CWhy commited on
Commit
f19c33e
1 Parent(s): 4a1d4a3
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 287.88 +/- 22.25
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7feb6ba08ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feb6ba08f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feb6ba0c040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feb6ba0c0d0>", "_build": "<function ActorCriticPolicy._build at 0x7feb6ba0c160>", "forward": "<function ActorCriticPolicy.forward at 0x7feb6ba0c1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feb6ba0c280>", "_predict": "<function ActorCriticPolicy._predict at 0x7feb6ba0c310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feb6ba0c3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feb6ba0c430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7feb6ba0c4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7feb6ba091e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVZQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLQH2UKIwCcGmUXZRLIGGMAnZmlF2USyBhdWV1Lg==", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [64, {"pi": [32], "vf": [32]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 10010624, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651688807.408951, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABD9jw45Ja78AULvM1PhDz7bck8hYpivQAAgD8AAIA/mhlLusb4rz+l94W8sAAJvxCllzsApHI9AAAAAAAAAADmmKi+Cdx3P96Pf74JxD6/fZQWvy9KED4AAAAAAAAAAGYtwLwfBY+51p02uJq95bIqHhG8O+RcNwAAgD8AAIA/Ot6Evm4ccT9Yyjq+Kd08v9vH7L4Gd1M9AAAAAAAAAAAaTnE99lxwuqCm/bMXyIiw6VGluii4qjMAAIA/AACAP832eD0RF6g/piQAP1lXB7+JBhY9xtuFPgAAAAAAAAAArY0NvsSamT0vzQc/fClUvlKSZD1COq0+AAAAAAAAAAAAV7Y8hcuIuXcvA74mKcS8FJJ1PdH1ID8AAAAAAACAP5pcez0+ydA9UvBMvjqc5b7Q8R++GMtTvgAAAAAAAAAAc3qjvWvqWj/qATK+K0FivzdTNL7xKbq9AAAAAAAAAAAAdvu8uKbOPfsN5Tte1ty+WTBhvZZRirwAAAAAAAAAACAKCb5XLzM/jX6AviZ8Vb+neaW+G18WvgAAAAAAAAAAwEKGPaJDkD5hzBW+GkESv5Q7azz7qne+AAAAAAAAAADmYru92J2JP+3pzL4+wnK/pZwrvnZqtL4AAAAAAAAAAOZdI77CADA+pinjPmlKnb7DaF8+LrMWPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUkgyq3evcUCUhpRSlIwBbJRLxIwBdJRHQK+Y4yHmA9V1fZQoaAZoCWgPQwhLWBtjZwlzQJSGlFKUaBVL2mgWR0CvmOQ5eZ5SdX2UKGgGaAloD0MIcegtHh7IcECUhpRSlGgVS5hoFkdAr5j5RAKOUHV9lChoBmgJaA9DCFH0wMfgFXNAlIaUUpRoFUu6aBZHQK+Y+Lw4KhN1fZQoaAZoCWgPQwgLR5BKMZZzQJSGlFKUaBVLyWgWR0CvmQtrKvFFdX2UKGgGaAloD0MIwJfCg2ZacUCUhpRSlGgVS8hoFkdAr5kfX7Lt/nV9lChoBmgJaA9DCNcS8kGPl3NAlIaUUpRoFUvIaBZHQK+ZLLteD4B1fZQoaAZoCWgPQwi2SUVjbQ5wQJSGlFKUaBVLl2gWR0CvmXC7CiyqdX2UKGgGaAloD0MI4nK8AtFEcUCUhpRSlGgVS7doFkdAr5l5UT+NtXV9lChoBmgJaA9DCHlzuFY7SHNAlIaUUpRoFUu4aBZHQK+Zfs5XEIh1fZQoaAZoCWgPQwgYXd4cbj5wQJSGlFKUaBVLpGgWR0CvmX5OafBfdX2UKGgGaAloD0MINdO9Tmo4ckCUhpRSlGgVS49oFkdAr5tuaYu01XV9lChoBmgJaA9DCL9hokEKh3JAlIaUUpRoFUuJaBZHQK+bn24d6s11fZQoaAZoCWgPQwjBHD1+b/txQJSGlFKUaBVLl2gWR0Cvm6IwVTJhdX2UKGgGaAloD0MIhiFy+jqhcECUhpRSlGgVS7xoFkdAr5umXkYGdXV9lChoBmgJaA9DCKvQQCybx3BAlIaUUpRoFUuTaBZHQK+btDNQj2V1fZQoaAZoCWgPQwhvvDsyFvpwQJSGlFKUaBVLq2gWR0Cvm8mbsniOdX2UKGgGaAloD0MI/PuMCwdWc0CUhpRSlGgVS9JoFkdAr5vWyX2M9HV9lChoBmgJaA9DCIf9nlgnFHNAlIaUUpRoFUvLaBZHQK+b4wCbMHN1fZQoaAZoCWgPQwgsgv+tZIlwQJSGlFKUaBVL12gWR0Cvm+Y3WFvidX2UKGgGaAloD0MIh8Woay3zcUCUhpRSlGgVS7poFkdAr5wNm+TNdXV9lChoBmgJaA9DCPQVpBlLB3NAlIaUUpRoFUuraBZHQK+cF5E+gUV1fZQoaAZoCWgPQwj6X65FCxp0QJSGlFKUaBVLv2gWR0CvnCzJp35fdX2UKGgGaAloD0MINEjBU4hlcECUhpRSlGgVS55oFkdAr5xVzMibD3V9lChoBmgJaA9DCFT9SucD8HJAlIaUUpRoFUvDaBZHQK+coVrylN11fZQoaAZoCWgPQwjoZ+p1S0dzQJSGlFKUaBVLzWgWR0CvnLGLk0aZdX2UKGgGaAloD0MIpkboZyosdECUhpRSlGgVS+FoFkdAr5zRvo/zKHV9lChoBmgJaA9DCBzsTQzJ23JAlIaUUpRoFUvKaBZHQK+c8clPact1fZQoaAZoCWgPQwiIhVrTfHJyQJSGlFKUaBVLqmgWR0CvnRD1f3N+dX2UKGgGaAloD0MIE0VI3U7vcUCUhpRSlGgVS8JoFkdAr50VVFQVK3V9lChoBmgJaA9DCL3Fw3vOknFAlIaUUpRoFUuhaBZHQK+dGhhYvFp1fZQoaAZoCWgPQwia7J+nwQpzQJSGlFKUaBVL0mgWR0CvnUgcLjPwdX2UKGgGaAloD0MIOLwgIjV2ckCUhpRSlGgVS9xoFkdAr51OhAWznnV9lChoBmgJaA9DCAvPS8XG6nFAlIaUUpRoFUvCaBZHQK+dTjFQ2uR1fZQoaAZoCWgPQwieeTnsfiJxQJSGlFKUaBVLoGgWR0CvnVMvh60IdX2UKGgGaAloD0MItoXnpWJMckCUhpRSlGgVS+RoFkdAr51ZSP2f03V9lChoBmgJaA9DCNYe9kIBAHNAlIaUUpRoFUuyaBZHQK+daN2ki2V1fZQoaAZoCWgPQwh2UfTAxwdxQJSGlFKUaBVLyWgWR0CvnWiwbEP2dX2UKGgGaAloD0MIJSAm4cKNckCUhpRSlGgVS9FoFkdAr527WVeKK3V9lChoBmgJaA9DCIXP1sFBl3NAlIaUUpRoFUuhaBZHQK+d0SGJvYR1fZQoaAZoCWgPQwhe1y/YjTRzQJSGlFKUaBVL2mgWR0CvnfiyQgcMdX2UKGgGaAloD0MI7zob8o9XckCUhpRSlGgVS8JoFkdAr54gj0L+gnV9lChoBmgJaA9DCLnGZ7I/VXFAlIaUUpRoFUufaBZHQK+eONYr8SB1fZQoaAZoCWgPQwhiS4+mOg5wQJSGlFKUaBVLnmgWR0Cvnjstbs4UdX2UKGgGaAloD0MIMxgjEgWJckCUhpRSlGgVS8doFkdAr55HdoFmnXV9lChoBmgJaA9DCMhdhCkKOnNAlIaUUpRoFUu3