CaphAlderamin commited on
Commit
7205109
1 Parent(s): d181551

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 253.48 +/- 20.49
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78e2236c6320>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78e2236c63b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78e2236c6440>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78e2236c64d0>", "_build": "<function ActorCriticPolicy._build at 0x78e2236c6560>", "forward": "<function ActorCriticPolicy.forward at 0x78e2236c65f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78e2236c6680>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78e2236c6710>", "_predict": "<function ActorCriticPolicy._predict at 0x78e2236c67a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78e2236c6830>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78e2236c68c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78e2236c6950>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78e223662440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1708341187561881903, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK0IYT5AEJ8+d5WOvlOPYr5JLly9wpIAvQAAAAAAAAAAZj4pOxxFoT/CPwC99kaivkvaMDy/2p+8AAAAAAAAAAAz84Y8FIy3unO4pDoR9G00QAEFub7Uu7kAAIA/AACAP+ZloL2ooKG873CKPAfDMT1mUya8LpamvAAAgD8AAIA/ZtYGO+zxzblQ+oE7sfEzOO2uaLvSnZC4AACAPwAAgD/Nf0u9FMKHumxcm7avz4WxI3ICu5aBtzUAAIA/AACAPzONJL24zvW5LXytu3a3RrWFrYA731K9NAAAgD8AAIA/g1DDvqtKRz8v2g6+GUWRvjenk74eZgs+AAAAAAAAAACAPh494caEutXs1Tmbdwg26iI3O1CnAzUAAIA/AACAPxokDr2PRma6b6nCOk+etzVx78U4xbTkuQAAgD8AAIA/M5OrvBSmi7qTP8u6IuiztVVKI7tjS+w5AACAPwAAgD+TqZM++94BP+LZRr50r5W+kKGAPeqAS7wAAAAAAAAAALOagL2uHaW6/a7eOqJznjUPPFQ6DQIAugAAgD8AAIA/PTJNvkztjD+alYS+fzPrvlpoe743/Yq9AAAAAAAAAACzqgG9wwkIulcZHrucb8k38x6Qu0YIxTkAAIA/AACAPwDBLL7DaFe8aptUu+Flwbnj68s9dvGUOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUGhtUGVzKMAWyUTegDjAF0lEdAk4jicG1QZXV9lChoBkdAYPPvrGBFu2gHTegDaAhHQJOSZb7j1f51fZQoaAZHQGWSPn8sMApoB03oA2gIR0CTkq2aDwpfdX2UKGgGR0BlNcbiqABlaAdN6ANoCEdAk5ncabWmQHV9lChoBkdAYuS704BFNWgHTegDaAhHQJObspz90ih1fZQoaAZHQGSNu5z5oGpoB