CWhy commited on
Commit
ad54fa8
·
1 Parent(s): c4aa05f
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: -1128.76 +/- 885.88
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: -19.35 +/- 20.09
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f07a59f0310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f07a59f03a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f07a59f0430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f07a59f04c0>", "_build": "<function ActorCriticPolicy._build at 0x7f07a59f0550>", "forward": "<function ActorCriticPolicy.forward at 0x7f07a59f05e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f07a59f0670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f07a59f0700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f07a59f0790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f07a59f0820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f07a59f08b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f07a59e4f60>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVTAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlEsKYXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [10]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 65536, "_total_timesteps": 50000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651688087.9216464, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbLRr5ADXc/uQEZv92xD7/oibQ+NtE0PgAAAAAAAAAAratlPlYxuj9lp1M/yYSovXSZgr41YZq9AAAAAAAAAACGwyc+7/1kP57PEj/lDmO/KN9bvooY/b0AAAAAAAAAAAA+w7223LY/0izSvlG3k71Y7mk+Km4iPQAAAAAAAAAAtmTOPlWbmj/5c6Q+1a06v4KSWD5B8Ao+AAAAAAAAAAD9QMi+qW9rPwEdAL96GRK/W0QdvqqppjsAAAAAAAAAABqlVr2zO2E/TvkDv3fxMb+DDj0/0KzTPgAAAAAAAAAA81VZPl/viD81J0o+2UI+v4XpuD1FMok+AAAAAAAAAAALNJK+Eo1cPpNd+L4SdZq/q2MbPv6y370AAAAAAAAAAACueDy/RqY//IqyPVQv/b40Juk84SowPgAAAAAAAAAAM8+duzlftD86xPm+dZigveYVtzubTeI9AAAAAAAAAAAaUa09X7sEPhrSSr70Vp2/3DIyP0BT0LwAAAAAAAAAAABMUDzB4LA/F7PFPd0PC75vEfE8HJkVPgAAAAAAAAAAM8UIPoi2nz9xmR8/op38vk2CWr5NWFq+AAAAAAAAAAAayQM+lTWUP2ZhwD7Tj7e+AVk2Pj7OeD4AAAAAAAAAAMWezr6YQKg/FR5ov6VwOL9peXc/7kgJPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAABAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU+i8xi5mU8CUhpRSlIwBbJRLSIwBdJRHQDq68ujASFp1fZQoaAZoCWgPQwgjpG5n35NswJSGlFKUaBVLSWgWR0A6wlKK508vdX2UKGgGaAloD0MI3eukviwoUcCUhpRSlGgVS3VoFkdAOs67iADq4nV9lChoBmgJaA9DCNUI/Uy98mjAlIaUUpRoFUuYaBZHQDrZ5VwPy091fZQoaAZoCWgPQwjql4i3Djx5wJSGlFKUaBVLVWgWR0A63NWEK3NLdX2UKGgGaAloD0MIpzy6ERYDccCUhpRSlGgVS2RoFkdAOuTpxFRYR3V9lChoBmgJaA9DCHQIHAm0/WHAlIaUUpRoFUuIaBZHQDrxCjUNKAd1fZQoaAZoCWgPQwg4Mo/8QSBxwJSGlFKUaBVLj2gWR0A69ACGN70GdX2UKGgGaAloD0MItp4hHDNtZcCUhpRSlGgVS3VoFkdAOvYllbu+iHV9lChoBmgJaA9DCEMewY2UAXDAlIaUUpRoFUuAaBZHQDr50xM36yl1fZQoaAZoCWgPQwiL+49MhxFYwJSGlFKUaBVLVmgWR0A7D0UXYUWVdX2UKGgGaAloD0MIcTs0LEZua8CUhpRSlGgVS2JoFkdAOxOE/SpiqnV9lChoBmgJaA9DCOHTnLzIeFjAlIaUUpRoFUt0aBZHQDshtSAH3UR1fZQoaAZoCWgPQwiv0t11NhpWwJSGlFKUaBVLZGgWR0A7KPQv6CUYdX2UKGgGaAloD0MIIxEawcYIWMCUhpRSlGgVS2RoFkdAOyra7EpAlnV9lChoBmgJaA9DCBzqd2Grj3DAlIaUUpRoFUtaaBZHQDs6E384xUN1fZQoaAZoCWgPQwg6svLLINx0wJSGlFKUaBVLYWgWR0A7PH+qBErodX2UKGgGaAloD0MI43FRLSKfUMCUhpRSlGgVS1ZoFkdAO0CYLLIPsnV9lChoBmgJaA9DCCSX/5CeDoDAlIaUUpRoFUt5aBZHQDtMifQKKHh1fZQoaAZoCWgPQwhya9JtyU13wJSGlFKUaBVLV2gWR0A7T1Bt1p0wdX2UKGgGaAloD0MIbAa4IFvJZcCUhpRSlGgVS0toFkdAO1ZO8CgbqHV9lChoBmgJaA9DCHPXEvJBqUPAlIaUUpRoFUtGaBZHQDtWTxG2Cul1fZQoaAZoCWgPQwik+s4vSuFwwJSGlFKUaBVLVWgWR0A7ZLApKBd2dX2UKGgGaAloD0MIuOhkqfU+dMCUhpRSlGgVS2NoFkdAO2YwAU+LWXV9lChoBmgJaA9DCOhqK/aXjnXAlIaUUpRoFUtpaBZHQDt37Jnxri51fZQoaAZoCWgPQwhhqMMK99V2wJSGlFKUaBVLfGgWR0A7e07KaG5+dX2UKGgGaAloD0MIBr6iWy8Ga8CUhpRSlGgVS0JoFkdAO34ZQ53kgnV9lChoBmgJaA9DCBe2ZisvhUvAlIaUUpRoFUtKaBZHQDuKtHQQcxV1fZQoaAZoCWgPQwgXRQ98jNNjwJSGlFKUaBVLSmgWR0A7mu7YkE9udX2UKGgGaAloD0MIW7BUF/DOYsCUhpRSlGgVS2BoFkdAO6CGJvYOD3V9lChoBmgJaA9DCCxkrgwqf3PAlIaUUpRoFUtxaBZHQDumAAhje9B1fZQoaAZoCWgPQwhEb/HwntlPwJSGlFKUaBVLQGgWR0A7qhUipvP1dX2UKGgGaAloD0MIStHKvcCsFkCUhpRSlGgVS15oFkdAO7vm9xp+MXV9lChoBmgJaA9DCKFI93MKkFbAlIaUUpRoFUtCaBZHQDu9aGHpKSR1fZQoaAZoCWgPQwjT3AphNRFdwJSGlFKUaBVLYWgWR0A7zbOu7pV0dX2UKGgGaAloD0MIDD7NyQuRa8CUhpRSlGgVS5JoFkdAO9VWsA/9pHV9lChoBmgJaA9DCJ4I4jycW2HAlIaUUpRoFUtraBZHQDvZuk1uR9x1fZQoaAZoCWgPQwie8BKc+qJgwJSGlFKUaBVLQGgWR0A74v5xiobXdX2UKGgGaAloD0MImRHeHoT4ZsCUhpRSlGgVS0xoFkdAO+ZJTVDrq3V9lChoBmgJaA9DCFQ6WP9nj3fAlIaUUpRoFUuDaBZHQDvudupCKJl1fZQoaAZoCWgPQwjkEkceiMlkwJSGlFKUaBVLXGgWR0A7+C/oJRfndX2UKGgGaAloD0MID5ccd0rRTMCUhpRSlGgVS0VoFkdAO/sdkrf+CXV9lChoBmgJaA9DCMhESrN54GjAlIaUUpRoFUt/aBZHQDwBJOFg2Ih1fZQoaAZoCWgPQwhgOq3boFhSwJSGlFKUaBVLRmgWR0A8ASOR1X/6dX2UKGgGaAloD0MI4KKTpda6VcCUhpRSlGgVS0VoFkdAPAgiu+yquXV9lChoBmgJaA9DCKacL/beGmnAlIaUUpRoFUuFaBZHQDwa4RVZLZl1fZQoaAZoCWgPQwhJgnAF1IN3wJSGlFKUaBVLW2gWR0A8K/hl18sudX2UKGgGaAloD0MIKNU+HU/jdsCUhpRSlGgVS3toFkdAPDBxT850bXV9lChoBmgJaA9DCAGjy5tD52fAlIaUUpRoFUthaBZHQDxM6xPfsNV1fZQoaAZoCWgPQwgxmpXtw/ZrwJSGlFKUaBVLRWgWR0A8Z7V8Ti84dX2UKGgGaAloD0MIu9QI/UzeXMCUhpRSlGgVS2BoFkdAPG5Pl+3H73V9lChoBmgJaA9DCISB597D61bAlIaUUpRoFUtXaBZHQDxuXa8Hv+h1fZQoaAZoCWgPQwikwthCkJFYwJSGlFKUaBVLQGgWR0A8c3dsSCe3dX2UKGgGaAloD0MIgnAFFOp4UMCUhpRSlGgVS2VoFkdAPHkeU6gdwXV9lChoBmgJaA9DCJBMh05P8nDAlIaUUpRoFUt7aBZHQDx5Jf6XSjR1fZQoaAZoCWgPQwimtz8XDa5fwJSGlFKUaBVLVWgWR0A8gQZ4wAU+dX2UKGgGaAloD0MIoYLDCyJNW8CUhpRSlGgVS1NoFkdAPIVAE+xGD3V9lChoBmgJaA9DCDvFqkEYDnPAlIaUUpRoFUtdaBZHQDySg00m+kB1fZQoaAZoCWgPQwht4XmpWElvwJSGlFKUaBVLb2gWR0A8mnHeaa1DdX2UKGgGaAloD0MIyZHOwMi5T8CUhpRSlGgVS3hoFkdAPJ9MPBi1A3V9lChoBmgJaA9DCOeO/pdrt3bAlIaUUpRoFUuQaBZHQDyvnoxHoX91fZQoaAZoCWgPQwg+WTFcHWVcwJSGlFKUaBVLVmgWR0A8sk/8l5WzdX2UKGgGaAloD0MI8yA9RQ6ZdMCUhpRSlGgVS2doFkdAPM2UGFBY3nV9lChoBmgJaA9DCMobYOa7gmvAlIaUUpRoFUt0aBZHQDzRX2dupCN1fZQoaAZoCWgPQwhJg9vawo5YwJSGlFKUaBVLV2gWR0A88l1bJOnEdX2UKGgGaAloD0MIbCIzF7hxWsCUhpRSlGgVS0loFkdAPPgdGRV6vHV9lChoBmgJaA9DCFkyx/Kuw2nAlIaUUpRoFUteaBZHQD0BWq94/u91fZQoaAZoCWgPQwii7C3lfOdZwJSGlFKUaBVLV2gWR0A9AuG9HtngdX2UKGgGaAloD0MIWOGWj6SpbMCUhpRSlGgVS2hoFkdAPRMy8BdUsHV9lChoBmgJaA9DCBmsONUaDXPAlIaUUpRoFUtbaBZHQD0tMRHww0x1fZQoaAZoCWgPQwj5vU1/9mdlwJSGlFKUaBVLh2gWR0A9LevZAY51dX2UKGgGaAloD0MIOYB+39/hgMCUhpRSlGgVS3doFkdAPTDxwyZa3nV9lChoBmgJaA9DCDRo6J+gYHfAlIaUUpRoFUtzaBZHQD08upS75Ed1fZQoaAZoCWgPQwix3xPrFEZ0wJSGlFKUaBVLb2gWR0A9ST4tYjjadX2UKGgGaAloD0MI9aJ2vwrLWMCUhpRSlGgVS1poFkdAPVxNqQA+6nV9lChoBmgJaA9DCAowLH++hFvAlIaUUpRoFUtgaBZHQD1xzmwJPZZ1fZQoaAZoCWgPQwh/orJhzYZswJSGlFKUaBVLf2gWR0A9kuuRs/IKdX2UKGgGaAloD0MI0m70MZ8McsCUhpRSlGgVS0hoFkdAPaqhHskY43V9lChoBmgJaA9DCB123zE8rlrAlIaUUpRoFUtlaBZHQD2xkbxVhkR1fZQoaAZoCWgPQwiXNhyWBvRhwJSGlFKUaBVLV2gWR0A9sxOtW+49dX2UKGgGaAloD0MII57sZsZCbsCUhpRSlGgVS5NoFkdAPb9MwlByCHV9lChoBmgJaA9DCHgMj/0su1TAlIaUUpRoFUtiaBZHQD3G7f51vEV1fZQoaAZoCWgPQwgriIGu/T1vwJSGlFKUaBVLQGgWR0A91WrOqvNedX2UKGgGaAloD0MICTICKlzYesCUhpRSlGgVS4VoFkdAPdcEeQuEmXV9lChoBmgJaA9DCMoV3uUie1fAlIaUUpRoFUtRaBZHQD3YhFEy+Ht1fZQoaAZoCWgPQwi4rpgR3jlSwJSGlFKUaBVLUmgWR0A92wLVnVXndX2UKGgGaAloD0MI2UP7WAEIccCUhpRSlGgVS2toFkdAPdsKXv6TGHV9lChoBmgJaA9DCOPCgZDsPnTAlIaUUpRoFUtkaBZHQD3jJp35eqt1fZQoaAZoCWgPQwh8X1yq0rBZwJSGlFKUaBVLSGgWR0A96SpiqhlEdX2UKGgGaAloD0MI+1sC8E9EXMCUhpRSlGgVS2VoFkdAPfK/M4cWCXV9lChoBmgJaA9DCK3AkNWt43jAlIaUUpRoFUtiaBZHQD3+1uzhP0t1fZQoaAZoCWgPQwhCd0mcFShzwJSGlFKUaBVLd2gWR0A+ITBZZB9kdX2UKGgGaAloD0MIXDy854BKfcCUhpRSlGgVS1RoFkdAPkJ4nndO7HV9lChoBmgJaA9DCGJnCp3XLWjAlIaUUpRoFUtbaBZHQD5ECih37k51fZQoaAZoCWgPQwj7ITZYOP9YwJSGlFKUaBVLSWgWR0A+RAbyYoiLdX2UKGgGaAloD0MIUFCKVu5AVcCUhpRSlGgVS0toFkdAPlHqeK8+R3V9lChoBmgJaA9DCGxfQC8cHHrAlIaUUpRoFUt4aBZHQD5V3PiT+vR1fZQoaAZoCWgPQwiN0qV/iWdzwJSGlFKUaBVLSmgWR0A+ZHAymALBdX2UKGgGaAloD0MICOOncW8sf8CUhpRSlGgVS3doFkdAPmXEMspXqHV9lChoBmgJaA9DCPn4hOy8BVLAlIaUUpRoFUuBaBZHQD5z2SMcZLt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9e9e8b8310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9e9e8b83a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9e9e8b8430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9e9e8b84c0>", "_build": "<function ActorCriticPolicy._build