aBZHQK+ebdCVryl1fZQoaAZoCWgPQwik4v+OqJdxQJSGlFKUaBVLkGgWR0CvnnN4iX6ZdX2UKGgGaAloD0MISPq0ij6jckCUhpRSlGgVS9FoFkdAr555DgIhQnV9lChoBmgJaA9DCJNX5xjQ6XJAlIaUUpRoFUuwaBZHQK+enxjJ+2F1fZQoaAZoCWgPQwg8+IkD6BZzQJSGlFKUaBVLt2gWR0CvnqB/Aj6fdX2UKGgGaAloD0MIO6qaIKrsc0CUhpRSlGgVS8NoFkdAr56wm1IAfnV9lChoBmgJaA9DCCvB4nBma3JAlIaUUpRoFUu/aBZHQK+esxQizLR1fZQoaAZoCWgPQwg+dhco6XRzQJSGlFKUaBVLyWgWR0Cvnr9vS+g2dX2UKGgGaAloD0MIObNdoc/XcECUhpRSlGgVS51oFkdAr57ybhFVk3V9lChoBmgJaA9DCDBMpgqGS3RAlIaUUpRoFUvdaBZHQK+e+3eenQ91fZQoaAZoCWgPQwgDtRg8TKdxQJSGlFKUaBVLumgWR0CvnxL433pOdX2UKGgGaAloD0MI7zob8s+FcECUhpRSlGgVS65oFkdAr59efdyksXV9lChoBmgJaA9DCALYgAjxnXJAlIaUUpRoFUuraBZHQK+fdKSPluF1fZQoaAZoCWgPQwi2Z5YE6IVzQJSGlFKUaBVLz2gWR0Cvn3lC9h7WdX2UKGgGaAloD0MI6nsNwbEIdECUhpRSlGgVS89oFkdAr5+5sbedkXV9lChoBmgJaA9DCAq/1M/bSnJAlIaUUpRoFUvSaBZHQK+fz6pHZsd1fZQoaAZoCWgPQwjB4nDmV3FxQJSGlFKUaBVLw2gWR0Cvn9ubiIcjdX2UKGgGaAloD0MIQPz89yC/c0CUhpRSlGgVS8BoFkdAr5/bWTX8O3V9lChoBmgJaA9DCDEjvD0I1XNAlIaUUpRoFUunaBZHQK+f+xi5NGp1fZQoaAZoCWgPQwjIYMWplhFzQJSGlFKUaBVLumgWR0Cvn/ypaRp2dX2UKGgGaAloD0MI2e4eoHsVc0CUhpRSlGgVS9ZoFkdAr6AJjriVB3V9lChoBmgJaA9DCCwQPSmT+HFAlIaUUpRoFUu9aBZHQK+gEmsvIwN1fZQoaAZoCWgPQwguqdpuQuNwQJSGlFKUaBVLn2gWR0CvoCogNgBtdX2UKGgGaAloD0MIj4r/O6L2c0CUhpRSlGgVS95oFkdAr6A5PykKu3V9lChoBmgJaA9DCBEebRxxP3RAlIaUUpRoFUvSaBZHQK+gOKXOW0J1fZQoaAZoCWgPQwih1jTvuNBxQJSGlFKUaBVLvmgWR0CvoHYpc5bRdX2UKGgGaAloD0MI71aW6CzGcECUhpRSlGgVS9RoFkdAr6B9k8Rtg3V9lChoBmgJaA9DCLX7VYBvHnJAlIaUUpRoFUu+aBZHQK+gvNzKcNJ1fZQoaAZoCWgPQwjRzf5AeeNyQJSGlFKUaBVLuWgWR0CvoMuTRplCdX2UKGgGaAloD0MIZDxKJfzJckCUhpRSlGgVS8doFkdAr6DfyPMjeXV9lChoBmgJaA9DCIU/w5t1vHFAlIaUUpRoFUuxaBZHQK+g9dUsFt91fZQoaAZoCWgPQwh5ymq63mVyQJSGlFKUaBVLi2gWR0CvoPumrKeTdX2UKGgGaAloD0MITIqPT8ipb0CUhpRSlGgVS5poFkdAr6EH40uUU3V9lChoBmgJaA9DCNrKS/5neXJAlIaUUpRoFUuwaBZHQK+hEOYplSV1fZQoaAZoCWgPQwiQ2O4eYGdyQJSGlFKUaBVLq2gWR0CvoSWsaKk3dX2UKGgGaAloD0MIIAvRITBTcUCUhpRSlGgVS9BoFkdAr6E9ZTyau3V9lChoBmgJaA9DCImyt5RzIXJAlIaUUpRoFUuwaBZHQK+hQ9ytFKF1fZQoaAZoCWgPQwjYDHBBNrFwQJSGlFKUaBVL2GgWR0CvoVUu14PgdX2UKGgGaAloD0MIJxO3CqLzcECUhpRSlGgVS65oFkdAr6FZDPWxyHV9lChoBmgJaA9DCJBnl289kXNAlIaUUpRoFUu1aBZHQK+hcmEXcg11fZQoaAZoCWgPQwgPfAxWXPhyQJSGlFKUaBVLvGgWR0CvoXyeI2wWdX2UKGgGaAloD0MImDWxwJdoc0CUhpRSlGgVS79oFkdAr6G+y7f513V9lChoBmgJaA9DCN+KxAQ1VXJAlIaUUpRoFUu/aBZHQK+hxjZteld1fZQoaAZoCWgPQwjZJ4BiZAhvQJSGlFKUaBVLpmgWR0CvodgDzRQadX2UKGgGaAloD0MI16axvRYjcUCUhpRSlGgVS6poFkdAr6HsQkHD8HV9lChoBmgJaA9DCNkh/mELf3FAlIaUUpRoFUuLaBZHQK+h8yE+Pil1fZQoaAZoCWgPQwjKFkm7kRhzQJSGlFKUaBVLr2gWR0CvogkDhcZ+dX2UKGgGaAloD0MIKgMHtPQIc0CUhpRSlGgVS6toFkdAr6IYISlFdHV9lChoBmgJaA9DCPc8f9ooz3JAlIaUUpRoFUuOaBZHQK+iNC/Glyl1fZQoaAZoCWgPQwgFb0ijArxxQJSGlFKUaBVLrmgWR0CvojgU+LWJdX2UKGgGaAloD0MIfshbrr7ScUCUhpRSlGgVS7JoFkdAr6JUVnEl3XV9lChoBmgJaA9DCAfuQJ2y7nBAlIaUUpRoFUvNaBZHQK+iWF0PpY91fZQoaAZoCWgPQwhzZrtCnwhxQJSGlFKUaBVLqGgWR0CvoltUn5SFdX2UKGgGaAloD0MIOfHVjqJzckCUhpRSlGgVS5RoFkdAr6J4CU5dW3V9lChoBmgJaA9DCOPBFrv9VnNAlIaUUpRoFUu1aBZHQK+ihooNNJx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ad68ed1dee78dcc8c28803b1575f4083626e08cd9bbc5516614e7661268a9c8
3
+ size 205526
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 287.8827628799282, "std_reward": 22.249546689871334, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T03:34:32.088955"}
thicc-ppo-LunarLander-rc.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c39b479b20e414aefa3b3be235ce95a8d2955d977f41cd3736a0652e7b9b5ea5
3
+ size 84137
thicc-ppo-LunarLander-rc/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
thicc-ppo-LunarLander-rc/data ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7feb6ba08ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feb6ba08f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feb6ba0c040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feb6ba0c0d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7feb6ba0c160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7feb6ba0c1f0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feb6ba0c280>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7feb6ba0c310>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feb6ba0c3a0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feb6ba0c430>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7feb6ba0c4c0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7feb6ba091e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVZQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLQH2UKIwCcGmUXZRLIGGMAnZmlF2USyBhdWV1Lg==",
25
+ "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
26
+ "net_arch": [
