 epoch 6 - iter 140/209 - loss 0.05894243 - samples/sec: 140.65 - lr: 0.100000 |
|
2022-09-22 03:06:17,307 epoch 6 - iter 160/209 - loss 0.05738975 - samples/sec: 133.05 - lr: 0.100000 |
|
2022-09-22 03:06:21,221 epoch 6 - iter 180/209 - loss 0.05747754 - samples/sec: 163.72 - lr: 0.100000 |
|
2022-09-22 03:06:25,981 epoch 6 - iter 200/209 - loss 0.05863656 - samples/sec: 134.58 - lr: 0.100000 |
|
2022-09-22 03:06:28,126 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:06:28,128 EPOCH 6 done: loss 0.0595 - lr 0.100000 |
|
2022-09-22 03:06:39,519 Evaluating as a multi-label problem: False |
|
2022-09-22 03:06:39,538 DEV : loss 0.05082135647535324 - f1-score (micro avg) 0.8373 |
|
2022-09-22 03:06:39,670 BAD EPOCHS (no improvement): 0 |
|
2022-09-22 03:06:39,673 saving best model |
|
2022-09-22 03:06:44,101 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:06:48,767 epoch 7 - iter 20/209 - loss 0.04155280 - samples/sec: 137.41 - lr: 0.100000 |
|
2022-09-22 03:06:53,385 epoch 7 - iter 40/209 - loss 0.04282031 - samples/sec: 138.76 - lr: 0.100000 |
|
2022-09-22 03:06:58,032 epoch 7 - iter 60/209 - loss 0.04579797 - samples/sec: 137.89 - lr: 0.100000 |
|
2022-09-22 03:07:03,060 epoch 7 - iter 80/209 - loss 0.05198084 - samples/sec: 127.38 - lr: 0.100000 |
|
2022-09-22 03:07:07,376 epoch 7 - iter 100/209 - loss 0.05285636 - samples/sec: 148.47 - lr: 0.100000 |
|
2022-09-22 03:07:11,814 epoch 7 - iter 120/209 - loss 0.05413436 - samples/sec: 144.40 - lr: 0.100000 |
|
2022-09-22 03:07:16,106 epoch 7 - iter 140/209 - loss 0.05600133 - samples/sec: 149.27 - lr: 0.100000 |
|
2022-09-22 03:07:20,273 epoch 7 - iter 160/209 - loss 0.05705526 - samples/sec: 153.79 - lr: 0.100000 |
|
2022-09-22 03:07:24,386 epoch 7 - iter 180/209 - loss 0.05442772 - samples/sec: 155.81 - lr: 0.100000 |
|
2022-09-22 03:07:29,084 epoch 7 - iter 200/209 - loss 0.05232375 - samples/sec: 136.35 - lr: 0.100000 |
|
2022-09-22 03:07:30,918 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:07:30,920 EPOCH 7 done: loss 0.0528 - lr 0.100000 |
|
2022-09-22 03:07:42,066 Evaluating as a multi-label problem: False |
|
2022-09-22 03:07:42,086 DEV : loss 0.04711301997303963 - f1-score (micro avg) 0.8592 |
|
2022-09-22 03:07:42,221 BAD EPOCHS (no improvement): 0 |
|
2022-09-22 03:07:42,224 saving best model |
|
2022-09-22 03:07:46,668 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:07:51,089 epoch 8 - iter 20/209 - loss 0.05584345 - samples/sec: 144.97 - lr: 0.100000 |
|
2022-09-22 03:07:55,025 epoch 8 - iter 40/209 - loss 0.04638842 - samples/sec: 162.83 - lr: 0.100000 |
|
2022-09-22 03:07:59,206 epoch 8 - iter 60/209 - loss 0.04746719 - samples/sec: 153.29 - lr: 0.100000 |
|
2022-09-22 03:08:03,863 epoch 8 - iter 80/209 - loss 0.04660045 - samples/sec: 137.57 - lr: 0.100000 |
|
2022-09-22 03:08:08,202 epoch 8 - iter 100/209 - loss 0.04566145 - samples/sec: 147.68 - lr: 0.100000 |
|
2022-09-22 03:08:12,931 epoch 8 - iter 120/209 - loss 0.04524970 - samples/sec: 135.52 - lr: 0.100000 |
|
2022-09-22 03:08:17,953 epoch 8 - iter 140/209 - loss 0.04495774 - samples/sec: 127.59 - lr: 0.100000 |
|
2022-09-22 03:08:22,227 epoch 8 - iter 160/209 - loss 0.04542328 - samples/sec: 149.96 - lr: 0.100000 |
|
2022-09-22 03:08:26,753 epoch 8 - iter 180/209 - loss 0.04475461 - samples/sec: 141.56 - lr: 0.100000 |
|
2022-09-22 03:08:31,644 epoch 8 - iter 200/209 - loss 0.04409748 - samples/sec: 131.00 - lr: 0.100000 |
|
2022-09-22 03:08:33,763 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:08:33,765 EPOCH 8 done: loss 0.0443 - lr 0.100000 |
|
2022-09-22 03:08:45,397 Evaluating as a multi-label problem: False |
|
2022-09-22 03:08:45,428 DEV : loss 0.045138511806726456 - f1-score (micro avg) 0.8627 |
|
2022-09-22 03:08:45,561 BAD EPOCHS (no improvement): 0 |
|
2022-09-22 03:08:45,565 saving best model |
|
2022-09-22 03:08:50,012 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:08:54,324 epoch 9 - iter 20/209 - loss 0.04168603 - samples/sec: 148.66 - lr: 0.100000 |
|
2022-09-22 03:08:58,457 epoch 9 - iter 40/209 - loss 0.04548085 - samples/sec: 155.12 - lr: 0.100000 |
|
2022-09-22 03:09:02,791 epoch 9 - iter 60/209 - loss 0.04478620 - samples/sec: 147.91 - lr: 0.100000 |
|
2022-09-22 03:09:07,289 epoch 9 - iter 80/209 - loss 0.03972187 - samples/sec: 142.45 - lr: 0.100000 |
|
2022-09-22 03:09:11,521 epoch 9 - iter 100/209 - loss 0.03903134 - samples/sec: 151.37 - lr: 0.100000 |
|
2022-09-22 03:09:16,081 epoch 9 - iter 120/209 - loss 0.04208798 - samples/sec: 140.47 - lr: 0.100000 |
|
2022-09-22 03:09:20,681 epoch 9 - iter 140/209 - loss 0.04107881 - samples/sec: 139.26 - lr: 0.100000 |
|
2022-09-22 03:09:25,298 epoch 9 - iter 160/209 - loss 0.04004892 - samples/sec: 138.77 - lr: 0.100000 |
|
2022-09-22 03:09:29,337 epoch 9 - iter 180/209 - loss 0.03873920 - samples/sec: 158.60 - lr: 0.100000 |
|
2022-09-22 03:09:33,948 epoch 9 - iter 200/209 - loss 0.03941991 - samples/sec: 138.96 - lr: 0.100000 |
|
2022-09-22 03:09:36,011 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:09:36,013 EPOCH 9 done: loss 0.0413 - lr 0.100000 |
|
2022-09-22 03:09:47,378 Evaluating as a multi-label problem: False |
|
2022-09-22 03:09:47,397 DEV : loss 0.0582578182220459 - f1-score (micro avg) 0.825 |
|
2022-09-22 03:09:47,530 BAD EPOCHS (no improvement): 1 |
|
2022-09-22 03:09:47,533 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:09:51,557 epoch 10 - iter 20/209 - loss 0.04889341 - samples/sec: 159.34 - lr: 0.100000 |
|
2022-09-22 03:09:56,292 epoch 10 - iter 40/209 - loss 0.03783871 - samples/sec: 135.34 - lr: 0.100000 |
|
2022-09-22 03:10:00,788 epoch 10 - iter 60/209 - loss 0.04071849 - samples/sec: 142.50 - lr: 0.100000 |
|
2022-09-22 03:10:05,150 epoch 10 - iter 80/209 - loss 0.03980560 - samples/sec: 146.90 - lr: 0.100000 |
|
2022-09-22 03:10:09,603 epoch 10 - iter 100/209 - loss 0.04074105 - samples/sec: 143.89 - lr: 0.100000 |
|
2022-09-22 03:10:14,558 epoch 10 - iter 120/209 - loss 0.04303124 - samples/sec: 129.32 - lr: 0.100000 |
|
2022-09-22 03:10:19,306 epoch 10 - iter 140/209 - loss 0.04142848 - samples/sec: 134.91 - lr: 0.100000 |
|
2022-09-22 03:10:24,147 epoch 10 - iter 160/209 - loss 0.04076667 - samples/sec: 132.36 - lr: 0.100000 |
|
2022-09-22 03:10:28,333 epoch 10 - iter 180/209 - loss 0.04036369 - samples/sec: 153.04 - lr: 0.100000 |
|
2022-09-22 03:10:32,527 epoch 10 - iter 200/209 - loss 0.03912577 - samples/sec: 152.78 - lr: 0.100000 |
|
2022-09-22 03:10:34,448 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:10:34,450 EPOCH 10 done: loss 0.0389 - lr 0.100000 |
|
2022-09-22 03:10:46,141 Evaluating as a multi-label problem: False |
|
2022-09-22 03:10:46,163 DEV : loss 0.04387445002794266 - f1-score (micro avg) 0.8498 |
|
2022-09-22 03:10:46,321 BAD EPOCHS (no improvement): 2 |
|
2022-09-22 03:10:46,325 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:10:50,671 epoch 11 - iter 20/209 - loss 0.03399664 - samples/sec: 147.50 - lr: 0.100000 |
|
2022-09-22 03:10:55,088 epoch 11 - iter 40/209 - loss 0.03131688 - samples/sec: 145.06 - lr: 0.100000 |
|
2022-09-22 03:11:00,152 epoch 11 - iter 60/209 - loss 0.03091839 - samples/sec: 126.52 - lr: 0.100000 |
|
2022-09-22 03:11:04,818 epoch 11 - iter 80/209 - loss 0.03239518 - samples/sec: 137.33 - lr: 0.100000 |
|
2022-09-22 03:11:09,837 epoch 11 - iter 100/209 - loss 0.03346184 - samples/sec: 127.64 - lr: 0.100000 |
|
2022-09-22 03:11:14,092 epoch 11 - iter 120/209 - loss 0.03342324 - samples/sec: 150.59 - lr: 0.100000 |
|
2022-09-22 03:11:17,908 epoch 11 - iter 140/209 - loss 0.03411783 - samples/sec: 167.94 - lr: 0.100000 |
|
2022-09-22 03:11:21,884 epoch 11 - iter 160/209 - loss 0.03394769 - samples/sec: 161.15 - lr: 0.100000 |
|
2022-09-22 03:11:26,103 epoch 11 - iter 180/209 - loss 0.03349948 - samples/sec: 151.90 - lr: 0.100000 |
|
2022-09-22 03:11:31,724 epoch 11 - iter 200/209 - loss 0.03339439 - samples/sec: 113.93 - lr: 0.100000 |
|
2022-09-22 03:11:33,182 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:11:33,185 EPOCH 11 done: loss 0.0331 - lr 0.100000 |
|
2022-09-22 03:11:44,376 Evaluating as a multi-label problem: False |
|
2022-09-22 03:11:44,397 DEV : loss 0.04172874242067337 - f1-score (micro avg) 0.8649 |
|
2022-09-22 03:11:44,529 BAD EPOCHS (no improvement): 0 |
|
2022-09-22 03:11:44,532 saving best model |
|
2022-09-22 03:11:49,019 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:11:53,423 epoch 12 - iter 20/209 - loss 0.03209337 - samples/sec: 145.55 - lr: 0.100000 |
|
2022-09-22 03:11:57,849 epoch 12 - iter 40/209 - loss 0.03765221 - samples/sec: 144.78 - lr: 0.100000 |
|
2022-09-22 03:12:01,697 epoch 12 - iter 60/209 - loss 0.03676529 - samples/sec: 166.49 - lr: 0.100000 |
|
2022-09-22 03:12:06,234 epoch 12 - iter 80/209 - loss 0.03352467 - samples/sec: 141.22 - lr: 0.100000 |
|
2022-09-22 03:12:10,700 epoch 12 - iter 100/209 - loss 0.03318846 - samples/sec: 143.45 - lr: 0.100000 |
|
2022-09-22 03:12:15,597 epoch 12 - iter 120/209 - loss 0.03373384 - samples/sec: 130.85 - lr: 0.100000 |
|
2022-09-22 03:12:20,033 epoch 12 - iter 140/209 - loss 0.03208537 - samples/sec: 144.46 - lr: 0.100000 |
|
2022-09-22 03:12:24,862 epoch 12 - iter 160/209 - loss 0.03136539 - samples/sec: 132.66 - lr: 0.100000 |
|
2022-09-22 03:12:28,630 epoch 12 - iter 180/209 - loss 0.03168936 - samples/sec: 170.14 - lr: 0.100000 |
|
2022-09-22 03:12:33,467 epoch 12 - iter 200/209 - loss 0.03222253 - samples/sec: 132.43 - lr: 0.100000 |
|
2022-09-22 03:12:35,409 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:12:35,412 EPOCH 12 done: loss 0.0329 - lr 0.100000 |
|
2022-09-22 03:12:47,124 Evaluating as a multi-label problem: False |
|
2022-09-22 03:12:47,143 DEV : loss 0.044125996530056 - f1-score (micro avg) 0.8548 |
|
2022-09-22 03:12:47,272 BAD EPOCHS (no improvement): 1 |
|
2022-09-22 03:12:47,275 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:12:51,380 epoch 13 - iter 20/209 - loss 0.01850640 - samples/sec: 156.21 - lr: 0.100000 |
|
2022-09-22 03:12:56,144 epoch 13 - iter 40/209 - loss 0.02025949 - samples/sec: 134.48 - lr: 0.100000 |
|
2022-09-22 03:13:00,634 epoch 13 - iter 60/209 - loss 0.03145947 - samples/sec: 142.71 - lr: 0.100000 |
|
2022-09-22 03:13:05,311 epoch 13 - iter 80/209 - loss 0.02793298 - samples/sec: 136.97 - lr: 0.100000 |
|
2022-09-22 03:13:09,732 epoch 13 - iter 100/209 - loss 0.02735722 - samples/sec: 144.91 - lr: 0.100000 |
|
2022-09-22 03:13:15,138 epoch 13 - iter 120/209 - loss 0.02688652 - samples/sec: 118.52 - lr: 0.100000 |
|
2022-09-22 03:13:19,352 epoch 13 - iter 140/209 - loss 0.02739783 - samples/sec: 152.05 - lr: 0.100000 |
|
2022-09-22 03:13:23,835 epoch 13 - iter 160/209 - loss 0.02696826 - samples/sec: 142.92 - lr: 0.100000 |
|
2022-09-22 03:13:28,282 epoch 13 - iter 180/209 - loss 0.02885942 - samples/sec: 144.08 - lr: 0.100000 |
|
2022-09-22 03:13:32,429 epoch 13 - iter 200/209 - loss 0.02839591 - samples/sec: 154.54 - lr: 0.100000 |
|
2022-09-22 03:13:34,092 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:13:34,094 EPOCH 13 done: loss 0.0283 - lr 0.100000 |
|
2022-09-22 03:13:45,097 Evaluating as a multi-label problem: False |
|
2022-09-22 03:13:45,116 DEV : loss 0.037993188947439194 - f1-score (micro avg) 0.8622 |
|
