init test
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- thicc-ppo-LunarLander-rc.zip +3 -0
- thicc-ppo-LunarLander-rc/_stable_baselines3_version +1 -0
- thicc-ppo-LunarLander-rc/data +109 -0
- thicc-ppo-LunarLander-rc/policy.optimizer.pth +3 -0
- thicc-ppo-LunarLander-rc/policy.pth +3 -0
- thicc-ppo-LunarLander-rc/pytorch_variables.pth +3 -0
- thicc-ppo-LunarLander-rc/system_info.txt +7 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 287.88 +/- 22.25
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7feb6ba08ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feb6ba08f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feb6ba0c040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feb6ba0c0d0>", "_build": "<function ActorCriticPolicy._build at 0x7feb6ba0c160>", "forward": "<function ActorCriticPolicy.forward at 0x7feb6ba0c1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feb6ba0c280>", "_predict": "<function ActorCriticPolicy._predict at 0x7feb6ba0c310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feb6ba0c3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feb6ba0c430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7feb6ba0c4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7feb6ba091e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVZQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLQH2UKIwCcGmUXZRLIGGMAnZmlF2USyBhdWV1Lg==", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [64, {"pi": [32], "vf": [32]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 10010624, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651688807.408951, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABD9jw45Ja78AULvM1PhDz7bck8hYpivQAAgD8AAIA/mhlLusb4rz+l94W8sAAJvxCllzsApHI9AAAAAAAAAADmmKi+Cdx3P96Pf74JxD6/fZQWvy9KED4AAAAAAAAAAGYtwLwfBY+51p02uJq95bIqHhG8O+RcNwAAgD8AAIA/Ot6Evm4ccT9Yyjq+Kd08v9vH7L4Gd1M9AAAAAAAAAAAaTnE99lxwuqCm/bMXyIiw6VGluii4qjMAAIA/AACAP832eD0RF6g/piQAP1lXB7+JBhY9xtuFPgAAAAAAAAAArY0NvsSamT0vzQc/fClUvlKSZD1COq0+AAAAAAAAAAAAV7Y8hcuIuXcvA74mKcS8FJJ1PdH1ID8AAAAAAACAP5pcez0+ydA9UvBMvjqc5b7Q8R++GMtTvgAAAAAAAAAAc3qjvWvqWj/qATK+K0FivzdTNL7xKbq9AAAAAAAAAAAAdvu8uKbOPfsN5Tte1ty+WTBhvZZRirwAAAAAAAAAACAKCb5XLzM/jX6AviZ8Vb+neaW+G18WvgAAAAAAAAAAwEKGPaJDkD5hzBW+GkESv5Q7azz7qne+AAAAAAAAAADmYru92J2JP+3pzL4+wnK/pZwrvnZqtL4AAAAAAAAAAOZdI77CADA+pinjPmlKnb7DaF8+LrMWPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUkgyq3evcUCUhpRSlIwBbJRLxIwBdJRHQK+Y4yHmA9V1fZQoaAZoCWgPQwhLWBtjZwlzQJSGlFKUaBVL2mgWR0CvmOQ5eZ5SdX2UKGgGaAloD0MIcegtHh7IcECUhpRSlGgVS5hoFkdAr5j5RAKOUHV9lChoBmgJaA9DCFH0wMfgFXNAlIaUUpRoFUu6aBZHQK+Y+Lw4KhN1fZQoaAZoCWgPQwgLR5BKMZZzQJSGlFKUaBVLyWgWR0CvmQtrKvFFdX2UKGgGaAloD0MIwJfCg2ZacUCUhpRSlGgVS8hoFkdAr5kfX7Lt/nV9lChoBmgJaA9DCNcS8kGPl3NAlIaUUpRoFUvIaBZHQK+ZLLteD4B1fZQoaAZoCWgPQwi2SUVjbQ5wQJSGlFKUaBVLl2gWR0CvmXC7CiyqdX2UKGgGaAloD0MI4nK8AtFEcUCUhpRSlGgVS7doFkdAr5l5UT+NtXV9lChoBmgJaA9DCHlzuFY7SHNAlIaUUpRoFUu4aBZHQK+Zfs5XEIh1fZQoaAZoCWgPQwgYXd4cbj5wQJSGlFKUaBVLpGgWR0CvmX5OafBfdX2UKGgGaAloD0MINdO9Tmo4ckCUhpRSlGgVS49oFkdAr5tuaYu01XV9lChoBmgJaA9DCL9hokEKh3JAlIaUUpRoFUuJaBZHQK+bn24d6s11fZQoaAZoCWgPQwjBHD1+b/txQJSGlFKUaBVLl2gWR0Cvm6IwVTJhdX2UKGgGaAloD0MIhiFy+jqhcECUhpRSlGgVS7xoFkdAr5umXkYGdXV9lChoBmgJaA9DCKvQQCybx3BAlIaUUpRoFUuTaBZHQK+btDNQj2V1fZQoaAZoCWgPQwhvvDsyFvpwQJSGlFKUaBVLq2gWR0Cvm8mbsniOdX2UKGgGaAloD0MI/PuMCwdWc0CUhpRSlGgVS9JoFkdAr5vWyX2M9HV9lChoBmgJaA9DCIf9nlgnFHNAlIaUUpRoFUvLaBZHQK+b4wCbMHN1fZQoaAZoCWgPQwgsgv+tZIlwQJSGlFKUaBVL12gWR0Cvm+Y3WFvidX2UKGgGaAloD0MIh8Woay3zcUCUhpRSlGgVS7poFkdAr5wNm+TNdXV9lChoBmgJaA9DCPQVpBlLB3NAlIaUUpRoFUuraBZHQK+cF5E+gUV1fZQoaAZoCWgPQwj6X65FCxp0QJSGlFKUaBVLv2gWR0CvnCzJp35fdX2UKGgGaAloD0MINEjBU4hlcECUhpRSlGgVS55oFkdAr5xVzMibD3V9lChoBmgJaA9DCFT9SucD8HJAlIaUUpRoFUvDaBZHQK+coVrylN11fZQoaAZoCWgPQwjoZ+p1S0dzQJSGlFKUaBVLzWgWR0CvnLGLk0aZdX2UKGgGaAloD0MIpkboZyosdECUhpRSlGgVS+FoFkdAr5zRvo/zKHV9lChoBmgJaA9DCBzsTQzJ23JAlIaUUpRoFUvKaBZHQK+c8clPact1fZQoaAZoCWgPQwiIhVrTfHJyQJSGlFKUaBVLqmgWR0CvnRD1f3N+dX2UKGgGaAloD0MIE0VI3U7vcUCUhpRSlGgVS8JoFkdAr50VVFQVK3V9lChoBmgJaA9DCL3Fw3vOknFAlIaUUpRoFUuhaBZHQK+dGhhYvFp1fZQoaAZoCWgPQwia7J+nwQpzQJSGlFKUaBVL0mgWR0CvnUgcLjPwdX2UKGgGaAloD0MIOLwgIjV2ckCUhpRSlGgVS9xoFkdAr51OhAWznnV9lChoBmgJaA9DCAvPS8XG6nFAlIaUUpRoFUvCaBZHQK+dTjFQ2uR1fZQoaAZoCWgPQwieeTnsfiJxQJSGlFKUaBVLoGgWR0CvnVMvh60IdX2UKGgGaAloD0MItoXnpWJMckCUhpRSlGgVS+RoFkdAr51ZSP2f03V9lChoBmgJaA9DCNYe9kIBAHNAlIaUUpRoFUuyaBZHQK+daN2ki2V1fZQoaAZoCWgPQwh2UfTAxwdxQJSGlFKUaBVLyWgWR0CvnWiwbEP2dX2UKGgGaAloD0MIJSAm4cKNckCUhpRSlGgVS9FoFkdAr527WVeKK3V9lChoBmgJaA9DCIXP1sFBl3NAlIaUUpRoFUuhaBZHQK+d0SGJvYR1fZQoaAZoCWgPQwhe1y/YjTRzQJSGlFKUaBVL2mgWR0CvnfiyQgcMdX2UKGgGaAloD0MI7zob8o9XckCUhpRSlGgVS8JoFkdAr54gj0L+gnV9lChoBmgJaA9DCLnGZ7I/VXFAlIaUUpRoFUufaBZHQK+eONYr8SB1fZQoaAZoCWgPQwhiS4+mOg5wQJSGlFKUaBVLnmgWR0Cvnjstbs4UdX2UKGgGaAloD0MIMxgjEgWJckCUhpRSlGgVS8doFkdAr55HdoFmnXV9lChoBmgJaA9DCMhdhCkKOnNAlIaUUpRoFUu3aBZHQK+ebdCVryl1fZQoaAZoCWgPQwik4v+OqJdxQJSGlFKUaBVLkGgWR0CvnnN4iX6ZdX2UKGgGaAloD0MISPq0ij6jckCUhpRSlGgVS9FoFkdAr555DgIhQnV9lChoBmgJaA9DCJNX5xjQ6XJAlIaUUpRoFUuwaBZHQK+enxjJ+2F1fZQoaAZoCWgPQwg8+IkD6BZzQJSGlFKUaBVLt2gWR0CvnqB/Aj6fdX2UKGgGaAloD0MIO6qaIKrsc0CUhpRSlGgVS8NoFkdAr56wm1IAfnV9lChoBmgJaA9DCCvB4nBma3JAlIaUUpRoFUu/aBZHQK+esxQizLR1fZQoaAZoCWgPQwg+dhco6XRzQJSGlFKUaBVLyWgWR0Cvnr9vS+g2dX2UKGgGaAloD0MIObNdoc/XcECUhpRSlGgVS51oFkdAr57ybhFVk3V9lChoBmgJaA9DCDBMpgqGS3RAlIaUUpRoFUvdaBZHQK+e+3eenQ91fZQoaAZoCWgPQwgDtRg8TKdxQJSGlFKUaBVLumgWR0CvnxL433pOdX2UKGgGaAloD0MI7zob8s+FcECUhpRSlGgVS65oFkdAr59efdyksXV9lChoBmgJaA9DCALYgAjxnXJAlIaUUpRoFUuraBZHQK+fdKSPluF1fZQoaAZoCWgPQwi2Z5YE6IVzQJSGlFKUaBVLz2gWR0Cvn3lC9h7WdX2UKGgGaAloD0MI6nsNwbEIdECUhpRSlGgVS89oFkdAr5+5sbedkXV9lChoBmgJaA9DCAq/1M/bSnJAlIaUUpRoFUvSaBZHQK+fz6pHZsd1fZQoaAZoCWgPQwjB4nDmV3FxQJSGlFKUaBVLw2gWR0Cvn9ubiIcjdX2UKGgGaAloD0MIQPz89yC/c0CUhpRSlGgVS8BoFkdAr5/bWTX8O3V9lChoBmgJaA9DCDEjvD0I1XNAlIaUUpRoFUunaBZHQK+f+xi5NGp1fZQoaAZoCWgPQwjIYMWplhFzQJSGlFKUaBVLumgWR0Cvn/ypaRp2dX2UKGgGaAloD0MI2e4eoHsVc0CUhpRSlGgVS9ZoFkdAr6AJjriVB3V9lChoBmgJaA9DCCwQPSmT+HFAlIaUUpRoFUu9aBZHQK+gEmsvIwN1fZQoaAZoCWgPQwguqdpuQuNwQJSGlFKUaBVLn2gWR0CvoCogNgBtdX2UKGgGaAloD0MIj4r/O6L2c0CUhpRSlGgVS95oFkdAr6A5PykKu3V9lChoBmgJaA9DCBEebRxxP3RAlIaUUpRoFUvSaBZHQK+gOKXOW0J1fZQoaAZoCWgPQwih1jTvuNBxQJSGlFKUaBVLvmgWR0CvoHYpc5bRdX2UKGgGaAloD0MI71aW6CzGcECUhpRSlGgVS9RoFkdAr6B9k8Rtg3V9lChoBmgJaA9DCLX7VYBvHnJAlIaUUpRoFUu+aBZHQK+gvNzKcNJ1fZQoaAZoCWgPQwjRzf5AeeNyQJSGlFKUaBVLuWgWR0CvoMuTRplCdX2UKGgGaAloD0MIZDxKJfzJckCUhpRSlGgVS8doFkdAr6DfyPMjeXV9lChoBmgJaA9DCIU/w5t1vHFAlIaUUpRoFUuxaBZHQK+g9dUsFt91fZQoaAZoCWgPQwh5ymq63mVyQJSGlFKUaBVLi2gWR0CvoPumrKeTdX2UKGgGaAloD0MITIqPT8ipb0CUhpRSlGgVS5poFkdAr6EH40uUU3V9lChoBmgJaA9DCNrKS/5neXJAlIaUUpRoFUuwaBZHQK+hEOYplSV1fZQoaAZoCWgPQwiQ2O4eYGdyQJSGlFKUaBVLq2gWR0CvoSWsaKk3dX2UKGgGaAloD0MIIAvRITBTcUCUhpRSlGgVS9BoFkdAr6E9ZTyau3V9lChoBmgJaA9DCImyt5RzIXJAlIaUUpRoFUuwaBZHQK+hQ9ytFKF1fZQoaAZoCWgPQwjYDHBBNrFwQJSGlFKUaBVL2GgWR0CvoVUu14PgdX2UKGgGaAloD0MIJxO3CqLzcECUhpRSlGgVS65oFkdAr6FZDPWxyHV9lChoBmgJaA9DCJBnl289kXNAlIaUUpRoFUu1aBZHQK+hcmEXcg11fZQoaAZoCWgPQwgPfAxWXPhyQJSGlFKUaBVLvGgWR0CvoXyeI2wWdX2UKGgGaAloD0MImDWxwJdoc0CUhpRSlGgVS79oFkdAr6G+y7f513V9lChoBmgJaA9DCN+KxAQ1VXJAlIaUUpRoFUu/aBZHQK+hxjZteld1fZQoaAZoCWgPQwjZJ4BiZAhvQJSGlFKUaBVLpmgWR0CvodgDzRQadX2UKGgGaAloD0MI16axvRYjcUCUhpRSlGgVS6poFkdAr6HsQkHD8HV9lChoBmgJaA9DCNkh/mELf3FAlIaUUpRoFUuLaBZHQK+h8yE+Pil1fZQoaAZoCWgPQwjKFkm7kRhzQJSGlFKUaBVLr2gWR0CvogkDhcZ+dX2UKGgGaAloD0MIKgMHtPQIc0CUhpRSlGgVS6toFkdAr6IYISlFdHV9lChoBmgJaA9DCPc8f9ooz3JAlIaUUpRoFUuOaBZHQK+iNC/Glyl1fZQoaAZoCWgPQwgFb0ijArxxQJSGlFKUaBVLrmgWR0CvojgU+LWJdX2UKGgGaAloD0MIfshbrr7ScUCUhpRSlGgVS7JoFkdAr6JUVnEl3XV9lChoBmgJaA9DCAfuQJ2y7nBAlIaUUpRoFUvNaBZHQK+iWF0PpY91fZQoaAZoCWgPQwhzZrtCnwhxQJSGlFKUaBVLqGgWR0CvoltUn5SFdX2UKGgGaAloD0MIOfHVjqJzckCUhpRSlGgVS5RoFkdAr6J4CU5dW3V9lChoBmgJaA9DCOPBFrv9VnNAlIaUUpRoFUu1aBZHQK+ihooNNJx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ad68ed1dee78dcc8c28803b1575f4083626e08cd9bbc5516614e7661268a9c8
|
3 |
+
size 205526
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 287.8827628799282, "std_reward": 22.249546689871334, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T03:34:32.088955"}
|
thicc-ppo-LunarLander-rc.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c39b479b20e414aefa3b3be235ce95a8d2955d977f41cd3736a0652e7b9b5ea5
|
3 |
+
size 84137
|
thicc-ppo-LunarLander-rc/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
thicc-ppo-LunarLander-rc/data
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7feb6ba08ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7feb6ba08f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7feb6ba0c040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7feb6ba0c0d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7feb6ba0c160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7feb6ba0c1f0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7feb6ba0c280>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7feb6ba0c310>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7feb6ba0c3a0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7feb6ba0c430>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7feb6ba0c4c0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7feb6ba091e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gAWVZQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLQH2UKIwCcGmUXZRLIGGMAnZmlF2USyBhdWV1Lg==",
|
25 |
+
"activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