27
+ 64,
28
+ {
29
+ "pi": [
30
+ 32
31
+ ],
32
+ "vf": [
33
+ 32
34
+ ]
35
+ }
36
+ ]
37
+ },
38
+ "observation_space": {
39
+ ":type:": "<class 'gym.spaces.box.Box'>",
40
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
41
+ "dtype": "float32",
42
+ "_shape": [
43
+ 8
44
+ ],
45
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
46
+ "high": "[inf inf inf inf inf inf inf inf]",
47
+ "bounded_below": "[False False False False False False False False]",
48
+ "bounded_above": "[False False False False False False False False]",
49
+ "_np_random": null
50
+ },
51
+ "action_space": {
52
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
53
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
54
+ "n": 4,
55
+ "_shape": [],
56
+ "dtype": "int64",
57
+ "_np_random": null
58
+ },
59
+ "n_envs": 16,
60
+ "num_timesteps": 10010624,
61
+ "_total_timesteps": 10000000,
62
+ "_num_timesteps_at_start": 0,
63
+ "seed": null,
64
+ "action_noise": null,
65
+ "start_time": 1651688807.408951,
66
+ "learning_rate": 0.0003,
67
+ "tensorboard_log": null,
68
+ "lr_schedule": {
69
+ ":type:": "<class 'function'>",
70
+ ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
71
+ },
72
+ "_last_obs": {
73
+ ":type:": "<class 'numpy.ndarray'>",
74
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABD9jw45Ja78AULvM1PhDz7bck8hYpivQAAgD8AAIA/mhlLusb4rz+l94W8sAAJvxCllzsApHI9AAAAAAAAAADmmKi+Cdx3P96Pf74JxD6/fZQWvy9KED4AAAAAAAAAAGYtwLwfBY+51p02uJq95bIqHhG8O+RcNwAAgD8AAIA/Ot6Evm4ccT9Yyjq+Kd08v9vH7L4Gd1M9AAAAAAAAAAAaTnE99lxwuqCm/bMXyIiw6VGluii4qjMAAIA/AACAP832eD0RF6g/piQAP1lXB7+JBhY9xtuFPgAAAAAAAAAArY0NvsSamT0vzQc/fClUvlKSZD1COq0+AAAAAAAAAAAAV7Y8hcuIuXcvA74mKcS8FJJ1PdH1ID8AAAAAAACAP5pcez0+ydA9UvBMvjqc5b7Q8R++GMtTvgAAAAAAAAAAc3qjvWvqWj/qATK+K0FivzdTNL7xKbq9AAAAAAAAAAAAdvu8uKbOPfsN5Tte1ty+WTBhvZZRirwAAAAAAAAAACAKCb5XLzM/jX6AviZ8Vb+neaW+G18WvgAAAAAAAAAAwEKGPaJDkD5hzBW+GkESv5Q7azz7qne+AAAAAAAAAADmYru92J2JP+3pzL4+wnK/pZwrvnZqtL4AAAAAAAAAAOZdI77CADA+pinjPmlKnb7DaF8+LrMWPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
75
+ },
76
+ "_last_episode_starts": {
77
+ ":type:": "<class 'numpy.ndarray'>",
78
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
79
+ },
80
+ "_last_original_obs": null,
81
+ "_episode_num": 0,