2022-09-22 03:13:45,249 BAD EPOCHS (no improvement): 2 |
|
2022-09-22 03:13:45,253 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:13:49,947 epoch 14 - iter 20/209 - loss 0.02833990 - samples/sec: 136.58 - lr: 0.100000 |
|
2022-09-22 03:13:54,099 epoch 14 - iter 40/209 - loss 0.02638818 - samples/sec: 154.28 - lr: 0.100000 |
|
2022-09-22 03:13:58,434 epoch 14 - iter 60/209 - loss 0.02421293 - samples/sec: 147.80 - lr: 0.100000 |
|
2022-09-22 03:14:02,147 epoch 14 - iter 80/209 - loss 0.02510074 - samples/sec: 172.66 - lr: 0.100000 |
|
2022-09-22 03:14:06,891 epoch 14 - iter 100/209 - loss 0.02529249 - samples/sec: 135.05 - lr: 0.100000 |
|
2022-09-22 03:14:11,574 epoch 14 - iter 120/209 - loss 0.02500208 - samples/sec: 136.83 - lr: 0.100000 |
|
2022-09-22 03:14:15,898 epoch 14 - iter 140/209 - loss 0.02530272 - samples/sec: 148.20 - lr: 0.100000 |
|
2022-09-22 03:14:19,970 epoch 14 - iter 160/209 - loss 0.02610835 - samples/sec: 157.35 - lr: 0.100000 |
|
2022-09-22 03:14:24,559 epoch 14 - iter 180/209 - loss 0.02647797 - samples/sec: 139.63 - lr: 0.100000 |
|
2022-09-22 03:14:29,301 epoch 14 - iter 200/209 - loss 0.02788817 - samples/sec: 135.11 - lr: 0.100000 |
|
2022-09-22 03:14:31,566 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:14:31,568 EPOCH 14 done: loss 0.0280 - lr 0.100000 |
|
2022-09-22 03:14:43,022 Evaluating as a multi-label problem: False |
|
2022-09-22 03:14:43,042 DEV : loss 0.04168141633272171 - f1-score (micro avg) 0.8661 |
|
2022-09-22 03:14:43,180 BAD EPOCHS (no improvement): 0 |
|
2022-09-22 03:14:43,183 saving best model |
|
2022-09-22 03:14:48,045 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:14:52,468 epoch 15 - iter 20/209 - loss 0.02555100 - samples/sec: 144.91 - lr: 0.100000 |
|
2022-09-22 03:14:56,985 epoch 15 - iter 40/209 - loss 0.02594713 - samples/sec: 141.88 - lr: 0.100000 |
|
2022-09-22 03:15:01,001 epoch 15 - iter 60/209 - loss 0.02638328 - samples/sec: 159.55 - lr: 0.100000 |
|
2022-09-22 03:15:05,444 epoch 15 - iter 80/209 - loss 0.02518495 - samples/sec: 144.23 - lr: 0.100000 |
|
2022-09-22 03:15:09,244 epoch 15 - iter 100/209 - loss 0.02656325 - samples/sec: 168.66 - lr: 0.100000 |
|
2022-09-22 03:15:13,656 epoch 15 - iter 120/209 - loss 0.02707653 - samples/sec: 145.23 - lr: 0.100000 |
|
2022-09-22 03:15:18,179 epoch 15 - iter 140/209 - loss 0.02631382 - samples/sec: 141.68 - lr: 0.100000 |
|
2022-09-22 03:15:22,609 epoch 15 - iter 160/209 - loss 0.02754826 - samples/sec: 144.62 - lr: 0.100000 |
|
2022-09-22 03:15:27,259 epoch 15 - iter 180/209 - loss 0.02701192 - samples/sec: 137.79 - lr: 0.100000 |
|
2022-09-22 03:15:33,061 epoch 15 - iter 200/209 - loss 0.02856526 - samples/sec: 110.40 - lr: 0.100000 |
|
2022-09-22 03:15:34,705 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:15:34,708 EPOCH 15 done: loss 0.0288 - lr 0.100000 |
|
2022-09-22 03:15:45,763 Evaluating as a multi-label problem: False |
|
2022-09-22 03:15:45,782 DEV : loss 0.03653959184885025 - f1-score (micro avg) 0.875 |
|
2022-09-22 03:15:45,916 BAD EPOCHS (no improvement): 0 |
|
2022-09-22 03:15:45,920 saving best model |
|
2022-09-22 03:15:50,311 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:15:54,737 epoch 16 - iter 20/209 - loss 0.02922124 - samples/sec: 144.77 - lr: 0.100000 |
|
2022-09-22 03:15:59,412 epoch 16 - iter 40/209 - loss 0.02256063 - samples/sec: 137.05 - lr: 0.100000 |
|
2022-09-22 03:16:04,055 epoch 16 - iter 60/209 - loss 0.02163891 - samples/sec: 137.98 - lr: 0.100000 |
|
2022-09-22 03:16:09,082 epoch 16 - iter 80/209 - loss 0.02234348 - samples/sec: 127.42 - lr: 0.100000 |
|
2022-09-22 03:16:13,319 epoch 16 - iter 100/209 - loss 0.02246260 - samples/sec: 151.25 - lr: 0.100000 |
|
2022-09-22 03:16:18,182 epoch 16 - iter 120/209 - loss 0.02408038 - samples/sec: 131.77 - lr: 0.100000 |
|
2022-09-22 03:16:21,749 epoch 16 - iter 140/209 - loss 0.02427657 - samples/sec: 179.71 - lr: 0.100000 |
|
2022-09-22 03:16:26,811 epoch 16 - iter 160/209 - loss 0.02413024 - samples/sec: 126.55 - lr: 0.100000 |
|
2022-09-22 03:16:30,647 epoch 16 - iter 180/209 - loss 0.02375161 - samples/sec: 167.00 - lr: 0.100000 |
|
2022-09-22 03:16:35,107 epoch 16 - iter 200/209 - loss 0.02385697 - samples/sec: 143.64 - lr: 0.100000 |
|
2022-09-22 03:16:36,563 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:16:36,565 EPOCH 16 done: loss 0.0237 - lr 0.100000 |
|
2022-09-22 03:16:47,939 Evaluating as a multi-label problem: False |
|
2022-09-22 03:16:47,958 DEV : loss 0.04710310697555542 - f1-score (micro avg) 0.8652 |
|
2022-09-22 03:16:48,089 BAD EPOCHS (no improvement): 1 |
|
2022-09-22 03:16:48,092 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:16:53,110 epoch 17 - iter 20/209 - loss 0.02529678 - samples/sec: 127.77 - lr: 0.100000 |
|
2022-09-22 03:16:57,207 epoch 17 - iter 40/209 - loss 0.02088542 - samples/sec: 156.42 - lr: 0.100000 |
|
2022-09-22 03:17:01,501 epoch 17 - iter 60/209 - loss 0.01962150 - samples/sec: 149.20 - lr: 0.100000 |
|
2022-09-22 03:17:05,798 epoch 17 - iter 80/209 - loss 0.01834150 - samples/sec: 149.19 - lr: 0.100000 |
|
2022-09-22 03:17:10,367 epoch 17 - iter 100/209 - loss 0.02077948 - samples/sec: 140.26 - lr: 0.100000 |
|
2022-09-22 03:17:14,737 epoch 17 - iter 120/209 - loss 0.02139814 - samples/sec: 146.58 - lr: 0.100000 |
|
2022-09-22 03:17:18,773 epoch 17 - iter 140/209 - loss 0.02183886 - samples/sec: 158.75 - lr: 0.100000 |
|
2022-09-22 03:17:23,177 epoch 17 - iter 160/209 - loss 0.02412608 - samples/sec: 145.48 - lr: 0.100000 |
|
2022-09-22 03:17:28,316 epoch 17 - iter 180/209 - loss 0.02398935 - samples/sec: 124.68 - lr: 0.100000 |
|
2022-09-22 03:17:32,876 epoch 17 - iter 200/209 - loss 0.02359558 - samples/sec: 140.53 - lr: 0.100000 |
|
2022-09-22 03:17:34,803 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:17:34,805 EPOCH 17 done: loss 0.0237 - lr 0.100000 |
|
2022-09-22 03:17:45,882 Evaluating as a multi-label problem: False |
|
2022-09-22 03:17:45,904 DEV : loss 0.04203850403428078 - f1-score (micro avg) 0.8826 |
|
2022-09-22 03:17:46,053 BAD EPOCHS (no improvement): 0 |
|
2022-09-22 03:17:46,057 saving best model |
|
2022-09-22 03:17:50,508 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:17:54,723 epoch 18 - iter 20/209 - loss 0.02792289 - samples/sec: 152.38 - lr: 0.100000 |
|
2022-09-22 03:17:59,255 epoch 18 - iter 40/209 - loss 0.02052743 - samples/sec: 141.38 - lr: 0.100000 |
|
2022-09-22 03:18:04,860 epoch 18 - iter 60/209 - loss 0.01707682 - samples/sec: 114.30 - lr: 0.100000 |
|
2022-09-22 03:18:09,278 epoch 18 - iter 80/209 - loss 0.01725821 - samples/sec: 145.03 - lr: 0.100000 |
|
2022-09-22 03:18:13,523 epoch 18 - iter 100/209 - loss 0.01864592 - samples/sec: 150.91 - lr: 0.100000 |
|
2022-09-22 03:18:17,623 epoch 18 - iter 120/209 - loss 0.01847996 - samples/sec: 156.26 - lr: 0.100000 |
|
2022-09-22 03:18:21,698 epoch 18 - iter 140/209 - loss 0.01980050 - samples/sec: 157.25 - lr: 0.100000 |
|
2022-09-22 03:18:25,980 epoch 18 - iter 160/209 - loss 0.02024245 - samples/sec: 149.66 - lr: 0.100000 |
|
2022-09-22 03:18:31,492 epoch 18 - iter 180/209 - loss 0.02047137 - samples/sec: 116.23 - lr: 0.100000 |
|
2022-09-22 03:18:35,780 epoch 18 - iter 200/209 - loss 0.02043419 - samples/sec: 149.43 - lr: 0.100000 |
|
2022-09-22 03:18:38,023 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:18:38,026 EPOCH 18 done: loss 0.0209 - lr 0.100000 |
|
2022-09-22 03:18:49,518 Evaluating as a multi-label problem: False |
|
2022-09-22 03:18:49,537 DEV : loss 0.04047093912959099 - f1-score (micro avg) 0.8811 |
|
2022-09-22 03:18:49,673 BAD EPOCHS (no improvement): 1 |
|
2022-09-22 03:18:49,679 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:18:53,569 epoch 19 - iter 20/209 - loss 0.03078881 - samples/sec: 164.85 - lr: 0.100000 |
|
2022-09-22 03:18:57,449 epoch 19 - iter 40/209 - loss 0.02421323 - samples/sec: 165.20 - lr: 0.100000 |
|
2022-09-22 03:19:01,390 epoch 19 - iter 60/209 - loss 0.02726126 - samples/sec: 162.62 - lr: 0.100000 |
|
2022-09-22 03:19:06,212 epoch 19 - iter 80/209 - loss 0.02399136 - samples/sec: 132.89 - lr: 0.100000 |
|
2022-09-22 03:19:10,419 epoch 19 - iter 100/209 - loss 0.02286999 - samples/sec: 152.35 - lr: 0.100000 |
|
2022-09-22 03:19:14,946 epoch 19 - iter 120/209 - loss 0.02318129 - samples/sec: 141.51 - lr: 0.100000 |
|
2022-09-22 03:19:19,940 epoch 19 - iter 140/209 - loss 0.02224270 - samples/sec: 128.29 - lr: 0.100000 |
|
2022-09-22 03:19:24,355 epoch 19 - iter 160/209 - loss 0.02165349 - samples/sec: 145.12 - lr: 0.100000 |
|
2022-09-22 03:19:28,534 epoch 19 - iter 180/209 - loss 0.02222071 - samples/sec: 153.34 - lr: 0.100000 |
|
2022-09-22 03:19:33,020 epoch 19 - iter 200/209 - loss 0.02132964 - samples/sec: 142.83 - lr: 0.100000 |
|
2022-09-22 03:19:34,665 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:19:34,667 EPOCH 19 done: loss 0.0213 - lr 0.100000 |
|
2022-09-22 03:19:45,476 Evaluating as a multi-label problem: False |
|
2022-09-22 03:19:45,496 DEV : loss 0.04064437001943588 - f1-score (micro avg) 0.8897 |
|
2022-09-22 03:19:45,629 BAD EPOCHS (no improvement): 0 |
|
2022-09-22 03:19:45,633 saving best model |
|
2022-09-22 03:19:50,081 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:19:54,611 epoch 20 - iter 20/209 - loss 0.01137673 - samples/sec: 141.53 - lr: 0.100000 |
|
2022-09-22 03:19:58,760 epoch 20 - iter 40/209 - loss 0.01445903 - samples/sec: 154.44 - lr: 0.100000 |
|
2022-09-22 03:20:02,917 epoch 20 - iter 60/209 - loss 0.01739111 - samples/sec: 154.17 - lr: 0.100000 |
|
2022-09-22 03:20:06,772 epoch 20 - iter 80/209 - loss 0.01849754 - samples/sec: 166.21 - lr: 0.100000 |
|
2022-09-22 03:20:11,507 epoch 20 - iter 100/209 - loss 0.01745315 - samples/sec: 135.35 - lr: 0.100000 |
|
2022-09-22 03:20:16,184 epoch 20 - iter 120/209 - loss 0.01940659 - samples/sec: 137.00 - lr: 0.100000 |
|
2022-09-22 03:20:21,251 epoch 20 - iter 140/209 - loss 0.01918274 - samples/sec: 126.46 - lr: 0.100000 |
|
2022-09-22 03:20:25,876 epoch 20 - iter 160/209 - loss 0.01855748 - samples/sec: 138.53 - lr: 0.100000 |
|
2022-09-22 03:20:30,180 epoch 20 - iter 180/209 - loss 0.01890405 - samples/sec: 148.84 - lr: 0.100000 |
|
2022-09-22 03:20:34,439 epoch 20 - iter 200/209 - loss 0.01866614 - samples/sec: 150.45 - lr: 0.100000 |
|
2022-09-22 03:20:37,190 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:20:37,193 EPOCH 20 done: loss 0.0192 - lr 0.100000 |
|
2022-09-22 03:20:48,580 Evaluating as a multi-label problem: False |
|
2022-09-22 03:20:48,599 DEV : loss 0.039903800934553146 - f1-score (micro avg) 0.8726 |
|
2022-09-22 03:20:48,732 BAD EPOCHS (no improvement): 1 |
|
2022-09-22 03:20:48,736 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:20:52,508 epoch 21 - iter 20/209 - loss 0.01266603 - samples/sec: 170.09 - lr: 0.100000 |
|
2022-09-22 03:20:56,412 epoch 21 - iter 40/209 - loss 0.01581440 - samples/sec: 164.18 - lr: 0.100000 |
|
2022-09-22 03:21:00,473 epoch 21 - iter 60/209 - loss 0.01775818 - samples/sec: 157.82 - lr: 0.100000 |
|
2022-09-22 03:21:04,739 epoch 21 - iter 80/209 - loss 0.01763207 - samples/sec: 150.23 - lr: 0.100000 |
|
2022-09-22 03:21:08,876 epoch 21 - iter 100/209 - loss 0.01726971 - samples/sec: 154.86 - lr: 0.100000 |
|