|
26 |
+
"net_arch": [
|
27 |
+
64,
|
28 |
+
{
|
29 |
+
"pi": [
|
30 |
+
32
|
31 |
+
],
|
32 |
+
"vf": [
|
33 |
+
32
|
34 |
+
]
|
35 |
+
}
|
36 |
+
]
|
37 |
+
},
|
38 |
+
"observation_space": {
|
39 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
40 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
41 |
+
"dtype": "float32",
|
42 |
+
"_shape": [
|
43 |
+
8
|
44 |
+
],
|
45 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
46 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
47 |
+
"bounded_below": "[False False False False False False False False]",
|
48 |
+
"bounded_above": "[False False False False False False False False]",
|
49 |
+
"_np_random": null
|
50 |
+
},
|
51 |
+
"action_space": {
|
52 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
53 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
54 |
+
"n": 4,
|
55 |
+
"_shape": [],
|
56 |
+
"dtype": "int64",
|
57 |
+
"_np_random": null
|
58 |
+
},
|
59 |
+
"n_envs": 16,
|
60 |
+
"num_timesteps": 10010624,
|
61 |
+
"_total_timesteps": 10000000,
|
62 |
+
"_num_timesteps_at_start": 0,
|
63 |
+
"seed": null,
|
64 |
+
"action_noise": null,
|
65 |
+
"start_time": 1651688807.408951,
|
66 |
+
"learning_rate": 0.0003,
|
67 |
+
"tensorboard_log": null,
|
68 |
+
"lr_schedule": {
|
69 |
+
":type:": "<class 'function'>",
|
70 |
+
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
71 |
+
},
|
72 |
+
"_last_obs": {
|
73 |
+
":type:": "<class 'numpy.ndarray'>",
|
74 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABD9jw45Ja78AULvM1PhDz7bck8hYpivQAAgD8AAIA/mhlLusb4rz+l94W8sAAJvxCllzsApHI9AAAAAAAAAADmmKi+Cdx3P96Pf74JxD6/fZQWvy9KED4AAAAAAAAAAGYtwLwfBY+51p02uJq95bIqHhG8O+RcNwAAgD8AAIA/Ot6Evm4ccT9Yyjq+Kd08v9vH7L4Gd1M9AAAAAAAAAAAaTnE99lxwuqCm/bMXyIiw6VGluii4qjMAAIA/AACAP832eD0RF6g/piQAP1lXB7+JBhY9xtuFPgAAAAAAAAAArY0NvsSamT0vzQc/fClUvlKSZD1COq0+AAAAAAAAAAAAV7Y8hcuIuXcvA74mKcS8FJJ1PdH1ID8AAAAAAACAP5pcez0+ydA9UvBMvjqc5b7Q8R++GMtTvgAAAAAAAAAAc3qjvWvqWj/qATK+K0FivzdTNL7xKbq9AAAAAAAAAAAAdvu8uKbOPfsN5Tte1ty+WTBhvZZRirwAAAAAAAAAACAKCb5XLzM/jX6AviZ8Vb+neaW+G18WvgAAAAAAAAAAwEKGPaJDkD5hzBW+GkESv5Q7azz7qne+AAAAAAAAAADmYru92J2JP+3pzL4+wnK/pZwrvnZqtL4AAAAAAAAAAOZdI77CADA+pinjPmlKnb7DaF8+LrMWPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
75 |
+
},
|
76 |
+
"_last_episode_starts": {
|
77 |
+
":type:": "<class 'numpy.ndarray'>",