at 0x7f9e9e8b8550>", "forward": "<function ActorCriticPolicy.forward at 0x7f9e9e8b85e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9e9e8b8670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9e9e8b8700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9e9e8b8790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9e9e8b8820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9e9e8b88b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9e9e8acf60>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVTwAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLQEtAZXUu", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [64, 64]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651684299.3443153, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZQB76DhBW8zgSFvZBgxzwa1IE8LrDcPQAAgD8AAIA/TcoFvvz9Ej0iBiQ/DQWAPRufxr0edKk+AAAAAAAAAAAzdQI99rwlujD+azWE534w3xCLOipKqLQAAIA/AACAP7PwN70IEZA96vvFPtX4AD4O+Po+86jZPQAAAAAAAAAA2lfHPYccjT9AJjA9rnQIv2tJKz72/Ca+AAAAAAAAAABmKno9o3RGPfUDoT0r5va8jN2/PuQXNL8AAAAAAAAAADNXWz18Mps/9ywBveyGEb9IuBA9HnhmvgAAAAAAAAAAgKnuPX3Njj9tws69ph2zvgWywD3Gs5y+AAAAAAAAAABNDMg93WZqP56+vL1ga+a+9ClbPlqqPb4AAAAAAAAAANbIlT6z7Fo/A8QRvC5zAL8QyP4+ITwsvgAAAAAAAAAA99UNv579pj5C+iK+anwzvv8G375uCYC+AAAAAAAAAAAA/be9tJ72PfK10j6hPZ29v3K6PpZkZT4AAAAAAAAAAC0OOb4BJbw9W0yiPmyaRr6ASto+Yg3dOwAAAAAAAAAAM5kavK7Fxrrj1mi6u62tPFX3vDpzj5W9AACAPwAAgD8NQum9jB4xPkMd8z6wE869alxbPiCvmz4AAAAAAAAAAGJIFr9aEh0/HhuQvSFHhr5vbBq+AyzPNgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyv55GrC8cUCUhpRSlIwBbJRNFwGMAXSUR0CvArSH2ys0dX2UKGgGaAloD0MI7Es2Huyfb0CUhpRSlGgVTaoBaBZHQK8DErPMSsd1fZQoaAZoCWgPQwha1v1j4XFwQJSGlFKUaBVN9QFoFkdArwQFpsXSB3V9lChoBmgJaA9DCBixTwAFSnJAlIaUUpRoFU1xAWgWR0CvBA2Hck+pdX2UKGgGaAloD0MIEywOZ/6MbkCUhpRSlGgVTQEBaBZHQK8LOtPpIMB1fZQoaAZoCWgPQwj0NctlY/9xQJSGlFKUaBVL/GgWR0CvC0XDWK/EdX2UKGgGaAloD0MImngHeJKCc0CUhpRSlGgVTRoBaBZHQK8Lb3GGVRl1fZQoaAZoCWgPQwiNXaJ6a2lwQJSGlFKUaBVNKgFoFkdArwwAhpxm03V9lChoBmgJaA9DCF0ZVBucOnBAlIaUUpRoFU0jAWgWR0CvDBot+TePdX2UKGgGaAloD0MIQpPEknJcU8CUhpRSlGgVTegDaBZHQK8MStmtheB1fZQoaAZoCWgPQwj2QCswJGFyQJSGlFKUaBVNFgFoFkdArw1zmbLEDXV9lChoBmgJaA9DCIl7LH3otW9AlIaUUpRoFU0wAWgWR0CvDYJAlfJFdX2UKGgGaAloD0MIVi3pKAeBQUCUhpRSlGgVS7doFkdArw48K1G9YnV9lChoBmgJaA9DCEZgrG/gMG9AlIaUUpRoFU0tAWgWR0CvDlREnb7CdX2UKGgGaAloD0MIFCF1O/tIcECUhpRSlGgVTWwBaBZHQK8OgWbgCOp1fZQoaAZoCWgPQwiWkuUklDBAQJSGlFKUaBVL/2gWR0CvDxkP1+RYdX2UKGgGaAloD0MIe2ZJgJqAcUCUhpRSlGgVTUIBaBZHQK8PIpVCHAR1fZQoaAZoCWgPQwgo1T4dz4pyQJSGlFKUaBVNmgFoFkdArw85m29cr3V9lChoBmgJaA9DCFRx4xbzPW5AlIaUUpRoFU2NAWgWR0CvD4l/H5rQdX2UKGgGaAloD0MIyqZc4Z06cECUhpRSlGgVS+FoFkdArw+OGVRk3HV9lChoBmgJaA9DCAn9TL0u+XFAlIaUUpRoFU0YAWgWR0CvD589W6sidX2UKGgGaAloD0MImrSpusc5bkCUhpRSlGgVS/poFkdArw/oHcDbJ3V9lChoBmgJaA9DCBqiCn8Gkm5AlIaUUpRoFU1BAWgWR0CvEAFjmSyMdX2UKGgGaAloD0MIyZBj61mIckCUhpRSlGgVTRcBaBZHQK8QYntOVPh1fZQoaAZoCWgPQwjoLR7ec1BwQJSGlFKUaBVNJAFoFkdArxGUCHRCyHV9lChoBmgJaA9DCEN1c/G38HBAlIaUUpRoFU0VAWgWR0CvEkdytFKDdX2UKGgGaAloD0MIqU4Hsp4yPsCUhpRSlGgVS8loFkdArxJQN3GGVXV9lChoBmgJaA9DCPz7jAtH/3BAlIaUUpRoFU0vAWgWR0CvEtTXrdFfdX2UKGgGaAloD0MIgSIWMWwdcECUhpRSlGgVTUsBaBZHQK8TeRJ2+wl1fZQoaAZoCWgPQwgwhJz3PyJwQJSGlFKUaBVNDQFoFkdArxOW23KB/nV9lChoBmgJaA9DCEFl/PsMe3BAlIaUUpRoFU0sAWgWR0CvE6qwyIpIdX2UKGgGaAloD0MIKNU+HY9kckCUhpRSlGgVS/loFkdArxPNvsJID3V9lChoBmgJaA9DCGTPnstU8XFAlIaUUpRoFU1dAWgWR0CvFEnYYixFdX2UKGgGaAloD0MI6/8c5st8bkCUhpRSlGgVTWYBaBZHQK8U4hzNliB1fZQoaAZoCWgPQwhE96xrtFwlwJSGlFKUaBVNhQFoFkdArxTyP+4smXV9lChoBmgJaA9DCFQZxt1gXXBAlIaUUpRoFU1gAWgWR0CvFT28yvcKdX2UKGgGaAloD0MIXJNuSyQvcUCUhpRSlGgVTU0BaBZHQK8VikSmIj51fZQoaAZoCWgPQwjh62tdqixwwJSGlFKUaBVLqGgWR0CvFlTzVc2SdX2UKGgGaAloD0MIWOVC5V8GU0CUhpRSlGgVTegDaBZHQK8WVYKYzBR1fZQoaAZoCWgPQwgpl8YvvBxKwJSGlFKUaBVL42gWR0CvFwp5u63BdX2UKGgGaAloD0MIlGsKZPZXcECUhpRSlGgVTXUBaBZHQK8Xk8mKIi11fZQoaAZoCWgPQwj3dktyQHRuQJSGlFKUaBVNdgFoFkdArxg8Iw/PgXV9lChoBmgJaA9DCJCGU+YmL3JAlIaUUpRoFU1bAWgWR0CvGE2FN+LFdX2UKGgGaAloD0MImQ8IdCaHb0CUhpRSlGgVTXoBaBZHQK8YVbnHNot1fZQoaAZoCWgPQwh0et6NhTthwJSGlFKUaBVLomgWR0CvGPWWIGhVdX2UKGgGaAloD0MIwHrctxoFc0CUhpRSlGgVTRoBaBZHQK8ZUQHzH0d1fZQoaAZoCWgPQwjQDyOEx2NvQJSGlFKUaBVNeQFoFkdArxmS+10DEHV9lChoBmgJaA9DCEetMH2v2GvAlIaUUpRoFU2KAWgWR0CvGabG3nZCdX2UKGgGaAloD0MI1SMNbmvZcECUhpRSlGgVTVYBaBZHQK8ZqsijcmB1fZQoaAZoCWgPQwgaa39ne3xTQJSGlFKUaBVN6ANoFkdArxqBkd3jdnV9lChoBmgJaA9DCGx55XrbfG9AlIaUUpRoFU18AWgWR0CvGsoVuaWpdX2UKGgGaAloD0MIgxQ8hdx5cUCUhpRSlGgVTVgBaBZHQK8i/jtG/et1fZQoaAZoCWgPQwjUDRR4JycuwJSGlFKUaBVLlWgWR0CvI69fCyhSdX2UKGgGaAloD0MIJo+n5Qc6cECUhpRSlGgVTSwBaBZHQK8j7D6WPcV1fZQoaAZoCWgPQwgNHTuoxLVoQJSGlFKUaBVN1gFoFkdAryTfFWGRFXV9lChoBmgJaA9DCHIycasglXBAlIaUUpRoFU2aAWgWR0CvJShje9BbdX2UKGgGaAloD0MInrEv2XhaVECUhpRSlGgVTegDaBZHQK8lQ9L6DXh1fZQoaAZoCWgPQwhcHJWbKCtuQJSGlFKUaBVNMAFoFkdAryVuQ2dd3XV9lChoBmgJaA9DCM5vmGiQ83BAlIaUUpRoFU0TAWgWR0CvJZZhKDkEdX2UKGgGaAloD0MIKhkAqjjRakCUhpRSlGgVTUABaBZHQK8loN7SiM51fZQoaAZoCWgPQwjSGRh5mcxyQJSGlFKUaBVNCwFoFkdArycHJo0yg3V9lChoBmgJaA9DCFLTLqbZfXBAlIaUUpRoFU2wAWgWR0CvJ0v+wTufdX2UKGgGaAloD0MIjuVd9QCKbUCUhpRSlGgVTWUBaBZHQK8ndSUC7sh1fZQoaAZoCWgPQwgzpfW3BHNpQJSGlFKUaBVN6wFoFkdAryekJx//enV9lChoBmgJaA9DCPLvMy4c9W9AlIaUUpRoFU1sAWgWR0CvJ6yFwkxAdX2UKGgGaAloD0MI3xrYKkF2bkCUhpRSlGgVTTYBaBZHQK8oDrKNhmZ1fZQoaAZoCWgPQwjh1AeS99FwQJSGlFKUaBVNGgFoFkdAryhTcbiqAHV9lChoBmgJaA9DCMTPfw/exm9AlIaUUpRoFU1WAWgWR0CvKJEWykbhdX2UKGgGaAloD0MISguXVVh2akCUhpRSlGgVTa0BaBZHQK8olNL127p1fZQoaAZoCWgPQwh07+GS48ZwQJSGlFKUaBVNLwFoFkdAryi+bgCOm3V9lChoBmgJaA9DCAbWcfxQi3BAlIaUUpRoFU0mAWgWR0CvKTnFo+OfdX2UKGgGaAloD0MITYbj+UxrcECUhpRSlGgVTSwBaBZHQK8piV8kUsZ1fZQoaAZoCWgPQwhK0jWTb7ZxQJSGlFKUaBVNQAFoFkdArymzGecx03V9lChoBmgJaA9DCAqBXOLIbVDAlIaUUpRoFUvMaBZHQK8p9rWRRuV1fZQoaAZoCWgPQwi9qUiFsWlwQJSGlFKUaBVNRwFoFkdAryn5owmE5HV9lChoBmgJaA9DCDy9UpYhukPAlIaUUpRoFUujaBZHQK8qRSQYDT11fZQoaAZoCWgPQwjFyf0OxdlsQJSGlFKUaBVNXQFoFkdArypda6jFh3V9lChoBmgJaA9DCJrMeFspJnFAlIaUUpRoFU1hAWgWR0CvKnE8JUo8dX2UKGgGaAloD0MI4e6s3XaBD0CUhpRSlGgVTQkBaBZHQK8r6Ln9vTB1fZQoaAZoCWgPQwiUTbnCu+tvQJSGlFKUaBVNUAFoFkdArywGdf9gnnV9lChoBmgJaA9DCLJHqBlS+TVAlIaUUpRoFU0ZAWgWR0CvLC00elsQdX2UKGgGaAloD0MIWOatuk6HckCUhpRSlGgVTWsBaBZHQK8sR+hGpdd1fZQoaAZoCWgPQwgMyF7v/lhtQJSGlFKUaBVNewFoFkdAryy9Wn0kGHV9lChoBmgJaA9DCNcYdEJojGxAlIaUUpRoFU1GAWgWR0CvLTHxz7uVdX2UKGgGaAloD0MIQ61p3nGePUCUhpRSlGgVS7poFkdAry1GaF23a3V9lChoBmgJaA9DCNAPI4THNXBAlIaUUpRoFU2lAWgWR0CvLeycbzbwdX2UKGgGaAloD0MIt17TgwIdcUCUhpRSlGgVTWUBaBZHQK8ublS0jTt1fZQoaAZoCWgPQwi/K4L/LWdxQJSGlFKUaBVNbAFoFkdAry7sURFqjHV9lChoBmgJaA9DCMsvgzEi7G5AlIaUUpRoFU1PAWgWR0CvLwewC8vmdX2UKGgGaAloD0MIOiLfpdQkaECUhpRSlGgVTS0CaBZHQK8vE0zCUHJ1fZQoaAZoCWgPQwgAA0GAzLZxQJSGlFKUaBVNPAFoFkdAry87vy9VWHV9lChoBmgJaA9DCN4CCYof3W9AlIaUUpRoFU1HAWgWR0CvL0Zd4VyndX2UKGgGaAloD0MIlL4Qct5nb0CUhpRSlGgVTXcBaBZHQK8vReQdS2p1fZQoaAZoCWgPQwikpfJ2hDJqQJSGlFKUaBVNsgFoFkdArzBWrlvIfnV9lChoBmgJaA9DCI7onnVNP3BAlIaUUpRoFU0eAWgWR0CvMJxK6FufdX2UKGgGaAloD0MIvRqgNBRlckCUhpRSlGgVTSUBaBZHQK8xMbTc6/91fZQoaAZoCWgPQwjJdr6fGuNoQJSGlFKUaBVNTwFoFkdArzE2sq8UVXV9lChoBmgJaA9DCMi1oWIclG9AlIaUUpRoFU1JAWgWR0CvMT9cB2fTdX2UKGgGaAloD0MIvsCsUKQyb0CUhpRSlGgVTVkBaBZHQK8xQ2Kl54Z1fZQoaAZoCWgPQwgi/fZ1YNltQJSGlFKUaBVL7GgWR0CvMWOgxrSFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGUvaG9tZS9vd25lci9Qcm9qZWN0cy9odWdnaW5nZmFjZVJML3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMZS9ob21lL293bmVyL1Byb2plY3RzL2h1Z2dpbmdmYWNlUkwvdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-109-lowlatency-x86_64-with-glibc2.29 #123-Ubuntu SMP PREEMPT Fri Apr 8 09:52:18 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
ppo-LunarLander-rc.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:45fcb0e890192da39583ce38fe2129d49fcd10f4823b9d8ba4bb36c6da5eb0b5
3
- size 24002
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62976f019ba5d6133cb8ea024c10a891b6cba2bdf959386660ce5aec6b11ecd1
3
+ size 84411
ppo-LunarLander-rc/data CHANGED