2022-09-22 03:21:13,328 epoch 21 - iter 120/209 - loss 0.01734956 - samples/sec: 143.94 - lr: 0.100000 |
|
2022-09-22 03:21:18,060 epoch 21 - iter 140/209 - loss 0.01846277 - samples/sec: 135.41 - lr: 0.100000 |
|
2022-09-22 03:21:22,592 epoch 21 - iter 160/209 - loss 0.01927382 - samples/sec: 141.35 - lr: 0.100000 |
|
2022-09-22 03:21:27,342 epoch 21 - iter 180/209 - loss 0.01900023 - samples/sec: 134.89 - lr: 0.100000 |
|
2022-09-22 03:21:32,267 epoch 21 - iter 200/209 - loss 0.01915269 - samples/sec: 130.11 - lr: 0.100000 |
|
2022-09-22 03:21:34,592 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:21:34,594 EPOCH 21 done: loss 0.0195 - lr 0.100000 |
|
2022-09-22 03:21:45,919 Evaluating as a multi-label problem: False |
|
2022-09-22 03:21:45,940 DEV : loss 0.038961514830589294 - f1-score (micro avg) 0.874 |
|
2022-09-22 03:21:46,086 BAD EPOCHS (no improvement): 2 |
|
2022-09-22 03:21:46,089 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:21:50,103 epoch 22 - iter 20/209 - loss 0.01817463 - samples/sec: 159.75 - lr: 0.100000 |
|
2022-09-22 03:21:54,366 epoch 22 - iter 40/209 - loss 0.01881625 - samples/sec: 150.33 - lr: 0.100000 |
|
2022-09-22 03:21:58,751 epoch 22 - iter 60/209 - loss 0.01917286 - samples/sec: 146.20 - lr: 0.100000 |
|
2022-09-22 03:22:02,842 epoch 22 - iter 80/209 - loss 0.01929330 - samples/sec: 156.67 - lr: 0.100000 |
|
2022-09-22 03:22:07,557 epoch 22 - iter 100/209 - loss 0.01848071 - samples/sec: 135.88 - lr: 0.100000 |
|
2022-09-22 03:22:12,365 epoch 22 - iter 120/209 - loss 0.02016769 - samples/sec: 133.24 - lr: 0.100000 |
|
2022-09-22 03:22:17,275 epoch 22 - iter 140/209 - loss 0.01973406 - samples/sec: 130.48 - lr: 0.100000 |
|
2022-09-22 03:22:22,289 epoch 22 - iter 160/209 - loss 0.01991412 - samples/sec: 127.81 - lr: 0.100000 |
|
2022-09-22 03:22:26,816 epoch 22 - iter 180/209 - loss 0.01952125 - samples/sec: 141.54 - lr: 0.100000 |
|
2022-09-22 03:22:31,098 epoch 22 - iter 200/209 - loss 0.01896066 - samples/sec: 149.65 - lr: 0.100000 |
|
2022-09-22 03:22:32,933 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:22:32,934 EPOCH 22 done: loss 0.0193 - lr 0.100000 |
|
2022-09-22 03:22:43,924 Evaluating as a multi-label problem: False |
|
2022-09-22 03:22:43,945 DEV : loss 0.04197212681174278 - f1-score (micro avg) 0.8839 |
|
2022-09-22 03:22:44,082 BAD EPOCHS (no improvement): 3 |
|
2022-09-22 03:22:44,085 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:22:48,564 epoch 23 - iter 20/209 - loss 0.02074136 - samples/sec: 143.13 - lr: 0.100000 |
|
2022-09-22 03:22:53,303 epoch 23 - iter 40/209 - loss 0.02026053 - samples/sec: 135.18 - lr: 0.100000 |
|
2022-09-22 03:22:57,560 epoch 23 - iter 60/209 - loss 0.01924981 - samples/sec: 150.56 - lr: 0.100000 |
|
2022-09-22 03:23:01,992 epoch 23 - iter 80/209 - loss 0.01738982 - samples/sec: 144.57 - lr: 0.100000 |
|
2022-09-22 03:23:06,877 epoch 23 - iter 100/209 - loss 0.01833485 - samples/sec: 131.14 - lr: 0.100000 |
|
2022-09-22 03:23:11,378 epoch 23 - iter 120/209 - loss 0.01763437 - samples/sec: 142.36 - lr: 0.100000 |
|
2022-09-22 03:23:16,203 epoch 23 - iter 140/209 - loss 0.01793427 - samples/sec: 132.78 - lr: 0.100000 |
|
2022-09-22 03:23:20,972 epoch 23 - iter 160/209 - loss 0.01833928 - samples/sec: 134.33 - lr: 0.100000 |
|
2022-09-22 03:23:24,469 epoch 23 - iter 180/209 - loss 0.01776556 - samples/sec: 183.30 - lr: 0.100000 |
|
2022-09-22 03:23:28,548 epoch 23 - iter 200/209 - loss 0.01799355 - samples/sec: 157.10 - lr: 0.100000 |
|
2022-09-22 03:23:30,368 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:23:30,370 EPOCH 23 done: loss 0.0179 - lr 0.100000 |
|
2022-09-22 03:23:41,490 Evaluating as a multi-label problem: False |
|
2022-09-22 03:23:41,512 DEV : loss 0.0412365198135376 - f1-score (micro avg) 0.885 |
|
2022-09-22 03:23:41,651 Epoch 23: reducing learning rate of group 0 to 5.0000e-02. |
|
2022-09-22 03:23:41,653 BAD EPOCHS (no improvement): 4 |
|
2022-09-22 03:23:41,655 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:23:45,833 epoch 24 - iter 20/209 - loss 0.01508962 - samples/sec: 153.52 - lr: 0.050000 |
|
2022-09-22 03:23:50,378 epoch 24 - iter 40/209 - loss 0.01396168 - samples/sec: 140.96 - lr: 0.050000 |
|
2022-09-22 03:23:55,368 epoch 24 - iter 60/209 - loss 0.01346801 - samples/sec: 128.39 - lr: 0.050000 |
|
2022-09-22 03:23:59,814 epoch 24 - iter 80/209 - loss 0.01407210 - samples/sec: 144.09 - lr: 0.050000 |
|
2022-09-22 03:24:04,064 epoch 24 - iter 100/209 - loss 0.01374968 - samples/sec: 150.77 - lr: 0.050000 |
|
2022-09-22 03:24:08,839 epoch 24 - iter 120/209 - loss 0.01344891 - samples/sec: 134.20 - lr: 0.050000 |
|
2022-09-22 03:24:13,532 epoch 24 - iter 140/209 - loss 0.01292338 - samples/sec: 136.49 - lr: 0.050000 |
|
2022-09-22 03:24:18,572 epoch 24 - iter 160/209 - loss 0.01219410 - samples/sec: 127.14 - lr: 0.050000 |
|
2022-09-22 03:24:22,441 epoch 24 - iter 180/209 - loss 0.01226887 - samples/sec: 165.62 - lr: 0.050000 |
|
2022-09-22 03:24:26,523 epoch 24 - iter 200/209 - loss 0.01245995 - samples/sec: 157.01 - lr: 0.050000 |
|
2022-09-22 03:24:28,238 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:24:28,241 EPOCH 24 done: loss 0.0122 - lr 0.050000 |
|
2022-09-22 03:24:39,493 Evaluating as a multi-label problem: False |
|
2022-09-22 03:24:39,512 DEV : loss 0.037337951362133026 - f1-score (micro avg) 0.8753 |
|
2022-09-22 03:24:39,668 BAD EPOCHS (no improvement): 1 |
|
2022-09-22 03:24:39,671 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:24:44,837 epoch 25 - iter 20/209 - loss 0.01313769 - samples/sec: 124.06 - lr: 0.050000 |
|
2022-09-22 03:24:49,782 epoch 25 - iter 40/209 - loss 0.01469976 - samples/sec: 129.58 - lr: 0.050000 |
|
2022-09-22 03:24:54,748 epoch 25 - iter 60/209 - loss 0.01407628 - samples/sec: 129.01 - lr: 0.050000 |
|
2022-09-22 03:24:59,295 epoch 25 - iter 80/209 - loss 0.01390184 - samples/sec: 140.89 - lr: 0.050000 |
|
2022-09-22 03:25:03,625 epoch 25 - iter 100/209 - loss 0.01354144 - samples/sec: 147.99 - lr: 0.050000 |
|
2022-09-22 03:25:07,401 epoch 25 - iter 120/209 - loss 0.01337000 - samples/sec: 169.74 - lr: 0.050000 |
|
2022-09-22 03:25:11,487 epoch 25 - iter 140/209 - loss 0.01293394 - samples/sec: 156.82 - lr: 0.050000 |
|
2022-09-22 03:25:15,333 epoch 25 - iter 160/209 - loss 0.01276609 - samples/sec: 166.62 - lr: 0.050000 |
|
2022-09-22 03:25:19,615 epoch 25 - iter 180/209 - loss 0.01269660 - samples/sec: 149.68 - lr: 0.050000 |
|
2022-09-22 03:25:24,451 epoch 25 - iter 200/209 - loss 0.01255503 - samples/sec: 132.51 - lr: 0.050000 |
|
2022-09-22 03:25:26,290 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:25:26,292 EPOCH 25 done: loss 0.0124 - lr 0.050000 |
|
2022-09-22 03:25:37,383 Evaluating as a multi-label problem: False |
|
2022-09-22 03:25:37,404 DEV : loss 0.03606007620692253 - f1-score (micro avg) 0.8842 |
|
2022-09-22 03:25:37,535 BAD EPOCHS (no improvement): 2 |
|
2022-09-22 03:25:37,540 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:25:42,941 epoch 26 - iter 20/209 - loss 0.01154679 - samples/sec: 118.69 - lr: 0.050000 |
|
2022-09-22 03:25:47,119 epoch 26 - iter 40/209 - loss 0.01014419 - samples/sec: 153.39 - lr: 0.050000 |
|
2022-09-22 03:25:51,608 epoch 26 - iter 60/209 - loss 0.01011476 - samples/sec: 142.79 - lr: 0.050000 |
|
2022-09-22 03:25:56,278 epoch 26 - iter 80/209 - loss 0.01159675 - samples/sec: 137.19 - lr: 0.050000 |
|
2022-09-22 03:26:00,429 epoch 26 - iter 100/209 - loss 0.01196109 - samples/sec: 154.34 - lr: 0.050000 |
|
2022-09-22 03:26:04,279 epoch 26 - iter 120/209 - loss 0.01142487 - samples/sec: 166.48 - lr: 0.050000 |
|
2022-09-22 03:26:08,656 epoch 26 - iter 140/209 - loss 0.01145025 - samples/sec: 146.39 - lr: 0.050000 |
|
2022-09-22 03:26:12,901 epoch 26 - iter 160/209 - loss 0.01174816 - samples/sec: 150.97 - lr: 0.050000 |
|
2022-09-22 03:26:17,545 epoch 26 - iter 180/209 - loss 0.01143065 - samples/sec: 137.95 - lr: 0.050000 |
|
2022-09-22 03:26:21,815 epoch 26 - iter 200/209 - loss 0.01079720 - samples/sec: 150.11 - lr: 0.050000 |
|
2022-09-22 03:26:23,572 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:26:23,574 EPOCH 26 done: loss 0.0112 - lr 0.050000 |
|
2022-09-22 03:26:34,920 Evaluating as a multi-label problem: False |
|
2022-09-22 03:26:34,941 DEV : loss 0.041908808052539825 - f1-score (micro avg) 0.8828 |
|
2022-09-22 03:26:35,078 BAD EPOCHS (no improvement): 3 |
|
2022-09-22 03:26:35,081 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:26:39,239 epoch 27 - iter 20/209 - loss 0.01529717 - samples/sec: 154.14 - lr: 0.050000 |
|
2022-09-22 03:26:44,529 epoch 27 - iter 40/209 - loss 0.01069379 - samples/sec: 121.12 - lr: 0.050000 |
|
2022-09-22 03:26:49,377 epoch 27 - iter 60/209 - loss 0.01000276 - samples/sec: 132.22 - lr: 0.050000 |
|
2022-09-22 03:26:54,021 epoch 27 - iter 80/209 - loss 0.01101574 - samples/sec: 137.94 - lr: 0.050000 |
|
2022-09-22 03:26:57,891 epoch 27 - iter 100/209 - loss 0.01019044 - samples/sec: 165.60 - lr: 0.050000 |
|
2022-09-22 03:27:02,434 epoch 27 - iter 120/209 - loss 0.00994911 - samples/sec: 140.99 - lr: 0.050000 |
|
2022-09-22 03:27:06,760 epoch 27 - iter 140/209 - loss 0.01092331 - samples/sec: 148.12 - lr: 0.050000 |
|
2022-09-22 03:27:11,171 epoch 27 - iter 160/209 - loss 0.01148409 - samples/sec: 145.28 - lr: 0.050000 |
|
2022-09-22 03:27:15,562 epoch 27 - iter 180/209 - loss 0.01142766 - samples/sec: 145.94 - lr: 0.050000 |
|
2022-09-22 03:27:20,019 epoch 27 - iter 200/209 - loss 0.01102674 - samples/sec: 143.75 - lr: 0.050000 |
|
2022-09-22 03:27:22,376 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:27:22,378 EPOCH 27 done: loss 0.0111 - lr 0.050000 |
|
2022-09-22 03:27:33,735 Evaluating as a multi-label problem: False |
|
2022-09-22 03:27:33,754 DEV : loss 0.04194819927215576 - f1-score (micro avg) 0.8857 |
|
2022-09-22 03:27:33,895 Epoch 27: reducing learning rate of group 0 to 2.5000e-02. |
|
2022-09-22 03:27:33,897 BAD EPOCHS (no improvement): 4 |
|
2022-09-22 03:27:33,900 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:27:37,927 epoch 28 - iter 20/209 - loss 0.01196667 - samples/sec: 159.26 - lr: 0.025000 |
|
2022-09-22 03:27:42,246 epoch 28 - iter 40/209 - loss 0.00963387 - samples/sec: 148.34 - lr: 0.025000 |
|
2022-09-22 03:27:46,178 epoch 28 - iter 60/209 - loss 0.00828059 - samples/sec: 162.98 - lr: 0.025000 |
|
2022-09-22 03:27:50,532 epoch 28 - iter 80/209 - loss 0.01003947 - samples/sec: 147.14 - lr: 0.025000 |
|
2022-09-22 03:27:55,264 epoch 28 - iter 100/209 - loss 0.01104576 - samples/sec: 135.43 - lr: 0.025000 |
|
2022-09-22 03:27:59,623 epoch 28 - iter 120/209 - loss 0.01058190 - samples/sec: 147.01 - lr: 0.025000 |
|
2022-09-22 03:28:03,947 epoch 28 - iter 140/209 - loss 0.01024795 - samples/sec: 148.18 - lr: 0.025000 |
|
2022-09-22 03:28:08,788 epoch 28 - iter 160/209 - loss 0.00989437 - samples/sec: 132.34 - lr: 0.025000 |
|
2022-09-22 03:28:14,450 epoch 28 - iter 180/209 - loss 0.01042305 - samples/sec: 113.14 - lr: 0.025000 |
|
2022-09-22 03:28:18,526 epoch 28 - iter 200/209 - loss 0.01036047 - samples/sec: 157.18 - lr: 0.025000 |
|
2022-09-22 03:28:20,562 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:28:20,565 EPOCH 28 done: loss 0.0103 - lr 0.025000 |
|
2022-09-22 03:28:31,722 Evaluating as a multi-label problem: False |
|
2022-09-22 03:28:31,745 DEV : loss 0.03861014544963837 - f1-score (micro avg) 0.8931 |
|
2022-09-22 03:28:31,892 BAD EPOCHS (no improvement): 0 |
|
2022-09-22 03:28:31,896 saving best model |
|
2022-09-22 03:28:36,355 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:28:40,941 epoch 29 - iter 20/209 - loss 0.00588863 - samples/sec: 139.78 - lr: 0.025000 |
|
2022-09-22 03:28:45,093 epoch 29 - iter 40/209 - loss 0.00811146 - samples/sec: 154.32 - lr: 0.025000 |
|
2022-09-22 03:28:50,095 epoch 29 - iter 60/209 - loss 0.01010255 - samples/sec: 128.06 - lr: 0.025000 |
|
2022-09-22 03:28:54,921 epoch 29 - iter 80/209 - loss 0.00871076 - samples/sec: 132.77 - lr: 0.025000 |
|
2022-09-22 03:28:59,879 epoch 29 - iter 100/209 - loss 0.00973383 - samples/sec: 129.22 - lr: 0.025000 |
|
2022-09-22 03:29:03,958 epoch 29 - iter 120/209 - loss 0.00955961 - samples/sec: 157.08 - lr: 0.025000 |
|
2022-09-22 03:29:07,869 epoch 29 - iter 140/209 - loss 0.00883156 - samples/sec: 163.91 - lr: 0.025000 |
|
2022-09-22 03:29:12,534 epoch 29 - iter 160/209 - loss 0.00951916 - samples/sec: 137.38 - lr: 0.025000 |
|
2022-09-22 03:29:17,162 epoch 29 - iter 180/209 - loss 0.00977117 - samples/sec: 138.40 - lr: 0.025000 |
|
2022-09-22 03:29:21,126 epoch 29 - iter 200/209 - loss 0.00964606 - samples/sec: 161.68 - lr: 0.025000 |
|
2022-09-22 03:29:22,585 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:29:22,588 EPOCH 29 done: loss 0.0096 - lr 0.025000 |
|
2022-09-22 03:29:33,561 Evaluating as a multi-label problem: False |
|
2022-09-22 03:29:33,582 DEV : loss 0.04020700231194496 - f1-score (micro avg) 0.8843 |
|
2022-09-22 03:29:33,712 BAD EPOCHS (no improvement): 1 |
|
2022-09-22 03:29:33,715 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:29:37,935 epoch 30 - iter 20/209 - loss 0.00780922 - samples/sec: 151.93 - lr: 0.025000 |
|
2022-09-22 03:29:42,007 epoch 30 - iter 40/209 - loss 0.00751670 - samples/sec: 157.37 - lr: 0.025000 |
|
2022-09-22 03:29:46,107 epoch 30 - iter 60/209 - loss 0.00764725 - samples/sec: 156.27 - lr: 0.025000 |
|
2022-09-22 03:29:50,513 epoch 30 - iter 80/209 - loss 0.00800249 - samples/sec: 145.41 - lr: 0.025000 |
|
2022-09-22 03:29:55,157 epoch 30 - iter 100/209 - loss 0.01018016 - samples/sec: 137.98 - lr: 0.025000 |
|
2022-09-22 03:30:00,098 epoch 30 - iter 120/209 - loss 0.01053769 - samples/sec: 129.67 - lr: 0.025000 |
|
2022-09-22 03:30:04,734 epoch 30 - iter 140/209 - loss 0.01058227 - samples/sec: 138.19 - lr: 0.025000 |
|
2022-09-22 03:30:09,259 epoch 30 - iter 160/209 - loss 0.01020763 - samples/sec: 141.59 - lr: 0.025000 |
|
2022-09-22 03:30:13,231 epoch 30 - iter 180/209 - loss 0.00978194 - samples/sec: 161.36 - lr: 0.025000 |
|
2022-09-22 03:30:17,709 epoch 30 - iter 200/209 - loss 0.00976860 - samples/sec: 143.08 - lr: 0.025000 |
|
2022-09-22 03:30:19,641 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:30:19,644 EPOCH 30 done: loss 0.0098 - lr 0.025000 |
|
2022-09-22 03:30:30,732 Evaluating as a multi-label problem: False |
|
2022-09-22 03:30:30,750 DEV : loss 0.040246278047561646 - f1-score (micro avg) 0.8824 |
|
2022-09-22 03:30:30,882 BAD EPOCHS (no improvement): 2 |
|
2022-09-22 03:30:30,885 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:30:35,678 epoch 31 - iter 20/209 - loss 0.00562730 - samples/sec: 133.74 - lr: 0.025000 |
|
2022-09-22 03:30:39,821 epoch 31 - iter 40/209 - loss 0.00589160 - samples/sec: 154.62 - lr: 0.025000 |
|
2022-09-22 03:30:43,553 epoch 31 - iter 60/209 - loss 0.00523552 - samples/sec: 171.67 - lr: 0.025000 |
|
2022-09-22 03:30:47,818 epoch 31 - iter 80/209 - loss 0.00642315 - samples/sec: 150.26 - lr: 0.025000 |
|
2022-09-22 03:30:52,412 epoch 31 - iter 100/209 - loss 0.00661123 - samples/sec: 139.56 - lr: 0.025000 |
|
2022-09-22 03:30:56,671 epoch 31 - iter 120/209 - loss 0.00655441 - samples/sec: 150.41 - lr: 0.025000 |
|
2022-09-22 03:31:01,613 epoch 31 - iter 140/209 - loss 0.00797238 - samples/sec: 129.64 - lr: 0.025000 |
|
2022-09-22 03:31:06,262 epoch 31 - iter 160/209 - loss 0.00853243 - samples/sec: 137.81 - lr: 0.025000 |
|
2022-09-22 03:31:10,693 epoch 31 - iter 180/209 - loss 0.00839161 - samples/sec: 144.61 - lr: 0.025000 |
|
2022-09-22 03:31:15,187 epoch 31 - iter 200/209 - loss 0.00813122 - samples/sec: 142.57 - lr: 0.025000 |
|
2022-09-22 03:31:17,811 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:31:17,812 EPOCH 31 done: loss 0.0082 - lr 0.025000 |
|
2022-09-22 03:31:28,917 Evaluating as a multi-label problem: False |
|
2022-09-22 03:31:28,934 DEV : loss 0.03930843994021416 - f1-score (micro avg) 0.891 |
|
2022-09-22 03:31:29,078 BAD EPOCHS (no improvement): 3 |
|
2022-09-22 03:31:29,081 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:31:33,550 epoch 32 - iter 20/209 - loss 0.00757585 - samples/sec: 143.37 - lr: 0.025000 |
|
2022-09-22 03:31:37,804 epoch 32 - iter 40/209 - loss 0.01084779 - samples/sec: 150.62 - lr: 0.025000 |
|
2022-09-22 03:31:42,425 epoch 32 - iter 60/209 - loss 0.00932148 - samples/sec: 138.63 - lr: 0.025000 |
|
2022-09-22 03:31:46,593 epoch 32 - iter 80/209 - loss 0.00880151 - samples/sec: 153.73 - lr: 0.025000 |
|
2022-09-22 03:31:51,068 epoch 32 - iter 100/209 - loss 0.00872236 - samples/sec: 143.18 - lr: 0.025000 |
|
2022-09-22 03:31:55,995 epoch 32 - iter 120/209 - loss 0.00898136 - samples/sec: 130.02 - lr: 0.025000 |
|
2022-09-22 03:31:59,908 epoch 32 - iter 140/209 - loss 0.00875114 - samples/sec: 163.78 - lr: 0.025000 |
|
2022-09-22 03:32:04,529 epoch 32 - iter 160/209 - loss 0.00878848 - samples/sec: 138.65 - lr: 0.025000 |
|
2022-09-22 03:32:08,764 epoch 32 - iter 180/209 - loss 0.00836800 - samples/sec: 151.31 - lr: 0.025000 |
|
2022-09-22 03:32:13,127 epoch 32 - iter 200/209 - loss 0.00839624 - samples/sec: 146.90 - lr: 0.025000 |
|
2022-09-22 03:32:15,123 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:32:15,124 EPOCH 32 done: loss 0.0087 - lr 0.025000 |
|
2022-09-22 03:32:26,135 Evaluating as a multi-label problem: False |
|
2022-09-22 03:32:26,153 DEV : loss 0.03956405445933342 - f1-score (micro avg) 0.899 |
|
2022-09-22 03:32:26,308 BAD EPOCHS (no improvement): 0 |
|
2022-09-22 03:32:26,311 saving best model |
|
2022-09-22 03:32:30,752 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:32:35,580 epoch 33 - iter 20/209 - loss 0.00704804 - samples/sec: 132.72 - lr: 0.025000 |
|
2022-09-22 03:32:40,567 epoch 33 - iter 40/209 - loss 0.01173646 - samples/sec: 128.46 - lr: 0.025000 |
|
2022-09-22 03:32:45,004 epoch 33 - iter 60/209 - loss 0.01066679 - samples/sec: 144.48 - lr: 0.025000 |
|
2022-09-22 03:32:49,522 epoch 33 - iter 80/209 - loss 0.01020648 - samples/sec: 141.83 - lr: 0.025000 |
|
2022-09-22 03:32:53,730 epoch 33 - iter 100/209 - loss 0.00934505 - samples/sec: 152.33 - lr: 0.025000 |
|
2022-09-22 03:32:57,861 epoch 33 - iter 120/209 - loss 0.00909380 - samples/sec: 155.11 - lr: 0.025000 |
|
2022-09-22 03:33:02,194 epoch 33 - iter 140/209 - loss 0.00903168 - samples/sec: 147.87 - lr: 0.025000 |
|
2022-09-22 03:33:06,882 epoch 33 - iter 160/209 - loss 0.00874628 - samples/sec: 136.64 - lr: 0.025000 |
|
2022-09-22 03:33:11,443 epoch 33 - iter 180/209 - loss 0.00843199 - samples/sec: 140.51 - lr: 0.025000 |
|
2022-09-22 03:33:15,647 epoch 33 - iter 200/209 - loss 0.00860312 - samples/sec: 152.43 - lr: 0.025000 |
|
2022-09-22 03:33:17,302 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:33:17,304 EPOCH 33 done: loss 0.0084 - lr 0.025000 |
|
2022-09-22 03:33:28,501 Evaluating as a multi-label problem: False |
|
2022-09-22 03:33:28,523 DEV : loss 0.04015888273715973 - f1-score (micro avg) 0.89 |
|
2022-09-22 03:33:28,655 BAD EPOCHS (no improvement): 1 |
|
2022-09-22 03:33:28,660 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:33:33,304 epoch 34 - iter 20/209 - loss 0.00569447 - samples/sec: 138.07 - lr: 0.025000 |
|
2022-09-22 03:33:37,938 epoch 34 - iter 40/209 - loss 0.00712331 - samples/sec: 138.25 - lr: 0.025000 |
|
2022-09-22 03:33:42,781 epoch 34 - iter 60/209 - loss 0.00842634 - samples/sec: 132.26 - lr: 0.025000 |
|
2022-09-22 03:33:46,691 epoch 34 - iter 80/209 - loss 0.00907594 - samples/sec: 163.93 - lr: 0.025000 |
|
2022-09-22 03:33:51,987 epoch 34 - iter 100/209 - loss 0.00858608 - samples/sec: 120.94 - lr: 0.025000 |
|
2022-09-22 03:33:55,963 epoch 34 - iter 120/209 - loss 0.00804898 - samples/sec: 161.13 - lr: 0.025000 |
|
2022-09-22 03:34:00,021 epoch 34 - iter 140/209 - loss 0.00796750 - samples/sec: 157.91 - lr: 0.025000 |
|
2022-09-22 03:34:03,634 epoch 34 - iter 160/209 - loss 0.00803767 - samples/sec: 177.37 - lr: 0.025000 |
|
2022-09-22 03:34:08,365 epoch 34 - iter 180/209 - loss 0.00788262 - samples/sec: 135.42 - lr: 0.025000 |
|
2022-09-22 03:34:12,978 epoch 34 - iter 200/209 - loss 0.00795304 - samples/sec: 138.93 - lr: 0.025000 |
|
2022-09-22 03:34:14,541 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:34:14,543 EPOCH 34 done: loss 0.0080 - lr 0.025000 |
|
2022-09-22 03:34:25,748 Evaluating as a multi-label problem: False |
|
2022-09-22 03:34:25,768 DEV : loss 0.0419330857694149 - f1-score (micro avg) 0.8893 |
|
2022-09-22 03:34:25,899 BAD EPOCHS (no improvement): 2 |
|
2022-09-22 03:34:25,903 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:34:30,610 epoch 35 - iter 20/209 - loss 0.00908179 - samples/sec: 136.15 - lr: 0.025000 |
|
2022-09-22 03:34:35,209 epoch 35 - iter 40/209 - loss 0.00796643 - samples/sec: 139.31 - lr: 0.025000 |
|
2022-09-22 03:34:39,618 epoch 35 - iter 60/209 - loss 0.00923109 - samples/sec: 145.30 - lr: 0.025000 |
|
2022-09-22 03:34:43,970 epoch 35 - iter 80/209 - loss 0.00834655 - samples/sec: 147.24 - lr: 0.025000 |
|
2022-09-22 03:34:49,127 epoch 35 - iter 100/209 - loss 0.00850180 - samples/sec: 124.22 - lr: 0.025000 |
|
2022-09-22 03:34:53,477 epoch 35 - iter 120/209 - loss 0.00885653 - samples/sec: 147.28 - lr: 0.025000 |
|
2022-09-22 03:34:57,808 epoch 35 - iter 140/209 - loss 0.00854671 - samples/sec: 147.94 - lr: 0.025000 |
|
2022-09-22 03:35:02,784 epoch 35 - iter 160/209 - loss 0.00858381 - samples/sec: 128.76 - lr: 0.025000 |
|
2022-09-22 03:35:07,097 epoch 35 - iter 180/209 - loss 0.00824478 - samples/sec: 148.61 - lr: 0.025000 |
|
2022-09-22 03:35:11,502 epoch 35 - iter 200/209 - loss 0.00837521 - samples/sec: 145.46 - lr: 0.025000 |
|
2022-09-22 03:35:13,138 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:35:13,141 EPOCH 35 done: loss 0.0085 - lr 0.025000 |
|
2022-09-22 03:35:24,274 Evaluating as a multi-label problem: False |
|
2022-09-22 03:35:24,294 DEV : loss 0.04051949828863144 - f1-score (micro avg) 0.8966 |
|
2022-09-22 03:35:24,424 BAD EPOCHS (no improvement): 3 |
|
2022-09-22 03:35:24,426 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:35:29,012 epoch 36 - iter 20/209 - loss 0.00696232 - samples/sec: 139.83 - lr: 0.025000 |
|
2022-09-22 03:35:33,404 epoch 36 - iter 40/209 - loss 0.00621393 - samples/sec: 145.96 - lr: 0.025000 |
|
2022-09-22 03:35:37,516 epoch 36 - iter 60/209 - loss 0.00661304 - samples/sec: 155.82 - lr: 0.025000 |
|
2022-09-22 03:35:41,499 epoch 36 - iter 80/209 - loss 0.00694613 - samples/sec: 160.88 - lr: 0.025000 |
|
2022-09-22 03:35:46,056 epoch 36 - iter 100/209 - loss 0.00696939 - samples/sec: 140.62 - lr: 0.025000 |