03oA2gIR0CTnyeVcD8tdX2UKGgGR0BjeHgFX7tRaAdN6ANoCEdAk6DfBWPtD3V9lChoBkdAZFMygwoLHGgHTegDaAhHQJOkFky1uzh1fZQoaAZHQF+hZnL7oB9oB03oA2gIR0CTpRtTUAktdX2UKGgGR0BnI09fTkQxaAdN6ANoCEdAk6WrADaGpXV9lChoBkdAZtwFxGUfP2gHTegDaAhHQJOnNJZntfJ1fZQoaAZHQGCurIYFaB9oB03oA2gIR0CTqISFGoaUdX2UKGgGR0Bkp0bedkJ8aAdN6ANoCEdAk818fA9FF3V9lChoBkdAZAd8O09hZ2gHTegDaAhHQJPRzeP7vXt1fZQoaAZHQGZ2swco6S1oB03oA2gIR0CT0gSamXPadX2UKGgGR0BkS9VxS5y3aAdN6ANoCEdAk9ObJnxri3V9lChoBkdAZTOxpL26CmgHTegDaAhHQJPTtWU8mrt1fZQoaAZHQFNRmDDjzZpoB00KAWgIR0CT26H5JsfrdX2UKGgGR0BlwP3i704BaAdN6ANoCEdAk9xSwGGEf3V9lChoBkdAYMDBsyi22GgHTegDaAhHQJPckVi4J/p1fZQoaAZHQGTqeevpyIZoB03oA2gIR0CT5OdIoVmBdX2UKGgGR0BhXvkLhJiBaAdN6ANoCEdAk+b7ZOBUaXV9lChoBkdAZpa8Md92HWgHTegDaAhHQJPqIAmzByl1fZQoaAZHQGT5o4VARkFoB03oA2gIR0CT68R0lqrSdX2UKGgGR0Bk1wMBp5/taAdN6ANoCEdAk+70xqO94HV9lChoBkdAZCWbayrxRWgHTegDaAhHQJPwIvAXVLB1fZQoaAZHQGHh0j9n9NxoB03oA2gIR0CT8MVWS2YwdX2UKGgGR0Bmjk4LkS26aAdN6ANoCEdAk/J/q5byH3V9lChoBkdAXi23KB/ZumgHTegDaAhHQJPz8J+lTFV1fZQoaAZHQEVTYlpoK2NoB0vcaAhHQJP2HzqbBoF1fZQoaAZHQGFuGYa5wwVoB03oA2gIR0CUH+rEcbR4dX2UKGgGR0BfGplFtsN2aAdN6ANoCEdAlCA1a4c3l3V9lChoBkdAY5N2zOX3QGgHTegDaAhHQJQiKbb1yvN1fZQoaAZHQGJS/ra/RE5oB03oA2gIR0CUIkaAnUlSdX2UKGgGR0BipIBFNL13aAdN6ANoCEdAlCs0DEFW4nV9lChoBkdAZQ45lOGj9GgHTegDaAhHQJQr5Mtbs4V1fZQoaAZHQGL0I/iYLLJoB03oA2gIR0CULCiDujREdX2UKGgGR0BPeziS7oStaAdL2WgIR0CULGmdiDujdX2UKGgGR0Bllu/QBxPwaAdN6ANoCEdAlDJHMpw0f3V9lChoBkdAX2fuuzQeFWgHTegDaAhHQJQzxwdbPhR1fZQoaAZHQGYKhy8zyjJoB03oA2gIR0CUOEUW2w3YdX2UKGgGR0Bkl+NaQmu1aAdN6ANoCEdAlDs1QyhzvXV9lChoBkdAZXLzRx95QmgHTegDaAhHQJQ8KiudPLx1fZQoaAZHQGE8Ng0CRwJoB03oA2gIR0CUPLp3os7NdX2UKGgGR0Bms3H93r2QaAdN6ANoCEdAlD5a4tpVTHV9lChoBkdAZkvm8ujASGgHTegDaAhHQJRAEO9WZJF1fZQoaAZHQGN5gRChN/RoB03oA2gIR0CUQtZ+hGpddX2UKGgGR0Ay7lY2bXpXaAdL9mgIR0CURpfaYeDGdX2UKGgGR0BH8LQw9JSSaAdL/GgIR0CUW9LP2PDHdX2UKGgGR0BlU8j/uLJkaAdN6ANoCEdAlGnj/EOy3XV9lChoBkdAYm2xSpBHC2gHTegDaAhHQJRr1uTA31l1fZQoaAZHQGR9O5avA45oB03oA2gIR0CUa/aLGaQWdX2UKGgGR0BnFdjAi3XqaAdN6ANoCEdAlHhso6S1V3V9lChoBkdAYsQdxQzk62gHTegDaAhHQJR5Pxpcoph1fZQoaAZHQGOdTmnwXqJoB03oA2gIR0CUeYc94eLfdX2UKGgGR0Blwo+KTB69aAdN6ANoCEdAlHnNUGVzIXV9lChoBkdAXmVDOTq0MWgHTegDaAhHQJR/9Pbfxc51fZQoaAZHQGWyHBDXvphoB03oA2gIR0CUgYbCaZx8dX2UKGgGR0BF3850bLlnaAdL5WgIR0CUhVE+PikwdX2UKGgGR0BhImirT6SDaAdN6ANoCEdAlIle5WilBXV9lChoBkdAYl84XGff42gHTegDaAhHQJSLIKjSG8F1fZQoaAZHQGEtVgQYk3VoB03oA2gIR0CUjSIcinpCdX2UKGgGR0Bi8HGp++dtaAdN6ANoCEdAlI65CF9KEnV9lChoBkdAZebeFcpsoGgHTegDaAhHQJSRG09hZyN1fZQoaAZHQGSUwTmGM4toB03oA2gIR0CUlB5KvmozdX2UKGgGR0BeAn09QoCuaAdN6ANoCEdAlJiIO6NEPXV9lChoBkdASCi+N96Tn2gHS9toCEdAlKwgX2ugYnV9lChoBkdAZGaDtgKF7GgHTegDaAhHQJS4FqcmShd1fZQoaAZHQGUbsg2ZRbdoB03oA2gIR0CUueD+BH09dX2UKGgGR0Bh37UNKAavaAdN6ANoCEdAlLn9cbBGhHV9lChoBkdAYSR1SwW30GgHTegDaAhHQJTDRVGTcIt1fZQoaAZHQGOsSntOVPhoB03oA2gIR0CUxD/8EV32dX2UKGgGR0BhfLrC3w1BaAdN6ANoCEdAlMSEeIVM23V9lChoBkdAY/GlAu7HyWgHTegDaAhHQJTK3Prv9cd1fZQoaAZHQGXaumixmkFoB03oA2gIR0CUzJX7tRekdX2UKGgGR0Bk/8A7xNItaAdN6ANoCEdAlNFbLMcIaHV9lChoBkdAZEdZX+2mYWgHTegDaAhHQJTXAL7XQMR1fZQoaAZHQGDtcfvF3pxoB03oA2gIR0CU2MULUkOadX2UKGgGR0Bhy6zJIUaiaAdN6ANoCEdAlNxcEFGG23V9lChoBkdAZGacU/OdG2gHTegDaAhHQJTe4RIz3yt1fZQoaAZHQGEuGA08/2VoB03oA2gIR0CU4hB2wFC+dX2UKGgGR0Blb9LDhtLtaAdN6ANoCEdAlOa+BYmsvXV9lChoBkdAZ6WtkFwDNmgHTegDaAhHQJTnVqFh5Pd1fZQoaAZHQGFiVFYuCf9oB03oA2gIR0CVB3eTFERbdX2UKGgGR0BjFGCZnctYaAdN6ANoCEdAlQlIr8R+SnV9lChoBkdAZd+jnmq5smgHTegDaAhHQJUJZgjQiRp1fZQoaAZHQGLlizsyBTZoB03oA2gIR0CVEngYgq3FdX2UKGgGR0BjY3V/c32maAdN6ANoCEdAlRN0+xGDtnV9lChoBkdAYP/655JK8WgHTegDaAhHQJUTxO/L1VZ1fZQoaAZHQGMKE7fYSQJoB03oA2gIR0CVGjSEUTL4dX2UKGgGR0BjiztkWhysaAdN6ANoCEdAlRvjeCTUzHV9lChoBkdAYhtloUSIxmgHTegDaAhHQJUfyCSRr8B1fZQoaAZHQGMci1Z1V5toB03oA2gIR0CVI841xbSrdX2UKGgGR0BieQGbCrLhaAdN6ANoCEdAlSWRMnJDE3V9lChoBkdAZJDQXQ+lj2gHTegDaAhHQJUpTv+fh/B1fZQoaAZHQGRE5OrQw9JoB03oA2gIR0CVK9D6WPcSdX2UKGgGR0Bg9pgNPP9laAdN6ANoCEdAlS80ug6EJ3V9lChoBkdAMjvHPu5SWWgHTQMBaAhHQJU0oVLzwtt1fZQoaAZHQGJ3BH09QoFoB03oA2gIR0CVNaF7D2rXdX2UKGgGR0Bhw02vStvGaAdN6ANoCEdAlTZu1KGtZHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc3e801f55272d2668261e71c1fb706590a7710352042703ee64cf4bdbd5dcd7
3
+ size 148080
