CXL295 commited on
Commit
edf3a1e
1 Parent(s): e4edb29

Upload model files

Browse files
Files changed (1) hide show
  1. RTO/tldr-1step_50/README.md +43 -0
RTO/tldr-1step_50/README.md ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - trl
5
+ - ppo
6
+ - transformers
7
+ - reinforcement-learning
8
+ ---
9
+
10
+ # TRL Model
11
+
12
+ This is a [TRL language model](https://github.com/huggingface/trl) that has been fine-tuned with reinforcement learning to
13
+ guide the model outputs according to a value, function, or human feedback. The model can be used for text generation.
14
+
15
+ ## Usage
16
+
17
+ To use this model for inference, first install the TRL library:
18
+
19
+ ```bash
20
+ python -m pip install trl
21
+ ```
22
+
23
+ You can then generate text as follows:
24
+
25
+ ```python
26
+ from transformers import pipeline
27
+
28
+ generator = pipeline("text-generation", model="weqweasdas/models/RTO/tldr-1step_50")
29
+ outputs = generator("Hello, my llama is cute")
30
+ ```
31
+
32
+ If you want to use the model for training or to obtain the outputs from the value head, load the model as follows:
33
+
34
+ ```python
35
+ from transformers import AutoTokenizer
36
+ from trl import AutoModelForCausalLMWithValueHead
37
+
38
+ tokenizer = AutoTokenizer.from_pretrained("weqweasdas/models/RTO/tldr-1step_50")
39
+ model = AutoModelForCausalLMWithValueHead.from_pretrained("weqweasdas/models/RTO/tldr-1step_50")
40
+
41
+ inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
42
+ outputs = model(**inputs, labels=inputs["input_ids"])
43
+ ```