|
2022-09-22 03:35:50,834 epoch 36 - iter 120/209 - loss 0.00778882 - samples/sec: 134.11 - lr: 0.025000 |
|
2022-09-22 03:35:54,966 epoch 36 - iter 140/209 - loss 0.00770968 - samples/sec: 155.14 - lr: 0.025000 |
|
2022-09-22 03:35:59,385 epoch 36 - iter 160/209 - loss 0.00819376 - samples/sec: 144.97 - lr: 0.025000 |
|
2022-09-22 03:36:04,219 epoch 36 - iter 180/209 - loss 0.00843044 - samples/sec: 132.55 - lr: 0.025000 |
|
2022-09-22 03:36:08,773 epoch 36 - iter 200/209 - loss 0.00837520 - samples/sec: 140.69 - lr: 0.025000 |
|
2022-09-22 03:36:10,596 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:36:10,599 EPOCH 36 done: loss 0.0084 - lr 0.025000 |
|
2022-09-22 03:36:21,690 Evaluating as a multi-label problem: False |
|
2022-09-22 03:36:21,714 DEV : loss 0.04092669114470482 - f1-score (micro avg) 0.8879 |
|
2022-09-22 03:36:21,851 Epoch 36: reducing learning rate of group 0 to 1.2500e-02. |
|
2022-09-22 03:36:21,852 BAD EPOCHS (no improvement): 4 |
|
2022-09-22 03:36:21,857 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:36:27,184 epoch 37 - iter 20/209 - loss 0.00706402 - samples/sec: 120.30 - lr: 0.012500 |
|
2022-09-22 03:36:32,133 epoch 37 - iter 40/209 - loss 0.00726995 - samples/sec: 129.47 - lr: 0.012500 |
|
2022-09-22 03:36:37,555 epoch 37 - iter 60/209 - loss 0.00699793 - samples/sec: 118.18 - lr: 0.012500 |
|
2022-09-22 03:36:42,054 epoch 37 - iter 80/209 - loss 0.00683974 - samples/sec: 142.42 - lr: 0.012500 |
|
2022-09-22 03:36:45,954 epoch 37 - iter 100/209 - loss 0.00746173 - samples/sec: 164.32 - lr: 0.012500 |
|
2022-09-22 03:36:50,077 epoch 37 - iter 120/209 - loss 0.00727686 - samples/sec: 155.42 - lr: 0.012500 |
|
2022-09-22 03:36:53,946 epoch 37 - iter 140/209 - loss 0.00734845 - samples/sec: 165.65 - lr: 0.012500 |
|
2022-09-22 03:36:58,294 epoch 37 - iter 160/209 - loss 0.00739597 - samples/sec: 147.35 - lr: 0.012500 |
|
2022-09-22 03:37:02,248 epoch 37 - iter 180/209 - loss 0.00730706 - samples/sec: 162.04 - lr: 0.012500 |
|
2022-09-22 03:37:06,535 epoch 37 - iter 200/209 - loss 0.00775786 - samples/sec: 149.48 - lr: 0.012500 |
|
2022-09-22 03:37:08,885 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:37:08,887 EPOCH 37 done: loss 0.0078 - lr 0.012500 |
|
2022-09-22 03:37:20,120 Evaluating as a multi-label problem: False |
|
2022-09-22 03:37:20,140 DEV : loss 0.03935045003890991 - f1-score (micro avg) 0.8951 |
|
2022-09-22 03:37:20,277 BAD EPOCHS (no improvement): 1 |
|
2022-09-22 03:37:20,281 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:37:24,882 epoch 38 - iter 20/209 - loss 0.00733453 - samples/sec: 139.28 - lr: 0.012500 |
|
2022-09-22 03:37:29,521 epoch 38 - iter 40/209 - loss 0.00529715 - samples/sec: 138.12 - lr: 0.012500 |
|
2022-09-22 03:37:34,397 epoch 38 - iter 60/209 - loss 0.00530575 - samples/sec: 131.40 - lr: 0.012500 |
|
2022-09-22 03:37:38,900 epoch 38 - iter 80/209 - loss 0.00528524 - samples/sec: 142.33 - lr: 0.012500 |
|
2022-09-22 03:37:43,204 epoch 38 - iter 100/209 - loss 0.00528770 - samples/sec: 148.84 - lr: 0.012500 |
|
2022-09-22 03:37:47,467 epoch 38 - iter 120/209 - loss 0.00568610 - samples/sec: 150.31 - lr: 0.012500 |
|
2022-09-22 03:37:52,089 epoch 38 - iter 140/209 - loss 0.00617930 - samples/sec: 138.65 - lr: 0.012500 |
|
2022-09-22 03:37:56,289 epoch 38 - iter 160/209 - loss 0.00678712 - samples/sec: 152.53 - lr: 0.012500 |
|
2022-09-22 03:38:00,771 epoch 38 - iter 180/209 - loss 0.00684389 - samples/sec: 142.94 - lr: 0.012500 |
|
2022-09-22 03:38:04,959 epoch 38 - iter 200/209 - loss 0.00654574 - samples/sec: 153.03 - lr: 0.012500 |
|
2022-09-22 03:38:07,003 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:38:07,006 EPOCH 38 done: loss 0.0065 - lr 0.012500 |
|
2022-09-22 03:38:18,184 Evaluating as a multi-label problem: False |
|
2022-09-22 03:38:18,204 DEV : loss 0.03920961171388626 - f1-score (micro avg) 0.8976 |
|
2022-09-22 03:38:18,333 BAD EPOCHS (no improvement): 2 |
|
2022-09-22 03:38:18,336 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:38:23,073 epoch 39 - iter 20/209 - loss 0.00435913 - samples/sec: 135.32 - lr: 0.012500 |
|
2022-09-22 03:38:28,433 epoch 39 - iter 40/209 - loss 0.00626423 - samples/sec: 119.51 - lr: 0.012500 |
|
2022-09-22 03:38:32,681 epoch 39 - iter 60/209 - loss 0.00744142 - samples/sec: 150.87 - lr: 0.012500 |
|
2022-09-22 03:38:36,974 epoch 39 - iter 80/209 - loss 0.00685123 - samples/sec: 149.27 - lr: 0.012500 |
|
2022-09-22 03:38:41,282 epoch 39 - iter 100/209 - loss 0.00690466 - samples/sec: 148.72 - lr: 0.012500 |
|
2022-09-22 03:38:46,230 epoch 39 - iter 120/209 - loss 0.00668960 - samples/sec: 129.50 - lr: 0.012500 |
|
2022-09-22 03:38:50,851 epoch 39 - iter 140/209 - loss 0.00654694 - samples/sec: 138.66 - lr: 0.012500 |
|
2022-09-22 03:38:54,684 epoch 39 - iter 160/209 - loss 0.00689269 - samples/sec: 167.23 - lr: 0.012500 |
|
2022-09-22 03:38:59,591 epoch 39 - iter 180/209 - loss 0.00695870 - samples/sec: 130.56 - lr: 0.012500 |
|
2022-09-22 03:39:04,255 epoch 39 - iter 200/209 - loss 0.00722959 - samples/sec: 137.38 - lr: 0.012500 |
|
2022-09-22 03:39:05,956 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:39:05,957 EPOCH 39 done: loss 0.0072 - lr 0.012500 |
|
2022-09-22 03:39:17,113 Evaluating as a multi-label problem: False |
|
2022-09-22 03:39:17,133 DEV : loss 0.03949600085616112 - f1-score (micro avg) 0.8906 |
|
2022-09-22 03:39:17,265 BAD EPOCHS (no improvement): 3 |
|
2022-09-22 03:39:17,269 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:39:21,746 epoch 40 - iter 20/209 - loss 0.00374776 - samples/sec: 143.21 - lr: 0.012500 |
|
2022-09-22 03:39:26,904 epoch 40 - iter 40/209 - loss 0.00589579 - samples/sec: 124.20 - lr: 0.012500 |
|
2022-09-22 03:39:31,540 epoch 40 - iter 60/209 - loss 0.00631217 - samples/sec: 138.21 - lr: 0.012500 |
|
2022-09-22 03:39:35,341 epoch 40 - iter 80/209 - loss 0.00624166 - samples/sec: 168.60 - lr: 0.012500 |
|
2022-09-22 03:39:39,355 epoch 40 - iter 100/209 - loss 0.00616046 - samples/sec: 159.72 - lr: 0.012500 |
|
2022-09-22 03:39:43,921 epoch 40 - iter 120/209 - loss 0.00626057 - samples/sec: 140.34 - lr: 0.012500 |
|
2022-09-22 03:39:48,057 epoch 40 - iter 140/209 - loss 0.00600218 - samples/sec: 154.97 - lr: 0.012500 |
|
2022-09-22 03:39:53,111 epoch 40 - iter 160/209 - loss 0.00641384 - samples/sec: 126.78 - lr: 0.012500 |
|
2022-09-22 03:39:57,431 epoch 40 - iter 180/209 - loss 0.00658546 - samples/sec: 148.33 - lr: 0.012500 |
|
2022-09-22 03:40:02,003 epoch 40 - iter 200/209 - loss 0.00657651 - samples/sec: 140.13 - lr: 0.012500 |
|
2022-09-22 03:40:03,707 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:40:03,709 EPOCH 40 done: loss 0.0067 - lr 0.012500 |
|
2022-09-22 03:40:14,726 Evaluating as a multi-label problem: False |
|
2022-09-22 03:40:14,751 DEV : loss 0.04123305529356003 - f1-score (micro avg) 0.8948 |
|
2022-09-22 03:40:14,900 Epoch 40: reducing learning rate of group 0 to 6.2500e-03. |
|
2022-09-22 03:40:14,902 BAD EPOCHS (no improvement): 4 |
|
2022-09-22 03:40:14,905 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:40:19,029 epoch 41 - iter 20/209 - loss 0.00408827 - samples/sec: 155.47 - lr: 0.006250 |
|
2022-09-22 03:40:23,402 epoch 41 - iter 40/209 - loss 0.00580532 - samples/sec: 146.52 - lr: 0.006250 |
|
2022-09-22 03:40:28,999 epoch 41 - iter 60/209 - loss 0.00508256 - samples/sec: 114.44 - lr: 0.006250 |
|
2022-09-22 03:40:34,120 epoch 41 - iter 80/209 - loss 0.00581536 - samples/sec: 125.12 - lr: 0.006250 |
|
2022-09-22 03:40:38,419 epoch 41 - iter 100/209 - loss 0.00561195 - samples/sec: 149.06 - lr: 0.006250 |
|
2022-09-22 03:40:42,900 epoch 41 - iter 120/209 - loss 0.00644950 - samples/sec: 143.01 - lr: 0.006250 |
|
2022-09-22 03:40:46,692 epoch 41 - iter 140/209 - loss 0.00640956 - samples/sec: 168.99 - lr: 0.006250 |
|
2022-09-22 03:40:50,833 epoch 41 - iter 160/209 - loss 0.00657211 - samples/sec: 154.75 - lr: 0.006250 |
|
2022-09-22 03:40:55,498 epoch 41 - iter 180/209 - loss 0.00632891 - samples/sec: 137.35 - lr: 0.006250 |
|
2022-09-22 03:41:00,448 epoch 41 - iter 200/209 - loss 0.00602183 - samples/sec: 129.43 - lr: 0.006250 |
|
2022-09-22 03:41:02,128 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:41:02,130 EPOCH 41 done: loss 0.0059 - lr 0.006250 |
|
2022-09-22 03:41:13,135 Evaluating as a multi-label problem: False |
|
2022-09-22 03:41:13,156 DEV : loss 0.04026409983634949 - f1-score (micro avg) 0.8918 |
|
2022-09-22 03:41:13,292 BAD EPOCHS (no improvement): 1 |
|
2022-09-22 03:41:13,295 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:41:18,266 epoch 42 - iter 20/209 - loss 0.00921877 - samples/sec: 128.93 - lr: 0.006250 |
|
2022-09-22 03:41:23,135 epoch 42 - iter 40/209 - loss 0.00845366 - samples/sec: 131.60 - lr: 0.006250 |
|
2022-09-22 03:41:27,768 epoch 42 - iter 60/209 - loss 0.00768829 - samples/sec: 138.29 - lr: 0.006250 |
|
2022-09-22 03:41:32,150 epoch 42 - iter 80/209 - loss 0.00740244 - samples/sec: 146.24 - lr: 0.006250 |
|
2022-09-22 03:41:36,663 epoch 42 - iter 100/209 - loss 0.00759450 - samples/sec: 141.96 - lr: 0.006250 |
|
2022-09-22 03:41:40,941 epoch 42 - iter 120/209 - loss 0.00732379 - samples/sec: 149.82 - lr: 0.006250 |
|
2022-09-22 03:41:44,693 epoch 42 - iter 140/209 - loss 0.00735407 - samples/sec: 170.83 - lr: 0.006250 |
|
2022-09-22 03:41:48,547 epoch 42 - iter 160/209 - loss 0.00714062 - samples/sec: 166.27 - lr: 0.006250 |
|
2022-09-22 03:41:52,651 epoch 42 - iter 180/209 - loss 0.00724010 - samples/sec: 156.13 - lr: 0.006250 |
|
2022-09-22 03:41:56,790 epoch 42 - iter 200/209 - loss 0.00701223 - samples/sec: 154.87 - lr: 0.006250 |
|
2022-09-22 03:41:58,876 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:41:58,879 EPOCH 42 done: loss 0.0068 - lr 0.006250 |
|
2022-09-22 03:42:10,128 Evaluating as a multi-label problem: False |
|
2022-09-22 03:42:10,148 DEV : loss 0.041221924126148224 - f1-score (micro avg) 0.8945 |
|
2022-09-22 03:42:10,279 BAD EPOCHS (no improvement): 2 |
|
2022-09-22 03:42:10,282 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:42:15,093 epoch 43 - iter 20/209 - loss 0.00822164 - samples/sec: 133.26 - lr: 0.006250 |
|
2022-09-22 03:42:19,435 epoch 43 - iter 40/209 - loss 0.01032494 - samples/sec: 147.62 - lr: 0.006250 |
|
2022-09-22 03:42:24,018 epoch 43 - iter 60/209 - loss 0.00982694 - samples/sec: 139.82 - lr: 0.006250 |
|
2022-09-22 03:42:28,591 epoch 43 - iter 80/209 - loss 0.00821454 - samples/sec: 140.09 - lr: 0.006250 |
|
2022-09-22 03:42:33,560 epoch 43 - iter 100/209 - loss 0.00759173 - samples/sec: 128.92 - lr: 0.006250 |
|
2022-09-22 03:42:38,174 epoch 43 - iter 120/209 - loss 0.00722677 - samples/sec: 138.87 - lr: 0.006250 |
|
2022-09-22 03:42:42,359 epoch 43 - iter 140/209 - loss 0.00683628 - samples/sec: 153.12 - lr: 0.006250 |
|
2022-09-22 03:42:46,989 epoch 43 - iter 160/209 - loss 0.00722811 - samples/sec: 138.38 - lr: 0.006250 |
|
2022-09-22 03:42:51,261 epoch 43 - iter 180/209 - loss 0.00725975 - samples/sec: 150.03 - lr: 0.006250 |
|
2022-09-22 03:42:55,690 epoch 43 - iter 200/209 - loss 0.00746218 - samples/sec: 144.69 - lr: 0.006250 |
|
2022-09-22 03:42:57,535 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:42:57,537 EPOCH 43 done: loss 0.0078 - lr 0.006250 |