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x78e2236c6320>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78e2236c63b0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78e2236c6440>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78e2236c64d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x78e2236c6560>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x78e2236c65f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x78e2236c6680>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78e2236c6710>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x78e2236c67a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78e2236c6830>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78e2236c68c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x78e2236c6950>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x78e223662440>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1708341187561881903,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK0IYT5AEJ8+d5WOvlOPYr5JLly9wpIAvQAAAAAAAAAAZj4pOxxFoT/CPwC99kaivkvaMDy/2p+8AAAAAAAAAAAz84Y8FIy3unO4pDoR9G00QAEFub7Uu7kAAIA/AACAP+ZloL2ooKG873CKPAfDMT1mUya8LpamvAAAgD8AAIA/ZtYGO+zxzblQ+oE7sfEzOO2uaLvSnZC4AACAPwAAgD/Nf0u9FMKHumxcm7avz4WxI3ICu5aBtzUAAIA/AACAPzONJL24zvW5LXytu3a3RrWFrYA731K9NAAAgD8AAIA/g1DDvqtKRz8v2g6+GUWRvjenk74eZgs+AAAAAAAAAACAPh494caEutXs1Tmbdwg26iI3O1CnAzUAAIA/AACAPxokDr2PRma6b6nCOk+etzVx78U4xbTkuQAAgD8AAIA/M5OrvBSmi7qTP8u6IuiztVVKI7tjS+w5AACAPwAAgD+TqZM++94BP+LZRr50r5W+kKGAPeqAS7wAAAAAAAAAALOagL2uHaW6/a7eOqJznjUPPFQ6DQIAugAAgD8AAIA/PTJNvkztjD+alYS+fzPrvlpoe743/Yq9AAAAAAAAAACzqgG9wwkIulcZHrucb8k38x6Qu0YIxTkAAIA/AACAPwDBLL7DaFe8aptUu+Flwbnj68s9dvGUOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGUGhtUGVzKMAWyUTegDjAF0lEdAk4jicG1QZXV9lChoBkdAYPPvrGBFu2gHTegDaAhHQJOSZb7j1f51fZQoaAZHQGWSPn8sMApoB03oA2gIR0CTkq2aDwpfdX2UKGgGR0BlNcbiqABlaAdN6ANoCEdAk5ncabWmQHV9lChoBkdAYuS704BFNWgHTegDaAhHQJObspz90ih1fZQoaAZHQGSNu5z5oGpoB03oA2gIR0CTnyeVcD8tdX2UKGgGR0BjeHgFX7tRaAdN6ANoCEdAk6DfBWPtD3V9lChoBkdAZFMygwoLHGgHTegDaAhHQJOkFky1uzh1fZQoaAZHQF+hZnL7oB9oB03oA2gIR0CTpRtTUAktdX2UKGgGR0BnI09fTkQxaAdN6ANoCEdAk6WrADaGpXV9lChoBkdAZtwFxGUfP2gHTegDaAhHQJOnNJZntfJ1fZQoaAZHQGCurIYFaB9oB03oA2gIR0CTqISFGoaUdX2UKGgGR0Bkp0bedkJ8aAdN6ANoCEdAk818fA9FF3V9lChoBkdAZAd8O09hZ2gHTegDaAhHQJPRzeP7vXt1fZQoaAZHQGZ2swco6S1oB03oA2gIR0CT0gSamXPadX2UKGgGR0BkS9VxS5y3aAdN6ANoCEdAk9ObJnxri3V9lChoBkdAZTOxpL26CmgHTegDaAhHQJPTtWU8mrt1fZQoaAZHQFNRmDDjzZpoB00KAWgIR0CT26H5JsfrdX2UKGgGR0BlwP3i704BaAdN6ANoCEdAk9xSwGGEf3V9lChoBkdAYMDBsyi22GgHTegDaAhHQJPckVi4J/p1fZQoaAZHQGTqeevpyIZoB03oA2gIR0CT5OdIoVmBdX2UKGgGR0BhXvkLhJiBaAdN6ANoCEdAk+b7ZOBUaXV9lChoBkdAZpa8Md92HWgHTegDaAhHQJPqIAmzByl1fZQoaAZHQGT5o4VARkFoB03oA2gIR0CT68R0lqrSdX2UKGgGR0Bk1wMBp5/taAdN6ANoCEdAk+70xqO94HV9lChoBkdAZCWbayrxRWgHTegDaAhHQJPwIvAXVLB1fZQoaAZHQGHh0j9n9NxoB03oA2gIR0CT8MVWS2YwdX2UKGgGR0Bmjk4LkS26aAdN6ANoCEdAk/J/q5byH3V9lChoBkdAXi23KB/ZumgHTegDaAhHQJPz8J+lTFV1fZQoaAZHQEVTYlpoK2NoB0vcaAhHQJP2HzqbBoF1fZQoaAZHQGFuGYa5wwVoB03oA2gIR0CUH+rEcbR4dX2UKGgGR0BfGplFtsN2aAdN6ANoCEdAlCA1a4c3l3V9lChoBkdAY5N2zOX3QGgHTegDaAhHQJQiKbb1yvN1fZQoaAZHQGJS/ra/RE5oB03oA2gIR0CUIkaAnUlSdX2UKGgGR0BipIBFNL13aAdN6ANoCEdAlCs0DEFW4nV9lChoBkdAZQ45lOGj9GgHTegDaAhHQJQr5Mtbs4V1fZQoaAZHQGL0I/iYLLJoB03oA2gIR0CULCiDujREdX2UKGgGR0BPeziS7oStaAdL2WgIR0CULGmdiDujdX2UKGgGR0Bllu/QBxPwaAdN6ANoCEdAlDJHMpw0f3V9lChoBkdAX2fuuzQeFWgHTegDaAhHQJQzxwdbPhR1fZQoaAZHQGYKhy8zyjJoB03oA2gIR0CUOEUW2w3YdX2UKGgGR0Bkl+NaQmu1aAdN6ANoCEdAlDs1QyhzvXV9lChoBkdAZXLzRx95QmgHTegDaAhHQJQ8KiudPLx1fZQoaAZHQGE8Ng0CRwJoB03oA2gIR0CUPLp3os7NdX2UKGgGR0Bms3H93r2QaAdN6ANoCEdAlD5a4tpVTHV9lChoBkdAZkvm8ujASGgHTegDaAhHQJRAEO9WZJF1fZQoaAZHQGN5gRChN/RoB03oA2gIR0CUQtZ+hGpddX2UKGgGR0Ay7lY2bXpXaAdL9mgIR0CURpfaYeDGdX2UKGgGR0BH8LQw9JSSaAdL/GgIR0CUW9LP2PDHdX2UKGgGR0BlU8j/uLJkaAdN6ANoCEdAlGnj/EOy3XV9lChoBkdAYm2xSpBHC2gHTegDaAhHQJRr1uTA31l1fZQoaAZHQGR9O5avA45oB03oA2gIR0CUa/aLGaQWdX2UKGgGR0BnFdjAi3XqaAdN6ANoCEdAlHhso6S1V3V9lChoBkdAYsQdxQzk62gHTegDaAhHQJR5Pxpcoph1fZQoaAZHQGOdTmnwXqJoB03oA2gIR0CUeYc94eLfdX2UKGgGR0Blwo+KTB69aAdN6ANoCEdAlHnNUGVzIXV9lChoBkdAXmVDOTq0MWgHTegDaAhHQJR/9Pbfxc51fZQoaAZHQGWyHBDXvphoB03oA2gIR0CUgYbCaZx8dX2UKGgGR0BF3850bLlnaAdL5WgIR0CUhVE+PikwdX2UKGgGR0BhImirT6SDaAdN6ANoCEdAlIle5WilBXV9lChoBkdAYl84XGff42gHTegDaAhHQJSLIKjSG8F1fZQoaAZHQGEtVgQYk3