|
78 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
79 |
+
},
|
80 |
+
"_last_original_obs": null,
|
81 |
+
"_episode_num": 0,
|
82 |
+
"use_sde": false,
|
83 |
+
"sde_sample_freq": -1,
|
84 |
+
"_current_progress_remaining": -0.0010623999999999079,
|
85 |
+
"ep_info_buffer": {
|
86 |
+
":type:": "<class 'collections.deque'>",
|
87 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUkgyq3evcUCUhpRSlIwBbJRLxIwBdJRHQK+Y4yHmA9V1fZQoaAZoCWgPQwhLWBtjZwlzQJSGlFKUaBVL2mgWR0CvmOQ5eZ5SdX2UKGgGaAloD0MIcegtHh7IcECUhpRSlGgVS5hoFkdAr5j5RAKOUHV9lChoBmgJaA9DCFH0wMfgFXNAlIaUUpRoFUu6aBZHQK+Y+Lw4KhN1fZQoaAZoCWgPQwgLR5BKMZZzQJSGlFKUaBVLyWgWR0CvmQtrKvFFdX2UKGgGaAloD0MIwJfCg2ZacUCUhpRSlGgVS8hoFkdAr5kfX7Lt/nV9lChoBmgJaA9DCNcS8kGPl3NAlIaUUpRoFUvIaBZHQK+ZLLteD4B1fZQoaAZoCWgPQwi2SUVjbQ5wQJSGlFKUaBVLl2gWR0CvmXC7CiyqdX2UKGgGaAloD0MI4nK8AtFEcUCUhpRSlGgVS7doFkdAr5l5UT+NtXV9lChoBmgJaA9DCHlzuFY7SHNAlIaUUpRoFUu4aBZHQK+Zfs5XEIh1fZQoaAZoCWgPQwgYXd4cbj5wQJSGlFKUaBVLpGgWR0CvmX5OafBfdX2UKGgGaAloD0MINdO9Tmo4ckCUhpRSlGgVS49oFkdAr5tuaYu01XV9lChoBmgJaA9DCL9hokEKh3JAlIaUUpRoFUuJaBZHQK+bn24d6s11fZQoaAZoCWgPQwjBHD1+b/txQJSGlFKUaBVLl2gWR0Cvm6IwVTJhdX2UKGgGaAloD0MIhiFy+jqhcECUhpRSlGgVS7xoFkdAr5umXkYGdXV9lChoBmgJaA9DCKvQQCybx3BAlIaUUpRoFUuTaBZHQK+btDNQj2V1fZQoaAZoCWgPQwhvvDsyFvpwQJSGlFKUaBVLq2gWR0Cvm8mbsniOdX2UKGgGaAloD0MI/PuMCwdWc0CUhpRSlGgVS9JoFkdAr5vWyX2M9HV9lChoBmgJaA9DCIf9nlgnFHNAlIaUUpRoFUvLaBZHQK+b4wCbMHN1fZQoaAZoCWgPQwgsgv+tZIlwQJSGlFKUaBVL12gWR0Cvm+Y3WFvidX2UKGgGaAloD0MIh8Woay3zcUCUhpRSlGgVS7poFkdAr5wNm+TNdXV9lChoBmgJaA9DCPQVpBlLB3NAlIaUUpRoFUuraBZHQK+cF5E+gUV1fZQoaAZoCWgPQwj6X65FCxp0QJSGlFKUaBVLv2gWR0CvnCzJp35fdX2UKGgGaAloD0MINEjBU4hlcECUhpRSlGgVS55oFkdAr5xVzMibD3V9lChoBmgJaA9DCFT9SucD8HJAlIaUUpRoFUvDaBZHQK+coVrylN11fZQoaAZoCWgPQwjoZ+p1S0dzQJSGlFKUaBVLzWgWR0CvnLGLk0aZdX2UKGgGaAloD0MIpkboZyosdECUhpRSlGgVS+FoFkdAr5zRvo/zKHV9lChoBmgJaA9DCBzsTQzJ23JAlIaUUpRoFUvKaBZHQK+c8clPact1fZQoaAZoCWgPQwiIhVrTfHJyQJSGlFKUaBVLqmgWR0CvnRD1f3N+dX2UKGgGaAloD0MIE0VI3U7vcUCUhpRSlGgVS8JoFkdAr50VVFQVK3V9lChoBmgJaA9DCL3Fw3vOknFAlIaUUpRoFUuhaBZHQK+dGhhYvFp1fZQoaAZoCWgPQwia7J+nwQpzQJSGlFKUaBVL0mgWR0CvnUgcLjPwdX2UKGgGaAloD0MIOLwgIjV2ckCUhpRSlGgVS9xoFkdAr51OhAWznnV9lChoBmgJaA9DCAvPS8XG6nFAlIaUUpRoFUvCaBZHQK+dTjFQ2uR1fZQoaAZoCWgPQwieeTnsfiJxQJSGlFKUaBVLoGgWR0CvnVMvh60IdX2UKGgGaAloD0MItoXnpWJMckCUhpRSlGgVS+RoFkdAr51ZSP2f03V9lChoBmgJaA9DCNYe9kIBAHNAlIaUUpRoFUuyaBZHQK+daN2ki2V1fZQoaAZoCWgPQwh2UfTAxwdxQJSGlFKUaBVLyWgWR0CvnWiwbEP2dX2UKGgGaAloD0MIJSAm4cKNckCUhpRSlGgVS9FoFkdAr527WVeKK3V9lChoBmgJaA9DCIXP1sFBl3NAlIaUUpRoFUuhaBZHQK+d0SGJvYR1fZQoaAZoCWgPQwhe1y/YjTRzQJSGlFKUaBVL2mgWR0CvnfiyQgcMdX2UKGgGaAloD0MI7zob8o9XckCUhpRSlGgVS8JoFkdAr54gj0L+gnV9lChoBmgJaA9DCLnGZ7I/VXFAlIaUUpRoFUufaBZHQK+eONYr8SB1fZQoaAZoCWgPQwhiS4+mOg5wQJSGlFKUaBVLnmgWR0Cvnjstbs4UdX2UKGgGaAloD0MIMxgjEgWJckCUhpRSlGgVS8doFkdAr55HdoFmnXV9lChoBmgJaA9DCMhdhCkKOnNAlIaUUpRoFUu3aBZHQK+ebdCVryl1fZQoaAZoCWgPQwik4v+OqJdxQJSGlFKUaBVLkGgWR0CvnnN4iX6ZdX2UKGgGaAloD0MISPq0ij6jckCUhpRSlGgVS9FoFkdAr555DgIhQnV9lChoBmgJaA9DCJNX5xjQ6XJAlIaUUpRoFUuwaBZHQK+enxjJ+2F1fZQoaAZoCWgPQwg8+IkD6BZzQJSGlFKUaBVLt2gWR0CvnqB/Aj6fdX2UKGgGaAloD0MIO6qaIKrsc0CUhpRSlGgVS8NoFkdAr56wm1IAfnV9lChoBmgJaA9DCCvB4nBma3JAlIaUUpRoFUu/aBZHQK+esxQizLR1fZQoaAZoCWgPQwg+dhco6XRzQJSGlFKUaBVLyWgWR0Cvnr9vS+g2dX2UKGgGaAloD0MIObNdoc/XcECUhpRSlGgVS51oFkdAr57ybhFVk3V9lChoBmgJaA9DCDBMpgqGS3RAlIaUUpRoFUvdaBZHQK+e+3eenQ91fZQoaAZoCWgPQwgDtRg8TKdxQJSGlFKUaBVLumgWR0CvnxL433pOdX2UKGgGaAloD0MI7zob8s+FcECUhpRSlGgVS65oFkdAr59efdyksXV9lChoBmgJaA9DCALYgAjxnXJAlIaUUpRoFUuraBZHQK+fdKSPluF1fZQoaAZoCWgPQwi2Z5YE6IVzQJSGlFKUaBVLz2gWR0Cvn3lC9h7WdX2UKGgGaAloD0MI6nsNwbEIdECUhpRSlGgVS89oFkdAr5+5sbedkXV9lChoBmgJaA9DCAq/1M/bSnJAlIaUUpRoFUvSaBZHQK+fz6pHZsd1fZQoaAZoCWgPQwjB4nDmV3FxQJSGlFKUaBVLw2gWR0Cvn9ubiIcjdX2UKGgGaAloD0MIQPz89yC/c0CUhpRSlGgVS8BoFkdAr5/bWTX8O3V9lChoBmgJaA9DCDEjvD0I1XNAlIaUUpRoFUunaBZHQK+f+xi5NGp1fZQoaAZoCWgPQwjIYMWplhFzQJSGlFKUaBVLumgWR0Cvn/ypaRp2dX2UKGgGaAloD0MI2e4eoHsVc0CUhpRSlGgVS9ZoFkdAr6AJjriVB3V9lChoBmgJaA9DCCwQPSmT+HFAlIaUUpRoFUu9aBZHQK+gEmsvIwN1fZQoaAZoCWgPQwguqdpuQuNwQJSGlFKUaBVLn2gWR0CvoCogNgBtdX2UKGgGaAloD0MIj4r/O6L2c0CUhpRSlGgVS95oFkdAr6A5PykKu3V9lChoBmgJaA9DCBEebRxxP3RAlIaUUpRoFUvSaBZHQK+gOKXOW0J1fZQoaAZoCWgPQwih1jTvuNBxQJSGlFKUaBVLvmgWR0CvoHYpc5bRdX2UKGgGaAloD0MI71aW6CzGcECUhpRSlGgVS9RoFkdAr6B9k8Rtg3V9lChoBmgJaA9DCLX7VYBvHnJAlIaUUpRoFUu+aBZHQK+gvNzKcNJ1fZQoaAZoCWgPQwjRzf5AeeNyQJSGlFKUaBVLuWgWR0CvoMuTRplCdX2UKGgGaAloD0MIZDxKJfzJckCUhpRSlGgVS8doFkdAr6DfyPMjeXV9lChoBmgJaA9DCIU/w5t1vHFAlIaUUpRoFUuxaBZHQK+g9dUsFt91fZQoaAZoCWgPQwh5ymq63mVyQJSGlFKUaBVLi2gWR0CvoPumrKeTdX2UKGgGaAloD0MITIqPT8ipb0CUhpRSlGgVS5poFkdAr6EH40uUU3V9lChoBmgJaA9DCNrKS/5neXJAlIaUUpRoFUuwaBZHQK+hEOYplSV1fZQoaAZoCWgPQwiQ2O4eYGdyQJSGlFKUaBVLq2gWR0CvoSWsaKk