|
2022-09-22 03:43:08,630 Evaluating as a multi-label problem: False |
|
2022-09-22 03:43:08,650 DEV : loss 0.04122209921479225 - f1-score (micro avg) 0.8951 |
|
2022-09-22 03:43:08,785 BAD EPOCHS (no improvement): 3 |
|
2022-09-22 03:43:08,788 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:43:12,595 epoch 44 - iter 20/209 - loss 0.00551673 - samples/sec: 168.46 - lr: 0.006250 |
|
2022-09-22 03:43:17,696 epoch 44 - iter 40/209 - loss 0.00577496 - samples/sec: 125.59 - lr: 0.006250 |
|
2022-09-22 03:43:22,426 epoch 44 - iter 60/209 - loss 0.00728249 - samples/sec: 135.44 - lr: 0.006250 |
|
2022-09-22 03:43:26,619 epoch 44 - iter 80/209 - loss 0.00794143 - samples/sec: 152.79 - lr: 0.006250 |
|
2022-09-22 03:43:31,003 epoch 44 - iter 100/209 - loss 0.00836823 - samples/sec: 146.16 - lr: 0.006250 |
|
2022-09-22 03:43:35,801 epoch 44 - iter 120/209 - loss 0.00816591 - samples/sec: 133.55 - lr: 0.006250 |
|
2022-09-22 03:43:39,493 epoch 44 - iter 140/209 - loss 0.00806715 - samples/sec: 173.61 - lr: 0.006250 |
|
2022-09-22 03:43:44,601 epoch 44 - iter 160/209 - loss 0.00786756 - samples/sec: 125.44 - lr: 0.006250 |
|
2022-09-22 03:43:48,483 epoch 44 - iter 180/209 - loss 0.00759055 - samples/sec: 165.12 - lr: 0.006250 |
|
2022-09-22 03:43:52,362 epoch 44 - iter 200/209 - loss 0.00746701 - samples/sec: 165.24 - lr: 0.006250 |
|
2022-09-22 03:43:54,494 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:43:54,497 EPOCH 44 done: loss 0.0073 - lr 0.006250 |
|
2022-09-22 03:44:05,744 Evaluating as a multi-label problem: False |
|
2022-09-22 03:44:05,767 DEV : loss 0.04190916195511818 - f1-score (micro avg) 0.898 |
|
2022-09-22 03:44:05,908 Epoch 44: reducing learning rate of group 0 to 3.1250e-03. |
|
2022-09-22 03:44:05,910 BAD EPOCHS (no improvement): 4 |
|
2022-09-22 03:44:05,914 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:44:11,279 epoch 45 - iter 20/209 - loss 0.00518840 - samples/sec: 119.50 - lr: 0.003125 |
|
2022-09-22 03:44:14,974 epoch 45 - iter 40/209 - loss 0.00474588 - samples/sec: 173.45 - lr: 0.003125 |
|
2022-09-22 03:44:19,375 epoch 45 - iter 60/209 - loss 0.00654423 - samples/sec: 145.62 - lr: 0.003125 |
|
2022-09-22 03:44:23,812 epoch 45 - iter 80/209 - loss 0.00607472 - samples/sec: 144.41 - lr: 0.003125 |
|
2022-09-22 03:44:28,130 epoch 45 - iter 100/209 - loss 0.00575411 - samples/sec: 148.38 - lr: 0.003125 |
|
2022-09-22 03:44:32,348 epoch 45 - iter 120/209 - loss 0.00591917 - samples/sec: 151.94 - lr: 0.003125 |
|
2022-09-22 03:44:37,338 epoch 45 - iter 140/209 - loss 0.00616937 - samples/sec: 128.37 - lr: 0.003125 |
|
2022-09-22 03:44:42,073 epoch 45 - iter 160/209 - loss 0.00578197 - samples/sec: 135.32 - lr: 0.003125 |
|
2022-09-22 03:44:46,292 epoch 45 - iter 180/209 - loss 0.00572235 - samples/sec: 151.90 - lr: 0.003125 |
|
2022-09-22 03:44:51,020 epoch 45 - iter 200/209 - loss 0.00565739 - samples/sec: 135.49 - lr: 0.003125 |
|
2022-09-22 03:44:52,784 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:44:52,788 EPOCH 45 done: loss 0.0056 - lr 0.003125 |
|
2022-09-22 03:45:03,692 Evaluating as a multi-label problem: False |
|
2022-09-22 03:45:03,710 DEV : loss 0.0416376069188118 - f1-score (micro avg) 0.8977 |
|
2022-09-22 03:45:03,842 BAD EPOCHS (no improvement): 1 |
|
2022-09-22 03:45:03,845 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:45:08,383 epoch 46 - iter 20/209 - loss 0.00384870 - samples/sec: 141.20 - lr: 0.003125 |
|
2022-09-22 03:45:12,404 epoch 46 - iter 40/209 - loss 0.00489894 - samples/sec: 159.34 - lr: 0.003125 |
|
2022-09-22 03:45:17,443 epoch 46 - iter 60/209 - loss 0.00590516 - samples/sec: 127.14 - lr: 0.003125 |
|
2022-09-22 03:45:21,806 epoch 46 - iter 80/209 - loss 0.00644530 - samples/sec: 146.87 - lr: 0.003125 |
|
2022-09-22 03:45:25,972 epoch 46 - iter 100/209 - loss 0.00647438 - samples/sec: 153.78 - lr: 0.003125 |
|
2022-09-22 03:45:30,941 epoch 46 - iter 120/209 - loss 0.00616354 - samples/sec: 128.96 - lr: 0.003125 |
|
2022-09-22 03:45:34,825 epoch 46 - iter 140/209 - loss 0.00626058 - samples/sec: 164.96 - lr: 0.003125 |
|
2022-09-22 03:45:39,075 epoch 46 - iter 160/209 - loss 0.00611243 - samples/sec: 150.76 - lr: 0.003125 |
|
2022-09-22 03:45:43,092 epoch 46 - iter 180/209 - loss 0.00618923 - samples/sec: 159.57 - lr: 0.003125 |
|
2022-09-22 03:45:47,829 epoch 46 - iter 200/209 - loss 0.00631804 - samples/sec: 135.24 - lr: 0.003125 |
|
2022-09-22 03:45:49,548 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:45:49,550 EPOCH 46 done: loss 0.0065 - lr 0.003125 |
|
2022-09-22 03:46:00,573 Evaluating as a multi-label problem: False |
|
2022-09-22 03:46:00,597 DEV : loss 0.0413595512509346 - f1-score (micro avg) 0.8987 |
|
2022-09-22 03:46:00,729 BAD EPOCHS (no improvement): 2 |
|
2022-09-22 03:46:00,732 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:46:05,603 epoch 47 - iter 20/209 - loss 0.00472012 - samples/sec: 131.57 - lr: 0.003125 |
|
2022-09-22 03:46:10,033 epoch 47 - iter 40/209 - loss 0.00551437 - samples/sec: 144.67 - lr: 0.003125 |
|
2022-09-22 03:46:13,862 epoch 47 - iter 60/209 - loss 0.00537817 - samples/sec: 167.31 - lr: 0.003125 |
|
2022-09-22 03:46:17,557 epoch 47 - iter 80/209 - loss 0.00642726 - samples/sec: 173.49 - lr: 0.003125 |
|
2022-09-22 03:46:21,623 epoch 47 - iter 100/209 - loss 0.00713598 - samples/sec: 157.55 - lr: 0.003125 |
|
2022-09-22 03:46:26,483 epoch 47 - iter 120/209 - loss 0.00688335 - samples/sec: 131.81 - lr: 0.003125 |
|
2022-09-22 03:46:31,147 epoch 47 - iter 140/209 - loss 0.00666171 - samples/sec: 137.34 - lr: 0.003125 |
|
2022-09-22 03:46:35,557 epoch 47 - iter 160/209 - loss 0.00648260 - samples/sec: 145.29 - lr: 0.003125 |
|
2022-09-22 03:46:40,265 epoch 47 - iter 180/209 - loss 0.00646361 - samples/sec: 136.09 - lr: 0.003125 |
|
2022-09-22 03:46:45,209 epoch 47 - iter 200/209 - loss 0.00658443 - samples/sec: 129.59 - lr: 0.003125 |
|
2022-09-22 03:46:47,207 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:46:47,208 EPOCH 47 done: loss 0.0064 - lr 0.003125 |
|
2022-09-22 03:46:58,368 Evaluating as a multi-label problem: False |
|
2022-09-22 03:46:58,390 DEV : loss 0.04147793725132942 - f1-score (micro avg) 0.8954 |
|
2022-09-22 03:46:58,523 BAD EPOCHS (no improvement): 3 |
|
2022-09-22 03:46:58,527 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:47:02,592 epoch 48 - iter 20/209 - loss 0.00531851 - samples/sec: 157.74 - lr: 0.003125 |
|
2022-09-22 03:47:06,990 epoch 48 - iter 40/209 - loss 0.00447967 - samples/sec: 145.73 - lr: 0.003125 |
|
2022-09-22 03:47:11,151 epoch 48 - iter 60/209 - loss 0.00485587 - samples/sec: 154.02 - lr: 0.003125 |
|
2022-09-22 03:47:14,961 epoch 48 - iter 80/209 - loss 0.00517134 - samples/sec: 168.20 - lr: 0.003125 |
|
2022-09-22 03:47:19,992 epoch 48 - iter 100/209 - loss 0.00611644 - samples/sec: 127.35 - lr: 0.003125 |
|
2022-09-22 03:47:24,068 epoch 48 - iter 120/209 - loss 0.00582773 - samples/sec: 157.24 - lr: 0.003125 |
|
2022-09-22 03:47:28,971 epoch 48 - iter 140/209 - loss 0.00556429 - samples/sec: 130.66 - lr: 0.003125 |
|
2022-09-22 03:47:33,667 epoch 48 - iter 160/209 - loss 0.00545854 - samples/sec: 136.45 - lr: 0.003125 |
|
2022-09-22 03:47:38,170 epoch 48 - iter 180/209 - loss 0.00605017 - samples/sec: 142.31 - lr: 0.003125 |
|
2022-09-22 03:47:42,540 epoch 48 - iter 200/209 - loss 0.00607457 - samples/sec: 146.62 - lr: 0.003125 |
|
2022-09-22 03:47:44,559 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:47:44,561 EPOCH 48 done: loss 0.0060 - lr 0.003125 |
|
2022-09-22 03:47:55,550 Evaluating as a multi-label problem: False |
|
2022-09-22 03:47:55,570 DEV : loss 0.04214434698224068 - f1-score (micro avg) 0.8962 |
|
2022-09-22 03:47:55,703 Epoch 48: reducing learning rate of group 0 to 1.5625e-03. |
|
2022-09-22 03:47:55,707 BAD EPOCHS (no improvement): 4 |
|
2022-09-22 03:47:55,716 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:48:00,026 epoch 49 - iter 20/209 - loss 0.00476515 - samples/sec: 148.73 - lr: 0.001563 |
|
2022-09-22 03:48:05,117 epoch 49 - iter 40/209 - loss 0.00615691 - samples/sec: 125.82 - lr: 0.001563 |
|
2022-09-22 03:48:10,209 epoch 49 - iter 60/209 - loss 0.00543685 - samples/sec: 125.79 - lr: 0.001563 |
|
2022-09-22 03:48:15,035 epoch 49 - iter 80/209 - loss 0.00544056 - samples/sec: 132.78 - lr: 0.001563 |
|
2022-09-22 03:48:19,295 epoch 49 - iter 100/209 - loss 0.00573142 - samples/sec: 150.41 - lr: 0.001563 |
|
2022-09-22 03:48:23,659 epoch 49 - iter 120/209 - loss 0.00649771 - samples/sec: 146.90 - lr: 0.001563 |
|
2022-09-22 03:48:28,023 epoch 49 - iter 140/209 - loss 0.00648309 - samples/sec: 146.82 - lr: 0.001563 |
|
2022-09-22 03:48:32,674 epoch 49 - iter 160/209 - loss 0.00627615 - samples/sec: 137.76 - lr: 0.001563 |
|
2022-09-22 03:48:36,949 epoch 49 - iter 180/209 - loss 0.00605254 - samples/sec: 149.85 - lr: 0.001563 |
|
2022-09-22 03:48:40,968 epoch 49 - iter 200/209 - loss 0.00640203 - samples/sec: 159.47 - lr: 0.001563 |
|
2022-09-22 03:48:42,658 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:48:42,661 EPOCH 49 done: loss 0.0063 - lr 0.001563 |
|
2022-09-22 03:48:53,604 Evaluating as a multi-label problem: False |
|
2022-09-22 03:48:53,630 DEV : loss 0.04169485345482826 - f1-score (micro avg) 0.897 |
|
2022-09-22 03:48:53,761 BAD EPOCHS (no improvement): 1 |
|
2022-09-22 03:48:53,765 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:48:58,976 epoch 50 - iter 20/209 - loss 0.01247537 - samples/sec: 122.99 - lr: 0.001563 |
|
2022-09-22 03:49:03,209 epoch 50 - iter 40/209 - loss 0.00830603 - samples/sec: 151.38 - lr: 0.001563 |
|
2022-09-22 03:49:07,125 epoch 50 - iter 60/209 - loss 0.00740389 - samples/sec: 163.60 - lr: 0.001563 |
|
2022-09-22 03:49:11,732 epoch 50 - iter 80/209 - loss 0.00799464 - samples/sec: 139.06 - lr: 0.001563 |
|
2022-09-22 03:49:16,263 epoch 50 - iter 100/209 - loss 0.00694069 - samples/sec: 141.43 - lr: 0.001563 |
|
2022-09-22 03:49:20,398 epoch 50 - iter 120/209 - loss 0.00731619 - samples/sec: 155.00 - lr: 0.001563 |
|
2022-09-22 03:49:25,004 epoch 50 - iter 140/209 - loss 0.00710708 - samples/sec: 139.11 - lr: 0.001563 |
|
2022-09-22 03:49:29,330 epoch 50 - iter 160/209 - loss 0.00662856 - samples/sec: 148.14 - lr: 0.001563 |
|
2022-09-22 03:49:33,761 epoch 50 - iter 180/209 - loss 0.00636110 - samples/sec: 144.58 - lr: 0.001563 |
|
2022-09-22 03:49:37,902 epoch 50 - iter 200/209 - loss 0.00640348 - samples/sec: 154.77 - lr: 0.001563 |
|
2022-09-22 03:49:39,694 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:49:39,696 EPOCH 50 done: loss 0.0069 - lr 0.001563 |
|
2022-09-22 03:49:51,043 Evaluating as a multi-label problem: False |
|
2022-09-22 03:49:51,060 DEV : loss 0.041619885712862015 - f1-score (micro avg) 0.8968 |
|
2022-09-22 03:49:51,199 BAD EPOCHS (no improvement): 2 |
|
2022-09-22 03:49:51,202 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:49:55,438 epoch 51 - iter 20/209 - loss 0.00323729 - samples/sec: 151.31 - lr: 0.001563 |
|
2022-09-22 03:49:59,949 epoch 51 - iter 40/209 - loss 0.00423640 - samples/sec: 142.04 - lr: 0.001563 |
|
2022-09-22 03:50:04,502 epoch 51 - iter 60/209 - loss 0.00422087 - samples/sec: 140.73 - lr: 0.001563 |
|