VoB03oA2gIR0CUjSIcinpCdX2UKGgGR0Bi8HGp++dtaAdN6ANoCEdAlI65CF9KEnV9lChoBkdAZebeFcpsoGgHTegDaAhHQJSRG09hZyN1fZQoaAZHQGSUwTmGM4toB03oA2gIR0CUlB5KvmozdX2UKGgGR0BeAn09QoCuaAdN6ANoCEdAlJiIO6NEPXV9lChoBkdASCi+N96Tn2gHS9toCEdAlKwgX2ugYnV9lChoBkdAZGaDtgKF7GgHTegDaAhHQJS4FqcmShd1fZQoaAZHQGUbsg2ZRbdoB03oA2gIR0CUueD+BH09dX2UKGgGR0Bh37UNKAavaAdN6ANoCEdAlLn9cbBGhHV9lChoBkdAYSR1SwW30GgHTegDaAhHQJTDRVGTcIt1fZQoaAZHQGOsSntOVPhoB03oA2gIR0CUxD/8EV32dX2UKGgGR0BhfLrC3w1BaAdN6ANoCEdAlMSEeIVM23V9lChoBkdAY/GlAu7HyWgHTegDaAhHQJTK3Prv9cd1fZQoaAZHQGXaumixmkFoB03oA2gIR0CUzJX7tRekdX2UKGgGR0Bk/8A7xNItaAdN6ANoCEdAlNFbLMcIaHV9lChoBkdAZEdZX+2mYWgHTegDaAhHQJTXAL7XQMR1fZQoaAZHQGDtcfvF3pxoB03oA2gIR0CU2MULUkOadX2UKGgGR0Bhy6zJIUaiaAdN6ANoCEdAlNxcEFGG23V9lChoBkdAZGacU/OdG2gHTegDaAhHQJTe4RIz3yt1fZQoaAZHQGEuGA08/2VoB03oA2gIR0CU4hB2wFC+dX2UKGgGR0Blb9LDhtLtaAdN6ANoCEdAlOa+BYmsvXV9lChoBkdAZ6WtkFwDNmgHTegDaAhHQJTnVqFh5Pd1fZQoaAZHQGFiVFYuCf9oB03oA2gIR0CVB3eTFERbdX2UKGgGR0BjFGCZnctYaAdN6ANoCEdAlQlIr8R+SnV9lChoBkdAZd+jnmq5smgHTegDaAhHQJUJZgjQiRp1fZQoaAZHQGLlizsyBTZoB03oA2gIR0CVEngYgq3FdX2UKGgGR0BjY3V/c32maAdN6ANoCEdAlRN0+xGDtnV9lChoBkdAYP/655JK8WgHTegDaAhHQJUTxO/L1VZ1fZQoaAZHQGMKE7fYSQJoB03oA2gIR0CVGjSEUTL4dX2UKGgGR0BjiztkWhysaAdN6ANoCEdAlRvjeCTUzHV9lChoBkdAYhtloUSIxmgHTegDaAhHQJUfyCSRr8B1fZQoaAZHQGMci1Z1V5toB03oA2gIR0CVI841xbSrdX2UKGgGR0BieQGbCrLhaAdN6ANoCEdAlSWRMnJDE3V9lChoBkdAZJDQXQ+lj2gHTegDaAhHQJUpTv+fh/B1fZQoaAZHQGRE5OrQw9JoB03oA2gIR0CVK9D6WPcSdX2UKGgGR0Bg9pgNPP9laAdN6ANoCEdAlS80ug6EJ3V9lChoBkdAMjvHPu5SWWgHTQMBaAhHQJU0oVLzwtt1fZQoaAZHQGJ3BH09QoFoB03oA2gIR0CVNaF7D2rXdX2UKGgGR0Bhw02vStvGaAdN6ANoCEdAlTZu1KGtZHVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de8d5aa58c71df4406ff9057c6dce37b926f234e9e7c5b1727ced54316c6c650
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b6cf2b504927ec4068d4eb7b3d0f6db630169f78a19530d789978a674a78bc1
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (198 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 253.48144159999998, "std_reward": 20.48529248987239, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-19T11:40:21.045569"}