@@ -4,27 +4,28 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f07a59f0310>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f07a59f03a0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f07a59f0430>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f07a59f04c0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f07a59f0550>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f07a59f05e0>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f07a59f0670>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f07a59f0700>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f07a59f0790>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f07a59f0820>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f07a59f08b0>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f07a59e4f60>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
23
  ":type:": "<class 'dict'>",
24
- ":serialized:": "gAWVTAAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlEsKYXUu",
25
  "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
26
  "net_arch": [
27
- 10
 
28
  ]
29
  },
30
  "observation_space": {
@@ -49,12 +50,12 @@
49
  "_np_random": null
50
  },
51
  "n_envs": 16,
52
- "num_timesteps": 65536,
53
- "_total_timesteps": 50000,
54
  "_num_timesteps_at_start": 0,
55
  "seed": null,
56
  "action_noise": null,
57
- "start_time": 1651688087.9216464,
58
  "learning_rate": 0.0003,
59
  "tensorboard_log": null,
60
  "lr_schedule": {
@@ -63,26 +64,26 @@
63
  },
64
  "_last_obs": {
65
  ":type:": "<class 'numpy.ndarray'>",
66
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbLRr5ADXc/uQEZv92xD7/oibQ+NtE0PgAAAAAAAAAAratlPlYxuj9lp1M/yYSovXSZgr41YZq9AAAAAAAAAACGwyc+7/1kP57PEj/lDmO/KN9bvooY/b0AAAAAAAAAAAA+w7223LY/0izSvlG3k71Y7mk+Km4iPQAAAAAAAAAAtmTOPlWbmj/5c6Q+1a06v4KSWD5B8Ao+AAAAAAAAAAD9QMi+qW9rPwEdAL96GRK/W0QdvqqppjsAAAAAAAAAABqlVr2zO2E/TvkDv3fxMb+DDj0/0KzTPgAAAAAAAAAA81VZPl/viD81J0o+2UI+v4XpuD1FMok+AAAAAAAAAAALNJK+Eo1cPpNd+L4SdZq/q2MbPv6y370AAAAAAAAAAACueDy/RqY//IqyPVQv/b40Juk84SowPgAAAAAAAAAAM8+duzlftD86xPm+dZigveYVtzubTeI9AAAAAAAAAAAaUa09X7sEPhrSSr70Vp2/3DIyP0BT0LwAAAAAAAAAAABMUDzB4LA/F7PFPd0PC75vEfE8HJkVPgAAAAAAAAAAM8UIPoi2nz9xmR8/op38vk2CWr5NWFq+AAAAAAAAAAAayQM+lTWUP2ZhwD7Tj7e+AVk2Pj7OeD4AAAAAAAAAAMWezr6YQKg/FR5ov6VwOL9peXc/7kgJPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
67
  },
68
  "_last_episode_starts": {
69
  ":type:": "<class 'numpy.ndarray'>",
70
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAABAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
71
  },
72
  "_last_original_obs": null,
73
  "_episode_num": 0,
74
  "use_sde": false,
75
  "sde_sample_freq": -1,
76
- "_current_progress_remaining": -0.3107200000000001,
77
  "ep_info_buffer": {
78
  ":type:": "<class 'collections.deque'>",
79
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU+i8xi5mU8CUhpRSlIwBbJRLSIwBdJRHQDq68ujASFp1fZQoaAZoCWgPQwgjpG5n35NswJSGlFKUaBVLSWgWR0A6wlKK508vdX2UKGgGaAloD0MI3eukviwoUcCUhpRSlGgVS3VoFkdAOs67iADq4nV9lChoBmgJaA9DCNUI/Uy98mjAlIaUUpRoFUuYaBZHQDrZ5VwPy091fZQoaAZoCWgPQwjql4i3Djx5wJSGlFKUaBVLVWgWR0A63NWEK3NLdX2UKGgGaAloD0MIpzy6ERYDccCUhpRSlGgVS2RoFkdAOuTpxFRYR3V9lChoBmgJaA9DCHQIHAm0/WHAlIaUUpRoFUuIaBZHQDrxCjUNKAd1fZQoaAZoCWgPQwg4Mo/8QSBxwJSGlFKUaBVLj2gWR0A69ACGN70GdX2UKGgGaAloD0MItp4hHDNtZcCUhpRSlGgVS3VoFkdAOvYllbu+iHV9lChoBmgJaA9DCEMewY2UAXDAlIaUUpRoFUuAaBZHQDr50xM36yl1fZQoaAZoCWgPQwiL+49MhxFYwJSGlFKUaBVLVmgWR0A7D0UXYUWVdX2UKGgGaAloD0MIcTs0LEZua8CUhpRSlGgVS2JoFkdAOxOE/SpiqnV9lChoBmgJaA9DCOHTnLzIeFjAlIaUUpRoFUt0aBZHQDshtSAH3UR1fZQoaAZoCWgPQwiv0t11NhpWwJSGlFKUaBVLZGgWR0A7KPQv6CUYdX2UKGgGaAloD0MIIxEawcYIWMCUhpRSlGgVS2RoFkdAOyra7EpAlnV9lChoBmgJaA9DCBzqd2Grj3DAlIaUUpRoFUtaaBZHQDs6E384xUN1fZQoaAZoCWgPQwg6svLLINx0wJSGlFKUaBVLYWgWR0A7PH+qBErodX2UKGgGaAloD0MI43FRLSKfUMCUhpRSlGgVS1ZoFkdAO0CYLLIPsnV9lChoBmgJaA9DCCSX/5CeDoDAlIaUUpRoFUt5aBZHQDtMifQKKHh1fZQoaAZoCWgPQwhya9JtyU13wJSGlFKUaBVLV2gWR0A7T1Bt1p0wdX2UKGgGaAloD0MIbAa4IFvJZcCUhpRSlGgVS0toFkdAO1ZO8CgbqHV9lChoBmgJaA9DCHPXEvJBqUPAlIaUUpRoFUtGaBZHQDtWTxG2Cul1fZQoaAZoCWgPQwik+s4vSuFwwJSGlFKUaBVLVWgWR0A7ZLApKBd2dX2UKGgGaAloD0MIuOhkqfU+dMCUhpRSlGgVS2NoFkdAO2YwAU+LWXV9lChoBmgJaA9DCOhqK/aXjnXAlIaUUpRoFUtpaBZHQDt37Jnxri51fZQoaAZoCWgPQwhhqMMK99V2wJSGlFKUaBVLfGgWR0A7e07KaG5+dX2UKGgGaAloD0MIBr6iWy8Ga8CUhpRSlGgVS0JoFkdAO34ZQ53kgnV9lChoBmgJaA9DCBe2ZisvhUvAlIaUUpRoFUtKaBZHQDuKtHQQcxV1fZQoaAZoCWgPQwgXRQ98jNNjwJSGlFKUaBVLSmgWR0A7mu7YkE9udX2UKGgGaAloD0MIW7BUF/DOYsCUhpRSlGgVS2BoFkdAO6CGJvYOD3V9lChoBmgJaA9DCCxkrgwqf3PAlIaUUpRoFUtxaBZHQDumAAhje9B1fZQoaAZoCWgPQwhEb/HwntlPwJSGlFKUaBVLQGgWR0A7qhUipvP1dX2UKGgGaAloD0MIStHKvcCsFkCUhpRSlGgVS15oFkdAO7vm9xp+MXV9lChoBmgJaA9DCKFI93MKkFbAlIaUUpRoFUtCaBZHQDu9aGHpKSR1fZQoaAZoCWgPQwjT3AphNRFdwJSGlFKUaBVLYWgWR0A7zbOu7pV0dX2UKGgGaAloD0MIDD7NyQuRa8CUhpRSlGgVS5JoFkdAO9VWsA/9pHV9lChoBmgJaA9DCJ4I4jycW2HAlIaUUpRoFUtraBZHQDvZuk1uR9x1fZQoaAZoCWgPQwie8BKc+qJgwJSGlFKUaBVLQGgWR0A74v5xiobXdX2UKGgGaAloD0MImRHeHoT4ZsCUhpRSlGgVS0xoFkdAO+ZJTVDrq3V9lChoBmgJaA9DCFQ6WP9nj3fAlIaUUpRoFUuDaBZHQDvudupCKJl1fZQoaAZoCWgPQwjkEkceiMlkwJSGlFKUaBVLXGgWR0A7+C/oJRfndX2UKGgGaAloD0MID5ccd0rRTMCUhpRSlGgVS0VoFkdAO/sdkrf+CXV9lChoBmgJaA9DCMhESrN54GjAlIaUUpRoFUt/aBZHQDwBJOFg2Ih1fZQoaAZoCWgPQwhgOq3boFhSwJSGlFKUaBVLRmgWR0A8ASOR1X/6dX2UKGgGaAloD0MI4KKTpda6VcCUhpRSlGgVS0VoFkdAPAgiu+yquXV9lChoBmgJaA9DCKacL/beGmnAlIaUUpRoFUuFaBZHQDwa4RVZLZl1fZQoaAZoCWgPQwhJgnAF1IN3wJSGlFKUaBVLW2gWR0A8K/hl18sudX2UKGgGaAloD0MIKNU+HU/jdsCUhpRSlGgVS3toFkdAPDBxT850bXV9lChoBmgJaA9DCAGjy5tD52fAlIaUUpRoFUthaBZHQDxM6xPfsNV1fZQoaAZoCWgPQwgxmpXtw/ZrwJSGlFKUaBVLRWgWR0A8Z7V8Ti84dX2UKGgGaAloD0MIu9QI/UzeXMCUhpRSlGgVS2BoFkdAPG5Pl+3H73V9lChoBmgJaA9DCISB597D61bAlIaUUpRoFUtXaBZHQDxuXa8Hv+h1fZQoaAZoCWgPQwikwthCkJFYwJSGlFKUaBVLQGgWR0A8c3dsSCe3dX2UKGgGaAloD0MIgnAFFOp4UMCUhpRSlGgVS2VoFkdAPHkeU6gdwXV9lChoBmgJaA9DCJBMh05P8nDAlIaUUpRoFUt7aBZHQDx5Jf6XSjR1fZQoaAZoCWgPQwimtz8XDa5fwJSGlFKUaBVLVWgWR0A8gQZ4wAU+dX2UKGgGaAloD0MIoYLDCyJNW8CUhpRSlGgVS1NoFkdAPIVAE+xGD3V9lChoBmgJaA9DCDvFqkEYDnPAlIaUUpRoFUtdaBZHQDySg00m+kB1fZQoaAZoCWgPQwht4XmpWElvwJSGlFKUaBVLb2gWR0A8mnHeaa1DdX2UKGgGaAloD0MIyZHOwMi5T8CUhpRSlGgVS3hoFkdAPJ9MPBi1A3V9lChoBmgJaA9DCOeO/pdrt3bAlIaUUpRoFUuQaBZHQDyvnoxHoX91fZQoaAZoCWgPQwg+WTFcHWVcwJSGlFKUaBVLVmgWR0A8sk/8l5WzdX2UKGgGaAloD0MI8yA9RQ6ZdMCUhpRSlGgVS2doFkdAPM2UGFBY3nV9lChoBmgJaA9DCMobYOa7gmvAlIaUUpRoFUt0aBZHQDzRX2dupCN1fZQoaAZoCWgPQwhJg9vawo5YwJSGlFKUaBVLV2gWR0A88l1bJOnEdX2UKGgGaAloD0MIbCIzF7hxWsCUhpRSlGgVS0loFkdAPPgdGRV6vHV9lChoBmgJaA9DCFkyx/Kuw2nAlIaUUpRoFUteaBZHQD0BWq94/u91fZQoaAZoCWgPQwii7C3lfOdZwJSGlFKUaBVLV2gWR0A9AuG9HtngdX2UKGgGaAloD0MIWOGWj6SpbMCUhpRSlGgVS2hoFkdAPRMy8BdUsHV9lChoBmgJaA9DCBmsONUaDXPAlIaUUpRoFUtbaBZHQD0tMRHww0x1fZQoaAZoCWgPQwj5vU1/9mdlwJSGlFKUaBVLh2gWR0A9LevZAY51dX2UKGgGaAloD0MIOYB+39/hgMCUhpRSlGgVS3doFkdAPTDxwyZa3nV9lChoBmgJaA9DCDRo6J+gYHfAlIaUUpRoFUtzaBZHQD08upS75Ed1fZQoaAZoCWgPQwix3xPrFEZ0wJSGlFKUaBVLb2gWR0A9ST4tYjjadX2UKGgGaAloD0MI9aJ2vwrLWMCUhpRSlGgVS1poFkdAPVxNqQA+6nV9lChoBmgJaA9DCAowLH++hFvAlIaUUpRoFUtgaBZHQD1xzmwJPZZ1fZQoaAZoCWgPQwh/orJhzYZswJSGlFKUaBVLf2gWR0A9kuuRs/IKdX2UKGgGaAloD0MI0m70MZ8McsCUhpRSlGgVS0hoFkdAPaqhHskY43V9lChoBmgJaA9DCB123zE8rlrAlIaUUpRoFUtlaBZHQD2xkbxVhkR1fZQoaAZoCWgPQwiXNhyWBvRhwJSGlFKUaBVLV2gWR0A9sxOtW+49dX2UKGgGaAloD0MII57sZsZCbsCUhpRSlGgVS5NoFkdAPb9MwlByCHV9lChoBmgJaA9DCHgMj/0su1TAlIaUUpRoFUtiaBZHQD3G7f51vEV1fZQoaAZoCWgPQwgriIGu/T1vwJSGlFKUaBVLQGgWR0A91WrOqvNedX2UKGgGaAloD0MICTICKlzYesCUhpRSlGgVS4VoFkdAPdcEeQuEmXV9lChoBmgJaA9DCMoV3uUie1fAlIaUUpRoFUtRaBZHQD3YhFEy+Ht1fZQoaAZoCWgPQwi4rpgR3jlSwJSGlFKUaBVLUmgWR0A92wLVnVXndX2UKGgGaAloD0MI2UP7WAEIccCUhpRSlGgVS2toFkdAPdsKXv6TGHV9lChoBmgJaA9DCOPCgZDsPnTAlIaUUpRoFUtkaBZHQD3jJp35eqt1fZQoaAZoCWgPQwh8X1yq0rBZwJSGlFKUaBVLSGgWR0A96SpiqhlEdX2UKGgGaAloD0MI+1sC8E9EXMCUhpRSlGgVS2VoFkdAPfK/M4cWCXV9lChoBmgJaA9DCK3AkNWt43jAlIaUUpRoFUtiaBZHQD3+1uzhP0t1fZQoaAZoCWgPQwhCd0mcFShzwJSGlFKUaBVLd2gWR0A+ITBZZB9kdX2UKGgGaAloD0MIXDy854BKfcCUhpRSlGgVS1RoFkdAPkJ4nndO7HV9lChoBmgJaA9DCGJnCp3XLWjAlIaUUpRoFUtbaBZHQD5ECih37k51fZQoaAZoCWgPQwj7ITZYOP9YwJSGlFKUaBVLSWgWR0A+RAbyYoiLdX2UKGgGaAloD0MIUFCKVu5AVcCUhpRSlGgVS0toFkdAPlHqeK8+R3V9lChoBmgJaA9DCGxfQC8cHHrAlIaUUpRoFUt4aBZHQD5V3PiT+vR1fZQoaAZoCWgPQwiN0qV/iWdzwJSGlFKUaBVLSmgWR0A+ZHAymALBdX2UKGgGaAloD0MICOOncW8sf8CUhpRSlGgVS3doFkdAPmXEMspXqHV9lChoBmgJaA9DCPn4hOy8BVLAlIaUUpRoFUuBaBZHQD5z2SMcZLt1ZS4="