2022-09-22 03:50:08,990 epoch 51 - iter 80/209 - loss 0.00499427 - samples/sec: 142.85 - lr: 0.001563 |
|
2022-09-22 03:50:12,596 epoch 51 - iter 100/209 - loss 0.00493329 - samples/sec: 177.76 - lr: 0.001563 |
|
2022-09-22 03:50:17,034 epoch 51 - iter 120/209 - loss 0.00533605 - samples/sec: 144.32 - lr: 0.001563 |
|
2022-09-22 03:50:21,480 epoch 51 - iter 140/209 - loss 0.00524836 - samples/sec: 144.15 - lr: 0.001563 |
|
2022-09-22 03:50:26,515 epoch 51 - iter 160/209 - loss 0.00569826 - samples/sec: 127.23 - lr: 0.001563 |
|
2022-09-22 03:50:31,028 epoch 51 - iter 180/209 - loss 0.00605276 - samples/sec: 141.99 - lr: 0.001563 |
|
2022-09-22 03:50:35,135 epoch 51 - iter 200/209 - loss 0.00600363 - samples/sec: 156.04 - lr: 0.001563 |
|
2022-09-22 03:50:37,241 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:50:37,243 EPOCH 51 done: loss 0.0059 - lr 0.001563 |
|
2022-09-22 03:50:48,402 Evaluating as a multi-label problem: False |
|
2022-09-22 03:50:48,423 DEV : loss 0.041253745555877686 - f1-score (micro avg) 0.8966 |
|
2022-09-22 03:50:48,560 BAD EPOCHS (no improvement): 3 |
|
2022-09-22 03:50:48,563 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:50:52,765 epoch 52 - iter 20/209 - loss 0.00501658 - samples/sec: 152.57 - lr: 0.001563 |
|
2022-09-22 03:50:56,869 epoch 52 - iter 40/209 - loss 0.00567355 - samples/sec: 156.14 - lr: 0.001563 |
|
2022-09-22 03:51:01,175 epoch 52 - iter 60/209 - loss 0.00527932 - samples/sec: 148.82 - lr: 0.001563 |
|
2022-09-22 03:51:06,098 epoch 52 - iter 80/209 - loss 0.00633136 - samples/sec: 130.17 - lr: 0.001563 |
|
2022-09-22 03:51:09,634 epoch 52 - iter 100/209 - loss 0.00633831 - samples/sec: 181.21 - lr: 0.001563 |
|
2022-09-22 03:51:13,917 epoch 52 - iter 120/209 - loss 0.00624763 - samples/sec: 149.66 - lr: 0.001563 |
|
2022-09-22 03:51:18,816 epoch 52 - iter 140/209 - loss 0.00664413 - samples/sec: 130.78 - lr: 0.001563 |
|
2022-09-22 03:51:22,991 epoch 52 - iter 160/209 - loss 0.00641601 - samples/sec: 153.43 - lr: 0.001563 |
|
2022-09-22 03:51:27,768 epoch 52 - iter 180/209 - loss 0.00656821 - samples/sec: 134.13 - lr: 0.001563 |
|
2022-09-22 03:51:31,899 epoch 52 - iter 200/209 - loss 0.00666688 - samples/sec: 155.16 - lr: 0.001563 |
|
2022-09-22 03:51:34,206 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:51:34,208 EPOCH 52 done: loss 0.0067 - lr 0.001563 |
|
2022-09-22 03:51:45,201 Evaluating as a multi-label problem: False |
|
2022-09-22 03:51:45,224 DEV : loss 0.04099021106958389 - f1-score (micro avg) 0.8974 |
|
2022-09-22 03:51:45,377 Epoch 52: reducing learning rate of group 0 to 7.8125e-04. |
|
2022-09-22 03:51:45,378 BAD EPOCHS (no improvement): 4 |
|
2022-09-22 03:51:45,381 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:51:50,262 epoch 53 - iter 20/209 - loss 0.00620492 - samples/sec: 131.29 - lr: 0.000781 |
|
2022-09-22 03:51:54,829 epoch 53 - iter 40/209 - loss 0.00473102 - samples/sec: 140.29 - lr: 0.000781 |
|
2022-09-22 03:51:59,076 epoch 53 - iter 60/209 - loss 0.00568016 - samples/sec: 150.93 - lr: 0.000781 |
|
2022-09-22 03:52:03,056 epoch 53 - iter 80/209 - loss 0.00541270 - samples/sec: 160.96 - lr: 0.000781 |
|
2022-09-22 03:52:06,787 epoch 53 - iter 100/209 - loss 0.00523814 - samples/sec: 171.76 - lr: 0.000781 |
|
2022-09-22 03:52:12,054 epoch 53 - iter 120/209 - loss 0.00518712 - samples/sec: 121.64 - lr: 0.000781 |
|
2022-09-22 03:52:16,705 epoch 53 - iter 140/209 - loss 0.00500942 - samples/sec: 137.75 - lr: 0.000781 |
|
2022-09-22 03:52:20,907 epoch 53 - iter 160/209 - loss 0.00475860 - samples/sec: 152.51 - lr: 0.000781 |
|
2022-09-22 03:52:25,114 epoch 53 - iter 180/209 - loss 0.00483390 - samples/sec: 152.30 - lr: 0.000781 |
|
2022-09-22 03:52:29,928 epoch 53 - iter 200/209 - loss 0.00554696 - samples/sec: 133.07 - lr: 0.000781 |
|
2022-09-22 03:52:31,680 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:52:31,682 EPOCH 53 done: loss 0.0054 - lr 0.000781 |
|
2022-09-22 03:52:42,767 Evaluating as a multi-label problem: False |
|
2022-09-22 03:52:42,786 DEV : loss 0.04100096598267555 - f1-score (micro avg) 0.8966 |
|
2022-09-22 03:52:42,921 BAD EPOCHS (no improvement): 1 |
|
2022-09-22 03:52:42,924 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:52:47,130 epoch 54 - iter 20/209 - loss 0.00740737 - samples/sec: 152.35 - lr: 0.000781 |
|
2022-09-22 03:52:51,033 epoch 54 - iter 40/209 - loss 0.00619026 - samples/sec: 164.15 - lr: 0.000781 |
|
2022-09-22 03:52:55,702 epoch 54 - iter 60/209 - loss 0.00576693 - samples/sec: 137.20 - lr: 0.000781 |
|
2022-09-22 03:52:59,630 epoch 54 - iter 80/209 - loss 0.00634621 - samples/sec: 163.14 - lr: 0.000781 |
|
2022-09-22 03:53:05,148 epoch 54 - iter 100/209 - loss 0.00650624 - samples/sec: 116.07 - lr: 0.000781 |
|
2022-09-22 03:53:09,973 epoch 54 - iter 120/209 - loss 0.00641571 - samples/sec: 132.79 - lr: 0.000781 |
|
2022-09-22 03:53:14,203 epoch 54 - iter 140/209 - loss 0.00586754 - samples/sec: 151.49 - lr: 0.000781 |
|
2022-09-22 03:53:18,175 epoch 54 - iter 160/209 - loss 0.00591058 - samples/sec: 161.33 - lr: 0.000781 |
|
2022-09-22 03:53:22,317 epoch 54 - iter 180/209 - loss 0.00577589 - samples/sec: 154.68 - lr: 0.000781 |
|
2022-09-22 03:53:27,019 epoch 54 - iter 200/209 - loss 0.00602536 - samples/sec: 136.27 - lr: 0.000781 |
|
2022-09-22 03:53:29,034 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:53:29,036 EPOCH 54 done: loss 0.0059 - lr 0.000781 |
|
2022-09-22 03:53:39,916 Evaluating as a multi-label problem: False |
|
2022-09-22 03:53:39,935 DEV : loss 0.041073162108659744 - f1-score (micro avg) 0.8958 |
|
2022-09-22 03:53:40,077 BAD EPOCHS (no improvement): 2 |
|
2022-09-22 03:53:40,080 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:53:45,201 epoch 55 - iter 20/209 - loss 0.00331707 - samples/sec: 125.16 - lr: 0.000781 |
|
2022-09-22 03:53:49,603 epoch 55 - iter 40/209 - loss 0.00636928 - samples/sec: 145.55 - lr: 0.000781 |
|
2022-09-22 03:53:54,430 epoch 55 - iter 60/209 - loss 0.00557866 - samples/sec: 132.72 - lr: 0.000781 |
|
2022-09-22 03:53:58,477 epoch 55 - iter 80/209 - loss 0.00629021 - samples/sec: 158.38 - lr: 0.000781 |
|
2022-09-22 03:54:02,694 epoch 55 - iter 100/209 - loss 0.00595054 - samples/sec: 151.92 - lr: 0.000781 |
|
2022-09-22 03:54:06,796 epoch 55 - iter 120/209 - loss 0.00589230 - samples/sec: 156.21 - lr: 0.000781 |
|
2022-09-22 03:54:10,785 epoch 55 - iter 140/209 - loss 0.00603926 - samples/sec: 160.68 - lr: 0.000781 |
|
2022-09-22 03:54:14,773 epoch 55 - iter 160/209 - loss 0.00564119 - samples/sec: 160.64 - lr: 0.000781 |
|
2022-09-22 03:54:19,398 epoch 55 - iter 180/209 - loss 0.00553303 - samples/sec: 138.56 - lr: 0.000781 |
|
2022-09-22 03:54:24,409 epoch 55 - iter 200/209 - loss 0.00555741 - samples/sec: 127.87 - lr: 0.000781 |
|
2022-09-22 03:54:25,812 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:54:25,814 EPOCH 55 done: loss 0.0055 - lr 0.000781 |
|
2022-09-22 03:54:36,746 Evaluating as a multi-label problem: False |
|
2022-09-22 03:54:36,771 DEV : loss 0.04101268947124481 - f1-score (micro avg) 0.8968 |
|
2022-09-22 03:54:36,900 BAD EPOCHS (no improvement): 3 |
|
2022-09-22 03:54:36,903 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:54:40,917 epoch 56 - iter 20/209 - loss 0.00453760 - samples/sec: 159.73 - lr: 0.000781 |
|
2022-09-22 03:54:44,719 epoch 56 - iter 40/209 - loss 0.00597451 - samples/sec: 168.57 - lr: 0.000781 |
|
2022-09-22 03:54:49,243 epoch 56 - iter 60/209 - loss 0.00656413 - samples/sec: 141.61 - lr: 0.000781 |
|
2022-09-22 03:54:53,497 epoch 56 - iter 80/209 - loss 0.00677738 - samples/sec: 150.62 - lr: 0.000781 |
|
2022-09-22 03:54:58,125 epoch 56 - iter 100/209 - loss 0.00625281 - samples/sec: 138.46 - lr: 0.000781 |
|
2022-09-22 03:55:02,593 epoch 56 - iter 120/209 - loss 0.00603710 - samples/sec: 143.39 - lr: 0.000781 |
|
2022-09-22 03:55:07,152 epoch 56 - iter 140/209 - loss 0.00587802 - samples/sec: 140.51 - lr: 0.000781 |
|
2022-09-22 03:55:11,561 epoch 56 - iter 160/209 - loss 0.00594629 - samples/sec: 145.32 - lr: 0.000781 |
|
2022-09-22 03:55:16,546 epoch 56 - iter 180/209 - loss 0.00608648 - samples/sec: 128.50 - lr: 0.000781 |
|
2022-09-22 03:55:21,191 epoch 56 - iter 200/209 - loss 0.00616108 - samples/sec: 137.94 - lr: 0.000781 |
|
2022-09-22 03:55:22,691 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:55:22,693 EPOCH 56 done: loss 0.0061 - lr 0.000781 |
|
2022-09-22 03:55:33,875 Evaluating as a multi-label problem: False |
|
2022-09-22 03:55:33,895 DEV : loss 0.04110672324895859 - f1-score (micro avg) 0.8976 |
|
2022-09-22 03:55:34,029 Epoch 56: reducing learning rate of group 0 to 3.9063e-04. |
|
2022-09-22 03:55:34,032 BAD EPOCHS (no improvement): 4 |
|
2022-09-22 03:55:34,035 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:55:38,408 epoch 57 - iter 20/209 - loss 0.00800472 - samples/sec: 146.61 - lr: 0.000391 |
|
2022-09-22 03:55:42,977 epoch 57 - iter 40/209 - loss 0.00588092 - samples/sec: 140.24 - lr: 0.000391 |
|
2022-09-22 03:55:47,356 epoch 57 - iter 60/209 - loss 0.00545936 - samples/sec: 146.31 - lr: 0.000391 |
|
2022-09-22 03:55:51,517 epoch 57 - iter 80/209 - loss 0.00526302 - samples/sec: 153.93 - lr: 0.000391 |
|
2022-09-22 03:55:55,704 epoch 57 - iter 100/209 - loss 0.00609277 - samples/sec: 153.05 - lr: 0.000391 |
|
2022-09-22 03:56:00,654 epoch 57 - iter 120/209 - loss 0.00663245 - samples/sec: 129.45 - lr: 0.000391 |
|
2022-09-22 03:56:04,841 epoch 57 - iter 140/209 - loss 0.00605833 - samples/sec: 153.08 - lr: 0.000391 |
|
2022-09-22 03:56:09,175 epoch 57 - iter 160/209 - loss 0.00611017 - samples/sec: 147.87 - lr: 0.000391 |
|
2022-09-22 03:56:14,002 epoch 57 - iter 180/209 - loss 0.00609829 - samples/sec: 132.71 - lr: 0.000391 |
|
2022-09-22 03:56:18,423 epoch 57 - iter 200/209 - loss 0.00574898 - samples/sec: 144.95 - lr: 0.000391 |
|
2022-09-22 03:56:20,198 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:56:20,200 EPOCH 57 done: loss 0.0058 - lr 0.000391 |
|
2022-09-22 03:56:31,221 Evaluating as a multi-label problem: False |
|
2022-09-22 03:56:31,240 DEV : loss 0.04113282635807991 - f1-score (micro avg) 0.896 |
|
2022-09-22 03:56:31,373 BAD EPOCHS (no improvement): 1 |
|
2022-09-22 03:56:31,376 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:56:35,744 epoch 58 - iter 20/209 - loss 0.00921994 - samples/sec: 146.76 - lr: 0.000391 |
|
2022-09-22 03:56:40,525 epoch 58 - iter 40/209 - loss 0.00730079 - samples/sec: 134.02 - lr: 0.000391 |
|
2022-09-22 03:56:44,800 epoch 58 - iter 60/209 - loss 0.00619064 - samples/sec: 149.85 - lr: 0.000391 |
|
2022-09-22 03:56:49,095 epoch 58 - iter 80/209 - loss 0.00672812 - samples/sec: 149.22 - lr: 0.000391 |
|
2022-09-22 03:56:53,306 epoch 58 - iter 100/209 - loss 0.00665815 - samples/sec: 152.17 - lr: 0.000391 |
|
2022-09-22 03:56:57,824 epoch 58 - iter 120/209 - loss 0.00655682 - samples/sec: 141.78 - lr: 0.000391 |
|
2022-09-22 03:57:02,074 epoch 58 - iter 140/209 - loss 0.00657187 - samples/sec: 150.72 - lr: 0.000391 |
|
2022-09-22 03:57:06,700 epoch 58 - iter 160/209 - loss 0.00653902 - samples/sec: 138.50 - lr: 0.000391 |
|
2022-09-22 03:57:11,359 epoch 58 - iter 180/209 - loss 0.00639477 - samples/sec: 137.48 - lr: 0.000391 |
|
2022-09-22 03:57:15,654 epoch 58 - iter 200/209 - loss 0.00617299 - samples/sec: 149.21 - lr: 0.000391 |