82
+ "use_sde": false,
83
+ "sde_sample_freq": -1,
84
+ "_current_progress_remaining": -0.0010623999999999079,
85
+ "ep_info_buffer": {
86
+ ":type:": "<class 'collections.deque'>",
87
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUkgyq3evcUCUhpRSlIwBbJRLxIwBdJRHQK+Y4yHmA9V1fZQoaAZoCWgPQwhLWBtjZwlzQJSGlFKUaBVL2mgWR0CvmOQ5eZ5SdX2UKGgGaAloD0MIcegtHh7IcECUhpRSlGgVS5hoFkdAr5j5RAKOUHV9lChoBmgJaA9DCFH0wMfgFXNAlIaUUpRoFUu6aBZHQK+Y+Lw4KhN1fZQoaAZoCWgPQwgLR5BKMZZzQJSGlFKUaBVLyWgWR0CvmQtrKvFFdX2UKGgGaAloD0MIwJfCg2ZacUCUhpRSlGgVS8hoFkdAr5kfX7Lt/nV9lChoBmgJaA9DCNcS8kGPl3NAlIaUUpRoFUvIaBZHQK+ZLLteD4B1fZQoaAZoCWgPQwi2SUVjbQ5wQJSGlFKUaBVLl2gWR0CvmXC7CiyqdX2UKGgGaAloD0MI4nK8AtFEcUCUhpRSlGgVS7doFkdAr5l5UT+NtXV9lChoBmgJaA9DCHlzuFY7SHNAlIaUUpRoFUu4aBZHQK+Zfs5XEIh1fZQoaAZoCWgPQwgYXd4cbj5wQJSGlFKUaBVLpGgWR0CvmX5OafBfdX2UKGgGaAloD0MINdO9Tmo4ckCUhpRSlGgVS49oFkdAr5tuaYu01XV9lChoBmgJaA9DCL9hokEKh3JAlIaUUpRoFUuJaBZHQK+bn24d6s11fZQoaAZoCWgPQwjBHD1+b/txQJSGlFKUaBVLl2gWR0Cvm6IwVTJhdX2UKGgGaAloD0MIhiFy+jqhcECUhpRSlGgVS7xoFkdAr5umXkYGdXV9lChoBmgJaA9DCKvQQCybx3BAlIaUUpRoFUuTaBZHQK+btDNQj2V1fZQoaAZoCWgPQwhvvDsyFvpwQJSGlFKUaBVLq2gWR0Cvm8mbsniOdX2UKGgGaAloD0MI/PuMCwdWc0CUhpRSlGgVS9JoFkdAr5vWyX2M9HV9lChoBmgJaA9DCIf9nlgnFHNAlIaUUpRoFUvLaBZHQK+b4wCbMHN1fZQoaAZoCWgPQwgsgv+tZIlwQJSGlFKUaBVL12gWR0Cvm+Y3WFvidX2UKGgGaAloD0MIh8Woay3zcUCUhpRSlGgVS7poFkdAr5wNm+TNdXV9lChoBmgJaA9DCPQVpBlLB3NAlIaUUpRoFUuraBZHQK+cF5E+gUV1fZQoaAZoCWgPQwj6X65FCxp0QJSGlFKUaBVLv2gWR0CvnCzJp35fdX2UKGgGaAloD0MINEjBU4hlcECUhpRSlGgVS55oFkdAr5xVzMibD3V9lChoBmgJaA9DCFT9SucD8HJAlIaUUpRoFUvDaBZHQK+coVrylN11fZQoaAZoCWgPQwjoZ+p1S0dzQJSGlFKUaBVLzWgWR0CvnLGLk0aZdX2UKGgGaAloD0MIpkboZyosdECUhpRSlGgVS+FoFkdAr5zRvo/zKHV9lChoBmgJaA9DCBzsTQzJ23JAlIaUUpRoFUvKaBZHQK+c8clPact1fZQoaAZoCWgPQwiIhVrTfHJyQJSGlFKUaBVLqmgWR0CvnRD1f3N+dX2UKGgGaAloD0MIE0VI3U7vcUCUhpRSlGgVS8JoFkdAr50VVFQVK3V9lChoBmgJaA9DCL3Fw3vOknFAlIaUUpRoFUuhaBZHQK+dGhhYvFp1fZQoaAZoCWgPQwia7J+nwQpzQJSGlFKUaBVL0mgWR0CvnUgcLjPwdX2UKGgGaAloD0MIOLwgIjV2ckCUhpRSlGgVS9xoFkdAr51OhAWznnV9lChoBmgJaA9DCAvPS8XG6nFAlIaUUpRoFUvCaBZHQK+dTjFQ2uR1fZQoaAZoCWgPQwieeTnsfiJxQJSGlFKUaBVLoGgWR0CvnVMvh60IdX2UKGgGaAloD0MItoXnpWJMckCUhpRSlGgVS+RoFkdAr51ZSP2f03V9lChoBmgJaA9DCNYe9kIBAHNAlIaUUpRoFUuyaBZHQK+daN2ki2V1fZQoaAZoCWgPQwh2UfTAxwdxQJSGlFKUaBVLyWgWR0CvnWiwbEP2dX2UKGgGaAloD0MIJSAm4cKNckCUhpRSlGgVS9FoFkdAr527WVeKK3V9lChoBmgJaA9DCIXP1sFBl3NAlIaUUpRoFUuhaBZHQK+d0SGJvYR1fZQoaAZoCWgPQwhe1y/YjTRzQJSGlFKUaBVL2mgWR0CvnfiyQgcMdX2UKGgGaAloD0MI7zob8o9XckCUhpRSlGgVS8JoFkdAr54gj0L+gnV9lChoBmgJaA9DCLnGZ7I/VXFAlIaUUpRoFUufaBZHQK+eONYr8SB1fZQoaAZoCWgPQwhiS4+mOg5wQJSGlFKUaBVLnmgWR0Cvnjstbs4UdX2UKGgGaAloD0MIMxgjEgWJckCUhpRSlGgVS8doFkdAr55HdoFmnXV9lChoBmgJaA9DCMhdhCkKOnNAlIaUUpRoFUu3aBZHQK+ebdCVryl1fZQoaAZoCWgPQwik4v+OqJdxQJSGlFKUaBVLkGgWR0CvnnN4iX6ZdX2UKGgGaAloD0MISPq0ij6jckCUhpRSlGgVS9FoFkdAr555DgIhQnV9lChoBmgJaA9DCJNX5xjQ6XJAlIaUUpRoFUuwaBZHQK+enxjJ+2F1fZQoaAZoCWgPQwg8+IkD6BZzQJSGlFKUaBVLt2gWR0CvnqB/Aj6fdX2UKGgGaAloD0MIO6qaIKrsc0CUhpRSlGgVS8NoFkdAr56wm1IAfnV9lChoBmgJaA9DCCvB4nBma3JAlIaUUpRoFUu/aBZHQK+esxQizLR1fZQoaAZoCWgPQwg+dhco6XRzQJSGlFKUaBVLyWgWR0Cvnr9vS+g2dX2UKGgGaAloD0MIObNdoc/XcECUhpRSlGgVS51oFkdAr57ybhFVk3V9lChoBmgJaA9DCDBMpgqGS3RAlIaUUpRoFUvdaBZHQK+e+3eenQ91fZQoaAZoCWgPQwgDtRg8TKdxQJSGlFKUaBVLumgWR0CvnxL433pOdX2UKGgGaAloD0MI7zob8s+FcECUhpRSlGgVS65oFkdAr59efdyksXV9lChoBmgJaA9DCALYgAjxnXJAlIaUUpRoFUuraBZHQK+fdKSPluF1fZQoaAZoCWgPQwi2Z5YE6IVzQJSGlFKUaBVLz2gWR0Cvn3lC9h7WdX2UKGgGaAloD0MI6nsNwbEIdECUhpRSlGgVS89oFkdAr5+5sbedkXV9lChoBmgJaA9DCAq/1M/bSnJAlIaUUpRoFUvSaBZHQK+fz6pHZsd1fZQoaAZoCWgPQwjB4nDmV3FxQJSGlFKUaBVLw2gWR0Cvn9ubiIcjdX2UKGgGaAloD0MIQPz89yC/c0CUhpRSlGgVS8BoFkdAr5/bWTX8O3V9lChoBmgJaA9DCDEjvD0I1XNAlIaUUpRoFUunaBZHQK+f+xi5NGp1fZQoaAZoCWgPQwjIYMWplhFzQJSGlFKUaBVLumgWR0Cvn/ypaRp2dX2UKGgGaAloD0MI2e4eoHsVc0CUhpRSlGgVS9ZoFkdAr6AJjriVB3V9lChoBmgJaA9DCCwQPSmT+HFAlIaUUpRoFUu9aBZHQK+gEmsvIwN1fZQoaAZoCWgPQwguqdpuQuNwQJSGlFKUaBVLn2gWR0CvoCogNgBtdX2UKGgGaAloD0MIj4r/O6L2c0CUhpRSlGgVS95oFkdAr6A5PykKu3V9lChoBmgJaA9DCBEebRxxP3RAlIaUUpRoFUvSaBZHQK+gOKXOW0J1fZQoaAZoCWgPQwih1jTvuNBxQJSGlFKUaBVLvmgWR0CvoHYpc5bRdX2UKGgGaAloD0MI71aW6CzGcECUhpRSlGgVS9RoFkdAr6B9k8Rtg3V9lChoBmgJaA9DCLX7VYBvHnJAlIaUUpRoFUu+aBZHQK+gvNzKcNJ1fZQoaAZoCWgPQwjRzf5AeeNyQJSGlFKUaBVLuWgWR0CvoMuTRplCdX2UKGgGaAloD0MIZDxKJfzJckCUhpRSlGgVS8doFkdAr6DfyPMjeXV9lChoBmgJaA9DCIU/w5t1vHFAlIaUUpRoFUuxaBZHQK+g9dUsFt91fZQoaAZoCWgPQwh5ymq63mVyQJSGlFKUaBVLi2gWR0CvoPumrKeTdX2UKGgGaAloD0MITIqPT8ipb0CUhpRSlGgVS5poFkdAr6EH40uUU3V9lChoBmgJaA9DCNrKS/5neXJAlIaUUpRoFUuwaBZHQK+hEOYplSV1fZQoaAZoCWgPQwiQ2O4eYGdyQJSGlFKUaBVLq2gWR0CvoSWsaKk3dX2UKGgGaAloD0MIIAvRITBTcUCUhpRSlGgVS9BoFkdAr6E9ZTyau3V9lChoBmgJaA9DCImyt5RzIXJAlIaUUpRoFUuwaBZHQK+hQ9ytFKF1fZQoaAZoCWgPQwjYDHBBNrFwQJSGlFKUaBVL2GgWR0CvoVUu14PgdX2UKGgGaAloD0MIJxO3CqLzcECUhpRSlGgVS65oFkdAr6FZDPWxyHV9lChoBmgJaA9DCJBnl289kXNAlIaUUpRoFUu1aBZHQK+hcmEXcg11fZQoaAZoCWgPQwgPfAxWXPhyQJSGlFKUaBVLvGgWR0CvoXyeI2wWdX2UKGgGaAloD0MImDWxwJdoc0CUhpRSlGgVS79oFkdAr6G+y7f513V9lChoBmgJaA9DCN+KxAQ1VXJAlIaUUpRoFUu/aBZHQK+hxjZteld1fZQoaAZoCWgPQwjZJ4BiZAhvQJSGlFKUaBVLpmgWR0CvodgDzRQadX2UKGgGaAloD0MI16axvRYjcUCUhpRSlGgVS6poFkdAr6HsQkHD8HV9lChoBmgJaA9DCNkh/mELf3FAlIaUUpRoFUuLaBZHQK+h8yE+Pil1fZQoaAZoCWgPQwjKFkm7kRhzQJSGlFKUaBVLr2gWR0CvogkDhcZ+dX2UKGgGaAloD0MIKgMHtPQIc0CUhpRSlGgVS6toFkdAr6IYISlFdHV9lChoBmgJaA9DCPc8f9ooz3JAlIaUUpRoFUuOaBZHQK+iNC/Glyl1fZQoaAZoCWgPQwgFb0ijArxxQJSGlFKUaBVLrmgWR0CvojgU+LWJdX2UKGgGaAloD0MIfshbrr7ScUCUhpRSlGgVS7JoFkdAr6JUVnEl3XV9lChoBmgJaA9DCAfuQJ2y7nBAlIaUUpRoFUvNaBZHQK+iWF0PpY91fZQoaAZoCWgPQwhzZrtCnwhxQJSGlFKUaBVLqGgWR0CvoltUn5SFdX2UKGgGaAloD0MIOfHVjqJzckCUhpRSlGgVS5RoFkdAr6J4CU5dW3V9lChoBmgJaA9DCOPBFrv9VnNAlIaUUpRoFUu1aBZHQK+ihooNNJx1ZS4="
88
+ },
89
+ "ep_success_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
92
+ },
93
+ "_n_updates": 2444,
94
+ "n_steps": 1024,
95
+ "gamma": 0.999,
96
+ "gae_lambda": 0.98,
97
+ "ent_coef": 0.01,
98
+ "vf_coef": 0.5,
99
+ "max_grad_norm": 0.5,
100
+ "batch_size": 256,
101
+ "n_epochs": 4,
102
+ "clip_range": {
103
+ ":type:": "<class 'function'>",
104
+ ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
105
+ },
106
+ "clip_range_vf": null,
107
+ "normalize_advantage": true,
108
+ "target_kl": null
109
+ }
thicc-ppo-LunarLander-rc/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a98027785a937864fe6de4fe327170c34bbf91461a63fa7420abc1397770789
3
+ size 44585
thicc-ppo-LunarLander-rc/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1087c9c4f37fb6a567912c8b9aefa7a03cbd2c0b80b0b96bb1b3196c0e7ed6f6
3
+ size 22983
thicc-ppo-LunarLander-rc/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
thicc-ppo-LunarLander-rc/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022
2
+ Python: 3.8.10
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu102
5
+ GPU Enabled: True
6
+ Numpy: 1.22.3
7
+ Gym: 0.21.0