3dX2UKGgGaAloD0MIIAvRITBTcUCUhpRSlGgVS9BoFkdAr6E9ZTyau3V9lChoBmgJaA9DCImyt5RzIXJAlIaUUpRoFUuwaBZHQK+hQ9ytFKF1fZQoaAZoCWgPQwjYDHBBNrFwQJSGlFKUaBVL2GgWR0CvoVUu14PgdX2UKGgGaAloD0MIJxO3CqLzcECUhpRSlGgVS65oFkdAr6FZDPWxyHV9lChoBmgJaA9DCJBnl289kXNAlIaUUpRoFUu1aBZHQK+hcmEXcg11fZQoaAZoCWgPQwgPfAxWXPhyQJSGlFKUaBVLvGgWR0CvoXyeI2wWdX2UKGgGaAloD0MImDWxwJdoc0CUhpRSlGgVS79oFkdAr6G+y7f513V9lChoBmgJaA9DCN+KxAQ1VXJAlIaUUpRoFUu/aBZHQK+hxjZteld1fZQoaAZoCWgPQwjZJ4BiZAhvQJSGlFKUaBVLpmgWR0CvodgDzRQadX2UKGgGaAloD0MI16axvRYjcUCUhpRSlGgVS6poFkdAr6HsQkHD8HV9lChoBmgJaA9DCNkh/mELf3FAlIaUUpRoFUuLaBZHQK+h8yE+Pil1fZQoaAZoCWgPQwjKFkm7kRhzQJSGlFKUaBVLr2gWR0CvogkDhcZ+dX2UKGgGaAloD0MIKgMHtPQIc0CUhpRSlGgVS6toFkdAr6IYISlFdHV9lChoBmgJaA9DCPc8f9ooz3JAlIaUUpRoFUuOaBZHQK+iNC/Glyl1fZQoaAZoCWgPQwgFb0ijArxxQJSGlFKUaBVLrmgWR0CvojgU+LWJdX2UKGgGaAloD0MIfshbrr7ScUCUhpRSlGgVS7JoFkdAr6JUVnEl3XV9lChoBmgJaA9DCAfuQJ2y7nBAlIaUUpRoFUvNaBZHQK+iWF0PpY91fZQoaAZoCWgPQwhzZrtCnwhxQJSGlFKUaBVLqGgWR0CvoltUn5SFdX2UKGgGaAloD0MIOfHVjqJzckCUhpRSlGgVS5RoFkdAr6J4CU5dW3V9lChoBmgJaA9DCOPBFrv9VnNAlIaUUpRoFUu1aBZHQK+ihooNNJx1ZS4="
|
88 |
+
},
|
89 |
+
"ep_success_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
92 |
+
},
|
93 |
+
"_n_updates": 2444,
|
94 |
+
"n_steps": 1024,
|
95 |
+
"gamma": 0.999,
|
96 |
+
"gae_lambda": 0.98,
|
97 |
+
"ent_coef": 0.01,
|
98 |
+
"vf_coef": 0.5,
|
99 |
+
"max_grad_norm": 0.5,
|
100 |
+
"batch_size": 256,
|
101 |
+
"n_epochs": 4,
|
102 |
+
"clip_range": {
|
103 |
+
":type:": "<class 'function'>",
|
104 |
+
":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
105 |
+
},
|
106 |
+
"clip_range_vf": null,
|
107 |
+
"normalize_advantage": true,
|
108 |
+
"target_kl": null
|
109 |
+
}
|
thicc-ppo-LunarLander-rc/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a98027785a937864fe6de4fe327170c34bbf91461a63fa7420abc1397770789
|
3 |
+
size 44585
|
thicc-ppo-LunarLander-rc/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1087c9c4f37fb6a567912c8b9aefa7a03cbd2c0b80b0b96bb1b3196c0e7ed6f6
|
3 |
+
size 22983
|
thicc-ppo-LunarLander-rc/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
thicc-ppo-LunarLander-rc/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022
|
2 |
+
Python: 3.8.10
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu102
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.22.3
|
7 |
+
Gym: 0.21.0
|