|
2022-09-22 03:57:17,279 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:57:17,280 EPOCH 58 done: loss 0.0062 - lr 0.000391 |
|
2022-09-22 03:57:28,295 Evaluating as a multi-label problem: False |
|
2022-09-22 03:57:28,318 DEV : loss 0.041114162653684616 - f1-score (micro avg) 0.896 |
|
2022-09-22 03:57:28,467 BAD EPOCHS (no improvement): 2 |
|
2022-09-22 03:57:28,470 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:57:33,086 epoch 59 - iter 20/209 - loss 0.00437776 - samples/sec: 138.85 - lr: 0.000391 |
|
2022-09-22 03:57:37,362 epoch 59 - iter 40/209 - loss 0.00492228 - samples/sec: 149.85 - lr: 0.000391 |
|
2022-09-22 03:57:41,977 epoch 59 - iter 60/209 - loss 0.00572025 - samples/sec: 138.80 - lr: 0.000391 |
|
2022-09-22 03:57:47,580 epoch 59 - iter 80/209 - loss 0.00584043 - samples/sec: 114.34 - lr: 0.000391 |
|
2022-09-22 03:57:51,688 epoch 59 - iter 100/209 - loss 0.00644478 - samples/sec: 155.98 - lr: 0.000391 |
|
2022-09-22 03:57:55,937 epoch 59 - iter 120/209 - loss 0.00640490 - samples/sec: 150.80 - lr: 0.000391 |
|
2022-09-22 03:58:00,652 epoch 59 - iter 140/209 - loss 0.00627387 - samples/sec: 135.91 - lr: 0.000391 |
|
2022-09-22 03:58:04,950 epoch 59 - iter 160/209 - loss 0.00615403 - samples/sec: 149.09 - lr: 0.000391 |
|
2022-09-22 03:58:09,252 epoch 59 - iter 180/209 - loss 0.00614340 - samples/sec: 148.94 - lr: 0.000391 |
|
2022-09-22 03:58:13,164 epoch 59 - iter 200/209 - loss 0.00618012 - samples/sec: 163.77 - lr: 0.000391 |
|
2022-09-22 03:58:14,912 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:58:14,913 EPOCH 59 done: loss 0.0060 - lr 0.000391 |
|
2022-09-22 03:58:26,061 Evaluating as a multi-label problem: False |
|
2022-09-22 03:58:26,084 DEV : loss 0.04115418344736099 - f1-score (micro avg) 0.896 |
|
2022-09-22 03:58:26,216 BAD EPOCHS (no improvement): 3 |
|
2022-09-22 03:58:26,219 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:58:31,350 epoch 60 - iter 20/209 - loss 0.01034365 - samples/sec: 124.94 - lr: 0.000391 |
|
2022-09-22 03:58:35,473 epoch 60 - iter 40/209 - loss 0.00841921 - samples/sec: 155.41 - lr: 0.000391 |
|
2022-09-22 03:58:39,503 epoch 60 - iter 60/209 - loss 0.00751487 - samples/sec: 158.98 - lr: 0.000391 |
|
2022-09-22 03:58:43,836 epoch 60 - iter 80/209 - loss 0.00668013 - samples/sec: 147.86 - lr: 0.000391 |
|
2022-09-22 03:58:48,456 epoch 60 - iter 100/209 - loss 0.00595166 - samples/sec: 138.70 - lr: 0.000391 |
|
2022-09-22 03:58:52,787 epoch 60 - iter 120/209 - loss 0.00619094 - samples/sec: 147.95 - lr: 0.000391 |
|
2022-09-22 03:58:57,295 epoch 60 - iter 140/209 - loss 0.00693912 - samples/sec: 142.13 - lr: 0.000391 |
|
2022-09-22 03:59:01,618 epoch 60 - iter 160/209 - loss 0.00669440 - samples/sec: 148.24 - lr: 0.000391 |
|
2022-09-22 03:59:05,323 epoch 60 - iter 180/209 - loss 0.00674939 - samples/sec: 172.99 - lr: 0.000391 |
|
2022-09-22 03:59:09,914 epoch 60 - iter 200/209 - loss 0.00686810 - samples/sec: 139.55 - lr: 0.000391 |
|
2022-09-22 03:59:11,941 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:59:11,944 EPOCH 60 done: loss 0.0067 - lr 0.000391 |
|
2022-09-22 03:59:22,855 Evaluating as a multi-label problem: False |
|
2022-09-22 03:59:22,877 DEV : loss 0.04105373099446297 - f1-score (micro avg) 0.8976 |
|
2022-09-22 03:59:23,022 Epoch 60: reducing learning rate of group 0 to 1.9531e-04. |
|
2022-09-22 03:59:23,024 BAD EPOCHS (no improvement): 4 |
|
2022-09-22 03:59:23,029 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 03:59:27,451 epoch 61 - iter 20/209 - loss 0.00430089 - samples/sec: 144.94 - lr: 0.000195 |
|
2022-09-22 03:59:31,734 epoch 61 - iter 40/209 - loss 0.00616997 - samples/sec: 149.60 - lr: 0.000195 |
|
2022-09-22 03:59:35,533 epoch 61 - iter 60/209 - loss 0.00665133 - samples/sec: 168.69 - lr: 0.000195 |
|
2022-09-22 03:59:40,005 epoch 61 - iter 80/209 - loss 0.00624606 - samples/sec: 143.25 - lr: 0.000195 |
|
2022-09-22 03:59:44,860 epoch 61 - iter 100/209 - loss 0.00682087 - samples/sec: 131.97 - lr: 0.000195 |
|
2022-09-22 03:59:49,198 epoch 61 - iter 120/209 - loss 0.00716552 - samples/sec: 147.67 - lr: 0.000195 |
|
2022-09-22 03:59:53,354 epoch 61 - iter 140/209 - loss 0.00674058 - samples/sec: 154.23 - lr: 0.000195 |
|
2022-09-22 03:59:58,018 epoch 61 - iter 160/209 - loss 0.00627423 - samples/sec: 137.38 - lr: 0.000195 |
|
2022-09-22 04:00:02,506 epoch 61 - iter 180/209 - loss 0.00598420 - samples/sec: 142.76 - lr: 0.000195 |
|
2022-09-22 04:00:07,204 epoch 61 - iter 200/209 - loss 0.00624811 - samples/sec: 136.36 - lr: 0.000195 |
|
2022-09-22 04:00:09,424 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 04:00:09,426 EPOCH 61 done: loss 0.0062 - lr 0.000195 |
|
2022-09-22 04:00:20,463 Evaluating as a multi-label problem: False |
|
2022-09-22 04:00:20,483 DEV : loss 0.04105890542268753 - f1-score (micro avg) 0.8976 |
|
2022-09-22 04:00:20,619 BAD EPOCHS (no improvement): 1 |
|
2022-09-22 04:00:20,622 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 04:00:24,866 epoch 62 - iter 20/209 - loss 0.00543478 - samples/sec: 151.01 - lr: 0.000195 |
|
2022-09-22 04:00:28,684 epoch 62 - iter 40/209 - loss 0.00548842 - samples/sec: 167.87 - lr: 0.000195 |
|
2022-09-22 04:00:33,669 epoch 62 - iter 60/209 - loss 0.00570884 - samples/sec: 128.51 - lr: 0.000195 |
|
2022-09-22 04:00:37,570 epoch 62 - iter 80/209 - loss 0.00522488 - samples/sec: 164.25 - lr: 0.000195 |
|
2022-09-22 04:00:42,441 epoch 62 - iter 100/209 - loss 0.00491201 - samples/sec: 131.52 - lr: 0.000195 |
|
2022-09-22 04:00:47,289 epoch 62 - iter 120/209 - loss 0.00558944 - samples/sec: 132.17 - lr: 0.000195 |
|
2022-09-22 04:00:51,190 epoch 62 - iter 140/209 - loss 0.00618133 - samples/sec: 164.32 - lr: 0.000195 |
|
2022-09-22 04:00:55,259 epoch 62 - iter 160/209 - loss 0.00611068 - samples/sec: 157.51 - lr: 0.000195 |
|
2022-09-22 04:01:00,030 epoch 62 - iter 180/209 - loss 0.00643276 - samples/sec: 134.28 - lr: 0.000195 |
|
2022-09-22 04:01:03,950 epoch 62 - iter 200/209 - loss 0.00678147 - samples/sec: 163.49 - lr: 0.000195 |
|
2022-09-22 04:01:06,005 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 04:01:06,008 EPOCH 62 done: loss 0.0067 - lr 0.000195 |
|
2022-09-22 04:01:17,016 Evaluating as a multi-label problem: False |
|
2022-09-22 04:01:17,036 DEV : loss 0.041022274643182755 - f1-score (micro avg) 0.8976 |
|
2022-09-22 04:01:17,171 BAD EPOCHS (no improvement): 2 |
|
2022-09-22 04:01:17,175 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 04:01:21,055 epoch 63 - iter 20/209 - loss 0.00854410 - samples/sec: 165.28 - lr: 0.000195 |
|
2022-09-22 04:01:25,308 epoch 63 - iter 40/209 - loss 0.00655488 - samples/sec: 150.65 - lr: 0.000195 |
|
2022-09-22 04:01:30,018 epoch 63 - iter 60/209 - loss 0.00593736 - samples/sec: 136.03 - lr: 0.000195 |
|
2022-09-22 04:01:35,072 epoch 63 - iter 80/209 - loss 0.00701346 - samples/sec: 126.74 - lr: 0.000195 |
|
2022-09-22 04:01:39,910 epoch 63 - iter 100/209 - loss 0.00607717 - samples/sec: 132.43 - lr: 0.000195 |
|
2022-09-22 04:01:44,504 epoch 63 - iter 120/209 - loss 0.00571147 - samples/sec: 139.45 - lr: 0.000195 |
|
2022-09-22 04:01:48,799 epoch 63 - iter 140/209 - loss 0.00624759 - samples/sec: 149.16 - lr: 0.000195 |
|
2022-09-22 04:01:53,726 epoch 63 - iter 160/209 - loss 0.00624797 - samples/sec: 130.03 - lr: 0.000195 |
|
2022-09-22 04:01:57,699 epoch 63 - iter 180/209 - loss 0.00596065 - samples/sec: 161.26 - lr: 0.000195 |
|
2022-09-22 04:02:02,311 epoch 63 - iter 200/209 - loss 0.00568658 - samples/sec: 138.94 - lr: 0.000195 |
|
2022-09-22 04:02:04,152 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 04:02:04,155 EPOCH 63 done: loss 0.0056 - lr 0.000195 |
|
2022-09-22 04:02:15,231 Evaluating as a multi-label problem: False |
|
2022-09-22 04:02:15,251 DEV : loss 0.041041262447834015 - f1-score (micro avg) 0.8976 |
|
2022-09-22 04:02:15,380 BAD EPOCHS (no improvement): 3 |
|
2022-09-22 04:02:15,384 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 04:02:19,806 epoch 64 - iter 20/209 - loss 0.00676565 - samples/sec: 144.96 - lr: 0.000195 |
|
2022-09-22 04:02:24,540 epoch 64 - iter 40/209 - loss 0.00678591 - samples/sec: 135.34 - lr: 0.000195 |
|
2022-09-22 04:02:29,510 epoch 64 - iter 60/209 - loss 0.00613092 - samples/sec: 128.91 - lr: 0.000195 |
|
2022-09-22 04:02:33,494 epoch 64 - iter 80/209 - loss 0.00634589 - samples/sec: 160.87 - lr: 0.000195 |
|
2022-09-22 04:02:37,394 epoch 64 - iter 100/209 - loss 0.00577269 - samples/sec: 164.25 - lr: 0.000195 |
|
2022-09-22 04:02:42,312 epoch 64 - iter 120/209 - loss 0.00566276 - samples/sec: 130.25 - lr: 0.000195 |
|
2022-09-22 04:02:46,941 epoch 64 - iter 140/209 - loss 0.00593892 - samples/sec: 138.39 - lr: 0.000195 |
|
2022-09-22 04:02:51,130 epoch 64 - iter 160/209 - loss 0.00567450 - samples/sec: 152.97 - lr: 0.000195 |
|
2022-09-22 04:02:55,177 epoch 64 - iter 180/209 - loss 0.00563552 - samples/sec: 158.34 - lr: 0.000195 |
|
2022-09-22 04:02:59,248 epoch 64 - iter 200/209 - loss 0.00579475 - samples/sec: 157.39 - lr: 0.000195 |
|
2022-09-22 04:03:00,764 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 04:03:00,766 EPOCH 64 done: loss 0.0058 - lr 0.000195 |
|
2022-09-22 04:03:11,954 Evaluating as a multi-label problem: False |
|
2022-09-22 04:03:11,974 DEV : loss 0.04105839133262634 - f1-score (micro avg) 0.8951 |
|
2022-09-22 04:03:12,131 Epoch 64: reducing learning rate of group 0 to 9.7656e-05. |
|
2022-09-22 04:03:12,134 BAD EPOCHS (no improvement): 4 |
|
2022-09-22 04:03:12,136 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 04:03:12,138 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 04:03:12,140 learning rate too small - quitting training! |
|
2022-09-22 04:03:12,143 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 04:03:16,189 ---------------------------------------------------------------------------------------------------- |
|
2022-09-22 04:03:16,193 loading file resources/taggers/sota-ner-flair/best-model.pt |
|
2022-09-22 04:03:18,123 SequenceTagger predicts: Dictionary with 31 tags: O, S-PESSOA, B-PESSOA, E-PESSOA, I-PESSOA, S-FUNDAMENTO, B-FUNDAMENTO, E-FUNDAMENTO, I-FUNDAMENTO, S-ORGANIZACAO, B-ORGANIZACAO, E-ORGANIZACAO, I-ORGANIZACAO, S-DATA, B-DATA, E-DATA, I-DATA, S-LOCAL, B-LOCAL, E-LOCAL, I-LOCAL, S-PRODUTODELEI, B-PRODUTODELEI, E-PRODUTODELEI, I-PRODUTODELEI, S-EVENTO, B-EVENTO, E-EVENTO, I-EVENTO, <START>, <STOP> |
|
2022-09-22 04:03:41,873 Evaluating as a multi-label problem: False |
|
2022-09-22 04:03:41,896 0.8952 0.8982 0.8967 0.8201 |
|
2022-09-22 04:03:41,898 |
|
Results: |
|
- F-score (micro) 0.8967 |
|
- F-score (macro) 0.8686 |
|
- Accuracy 0.8201 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
FUNDAMENTO 0.9421 0.9194 0.9306 124 |
|
PESSOA 0.9492 0.9412 0.9451 119 |
|
LOCAL 0.8113 0.8515 0.8309 101 |
|
DATA 0.9600 0.9796 0.9697 98 |
|
ORGANIZACAO 0.8367 0.8723 0.8542 94 |
|
PRODUTODELEI 0.8235 0.7778 0.8000 54 |
|
EVENTO 0.8571 0.6667 0.7500 9 |
|
|
|
micro avg 0.8952 0.8982 0.8967 599 |
|
macro avg 0.8829 0.8583 0.8686 599 |
|
weighted avg 0.8959 0.8982 0.8966 599 |
|
|
|
2022-09-22 04:03:41,899 ---------------------------------------------------------------------------------------------------- |
|
|