80
  },
81
  "ep_success_buffer": {
82
  ":type:": "<class 'collections.deque'>",
83
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
84
  },
85
- "_n_updates": 16,
86
  "n_steps": 1024,
87
  "gamma": 0.999,
88
  "gae_lambda": 0.98,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9e9e8b8310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9e9e8b83a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9e9e8b8430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9e9e8b84c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9e9e8b8550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9e9e8b85e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9e9e8b8670>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9e9e8b8700>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9e9e8b8790>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9e9e8b8820>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9e9e8b88b0>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9e9e8acf60>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {
23
  ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVTwAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlChLQEtAZXUu",
25
  "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
26
  "net_arch": [
27
+ 64,
28
+ 64
29
  ]
30
  },
31
  "observation_space": {
 
50
  "_np_random": null
51
  },
52
  "n_envs": 16,
53
+ "num_timesteps": 5013504,
54
+ "_total_timesteps": 5000000,
55
  "_num_timesteps_at_start": 0,
56
  "seed": null,
57
  "action_noise": null,
58
+ "start_time": 1651684299.3443153,
59
  "learning_rate": 0.0003,
60
  "tensorboard_log": null,
61
  "lr_schedule": {
 
64
  },
65
  "_last_obs": {
66
  ":type:": "<class 'numpy.ndarray'>",
67
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZQB76DhBW8zgSFvZBgxzwa1IE8LrDcPQAAgD8AAIA/TcoFvvz9Ej0iBiQ/DQWAPRufxr0edKk+AAAAAAAAAAAzdQI99rwlujD+azWE534w3xCLOipKqLQAAIA/AACAP7PwN70IEZA96vvFPtX4AD4O+Po+86jZPQAAAAAAAAAA2lfHPYccjT9AJjA9rnQIv2tJKz72/Ca+AAAAAAAAAABmKno9o3RGPfUDoT0r5va8jN2/PuQXNL8AAAAAAAAAADNXWz18Mps/9ywBveyGEb9IuBA9HnhmvgAAAAAAAAAAgKnuPX3Njj9tws69ph2zvgWywD3Gs5y+AAAAAAAAAABNDMg93WZqP56+vL1ga+a+9ClbPlqqPb4AAAAAAAAAANbIlT6z7Fo/A8QRvC5zAL8QyP4+ITwsvgAAAAAAAAAA99UNv579pj5C+iK+anwzvv8G375uCYC+AAAAAAAAAAAA/be9tJ72PfK10j6hPZ29v3K6PpZkZT4AAAAAAAAAAC0OOb4BJbw9W0yiPmyaRr6ASto+Yg3dOwAAAAAAAAAAM5kavK7Fxrrj1mi6u62tPFX3vDpzj5W9AACAPwAAgD8NQum9jB4xPkMd8z6wE869alxbPiCvmz4AAAAAAAAAAGJIFr9aEh0/HhuQvSFHhr5vbBq+AyzPNgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
68
  },
69
  "_last_episode_starts": {
70
  ":type:": "<class 'numpy.ndarray'>",
71
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
72
  },
73
  "_last_original_obs": null,
74
  "_episode_num": 0,
75
  "use_sde": false,
76
  "sde_sample_freq": -1,
77
+ "_current_progress_remaining": -0.0027007999999999477,
78
  "ep_info_buffer": {
79
  ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyv55GrC8cUCUhpRSlIwBbJRNFwGMAXSUR0CvArSH2ys0dX2UKGgGaAloD0MI7Es2Huyfb0CUhpRSlGgVTaoBaBZHQK8DErPMSsd1fZQoaAZoCWgPQwha1v1j4XFwQJSGlFKUaBVN9QFoFkdArwQFpsXSB3V9lChoBmgJaA9DCBixTwAFSnJAlIaUUpRoFU1xAWgWR0CvBA2Hck+pdX2UKGgGaAloD0MIEywOZ/6MbkCUhpRSlGgVTQEBaBZHQK8LOtPpIMB1fZQoaAZoCWgPQwj0NctlY/9xQJSGlFKUaBVL/GgWR0CvC0XDWK/EdX2UKGgGaAloD0MImngHeJKCc0CUhpRSlGgVTRoBaBZHQK8Lb3GGVRl1fZQoaAZoCWgPQwiNXaJ6a2lwQJSGlFKUaBVNKgFoFkdArwwAhpxm03V9lChoBmgJaA9DCF0ZVBucOnBAlIaUUpRoFU0jAWgWR0CvDBot+TePdX2UKGgGaAloD0MIQpPEknJcU8CUhpRSlGgVTegDaBZHQK8MStmtheB1fZQoaAZoCWgPQwj2QCswJGFyQJSGlFKUaBVNFgFoFkdArw1zmbLEDXV9lChoBmgJaA9DCIl7LH3otW9AlIaUUpRoFU0wAWgWR0CvDYJAlfJFdX2UKGgGaAloD0MIVi3pKAeBQUCUhpRSlGgVS7doFkdArw48K1G9YnV9lChoBmgJaA9DCEZgrG/gMG9AlIaUUpRoFU0tAWgWR0CvDlREnb7CdX2UKGgGaAloD0MIFCF1O/tIcECUhpRSlGgVTWwBaBZHQK8OgWbgCOp1fZQoaAZoCWgPQwiWkuUklDBAQJSGlFKUaBVL/2gWR0CvDxkP1+RYdX2UKGgGaAloD0MIe2ZJgJqAcUCUhpRSlGgVTUIBaBZHQK8PIpVCHAR1fZQoaAZoCWgPQwgo1T4dz4pyQJSGlFKUaBVNmgFoFkdArw85m29cr3V9lChoBmgJaA9DCFRx4xbzPW5AlIaUUpRoFU2NAWgWR0CvD4l/H5rQdX2UKGgGaAloD0MIyqZc4Z06cECUhpRSlGgVS+FoFkdArw+OGVRk3HV9lChoBmgJaA9DCAn9TL0u+XFAlIaUUpRoFU0YAWgWR0CvD589W6sidX2UKGgGaAloD0MImrSpusc5bkCUhpRSlGgVS/poFkdArw/oHcDbJ3V9lChoBmgJaA9DCBqiCn8Gkm5AlIaUUpRoFU1BAWgWR0CvEAFjmSyMdX2UKGgGaAloD0MIyZBj61mIckCUhpRSlGgVTRcBaBZHQK8QYntOVPh1fZQoaAZoCWgPQwjoLR7ec1BwQJSGlFKUaBVNJAFoFkdArxGUCHRCyHV9lChoBmgJaA9DCEN1c/G38HBAlIaUUpRoFU0VAWgWR0CvEkdytFKDdX2UKGgGaAloD0MIqU4Hsp4yPsCUhpRSlGgVS8loFkdArxJQN3GGVXV9lChoBmgJaA9DCPz7jAtH/3BAlIaUUpRoFU0vAWgWR0CvEtTXrdFfdX2UKGgGaAloD0MIgSIWMWwdcECUhpRSlGgVTUsBaBZHQK8TeRJ2+wl1fZQoaAZoCWgPQwgwhJz3PyJwQJSGlFKUaBVNDQFoFkdArxOW23KB/nV9lChoBmgJaA9DCEFl/PsMe3BAlIaUUpRoFU0sAWgWR0CvE6qwyIpIdX2UKGgGaAloD0MIKNU+HY9kckCUhpRSlGgVS/loFkdArxPNvsJID3V9lChoBmgJaA9DCGTPnstU8XFAlIaUUpRoFU1dAWgWR0CvFEnYYixFdX2UKGgGaAloD0MI6/8c5st8bkCUhpRSlGgVTWYBaBZHQK8U4hzNliB1fZQoaAZoCWgPQwhE96xrtFwlwJSGlFKUaBVNhQFoFkdArxTyP+4smXV9lChoBmgJaA9DCFQZxt1gXXBAlIaUUpRoFU1gAWgWR0CvFT28yvcKdX2UKGgGaAloD0MIXJNuSyQvcUCUhpRSlGgVTU0BaBZHQK8VikSmIj51fZQoaAZoCWgPQwjh62tdqixwwJSGlFKUaBVLqGgWR0CvFlTzVc2SdX2UKGgGaAloD0MIWOVC5V8GU0CUhpRSlGgVTegDaBZHQK8WVYKYzBR1fZQoaAZoCWgPQwgpl8YvvBxKwJSGlFKUaBVL42gWR0CvFwp5u63BdX2UKGgGaAloD0MIlGsKZPZXcECUhpRSlGgVTXUBaBZHQK8Xk8mKIi11fZQoaAZoCWgPQwj3dktyQHRuQJSGlFKUaBVNdgFoFkdArxg8Iw/PgXV9lChoBmgJaA9DCJCGU+YmL3JAlIaUUpRoFU1bAWgWR0CvGE2FN+LFdX2UKGgGaAloD0MImQ8IdCaHb0CUhpRSlGgVTXoBaBZHQK8YVbnHNot1fZQoaAZoCWgPQwh0et6NhTthwJSGlFKUaBVLomgWR0CvGPWWIGhVdX2UKGgGaAloD0MIwHrctxoFc0CUhpRSlGgVTRoBaBZHQK8ZUQHzH0d1fZQoaAZoCWgPQwjQDyOEx2NvQJSGlFKUaBVNeQFoFkdArxmS+10DEHV9lChoBmgJaA9DCEetMH2v2GvAlIaUUpRoFU2KAWgWR0CvGabG3nZCdX2UKGgGaAloD0MI1SMNbmvZcECUhpRSlGgVTVYBaBZHQK8ZqsijcmB1fZQoaAZoCWgPQwgaa39ne3xTQJSGlFKUaBVN6ANoFkdArxqBkd3jdnV9lChoBmgJaA9DCGx55XrbfG9AlIaUUpRoFU18AWgWR0CvGsoVuaWpdX2UKGgGaAloD0MIgxQ8hdx5cUCUhpRSlGgVTVgBaBZHQK8i/jtG/et1fZQoaAZoCWgPQwjUDRR4JycuwJSGlFKUaBVLlWgWR0CvI69fCyhSdX2UKGgGaAloD0MIJo+n5Qc6cECUhpRSlGgVTSwBaBZHQK8j7D6WPcV1fZQoaAZoCWgPQwgNHTuoxLVoQJSGlFKUaBVN1gFoFkdAryTfFWGRFXV9lChoBmgJaA9DCHIycasglXBAlIaUUpRoFU2aAWgWR0CvJShje9BbdX2UKGgGaAloD0MInrEv2XhaVECUhpRSlGgVTegDaBZHQK8lQ9L6DXh1fZQoaAZoCWgPQwhcHJWbKCtuQJSGlFKUaBVNMAFoFkdAryVuQ2dd3XV9lChoBmgJaA9DCM5vmGiQ83BAlIaUUpRoFU0TAWgWR0CvJZZhKDkEdX2UKGgGaAloD0MIKhkAqjjRakCUhpRSlGgVTUABaBZHQK8loN7SiM51fZQoaAZoCWgPQwjSGRh5mcxyQJSGlFKUaBVNCwFoFkdArycHJo0yg3V9lChoBmgJaA9DCFLTLqbZfXBAlIaUUpRoFU2wAWgWR0CvJ0v+wTufdX2UKGgGaAloD0MIjuVd9QCKbUCUhpRSlGgVTWUBaBZHQK8ndSUC7sh1fZQoaAZoCWgPQwgzpfW3BHNpQJSGlFKUaBVN6wFoFkdAryekJx//enV9lChoBmgJaA9DCPLvMy4c9W9AlIaUUpRoFU1sAWgWR0CvJ6yFwkxAdX2UKGgGaAloD0MI3xrYKkF2bkCUhpRSlGgVTTYBaBZHQK8oDrKNhmZ1fZQoaAZoCWgPQwjh1AeS99FwQJSGlFKUaBVNGgFoFkdAryhTcbiqAHV9lChoBmgJaA9DCMTPfw/exm9AlIaUUpRoFU1WAWgWR0CvKJEWykbhdX2UKGgGaAloD0MISguXVVh2akCUhpRSlGgVTa0BaBZHQK8olNL127p1fZQoaAZoCWgPQwh07+GS48ZwQJSGlFKUaBVNLwFoFkdAryi+bgCOm3V9lChoBmgJaA9DCAbWcfxQi3BAlIaUUpRoFU0mAWgWR0CvKTnFo+OfdX2UKGgGaAloD0MITYbj+UxrcECUhpRSlGgVTSwBaBZHQK8piV8kUsZ1fZQoaAZoCWgPQwhK0jWTb7ZxQJSGlFKUaBVNQAFoFkdArymzGecx03V9lChoBmgJaA9DCAqBXOLIbVDAlIaUUpRoFUvMaBZHQK8p9rWRRuV1fZQoaAZoCWgPQwi9qUiFsWlwQJSGlFKUaBVNRwFoFkdAryn5owmE5HV9lChoBmgJaA9DCDy9UpYhukPAlIaUUpRoFUujaBZHQK8qRSQYDT11fZQoaAZoCWgPQwjFyf0OxdlsQJSGlFKUaBVNXQFoFkdArypda6jFh3V9lChoBmgJaA9DCJrMeFspJnFAlIaUUpRoFU1hAWgWR0CvKnE8JUo8dX2UKGgGaAloD0MI4e6s3XaBD0CUhpRSlGgVTQkBaBZHQK8r6Ln9vTB1fZQoaAZoCWgPQwiUTbnCu+tvQJSGlFKUaBVNUAFoFkdArywGdf9gnnV9lChoBmgJaA9DCLJHqBlS+TVAlIaUUpRoFU0ZAWgWR0CvLC00elsQdX2UKGgGaAloD0MIWOatuk6HckCUhpRSlGgVTWsBaBZHQK8sR+hGpdd1fZQoaAZoCWgPQwgMyF7v/lhtQJSGlFKUaBVNewFoFkdAryy9Wn0kGHV9lChoBmgJaA9DCNcYdEJojGxAlIaUUpRoFU1GAWgWR0CvLTHxz7uVdX2UKGgGaAloD0MIQ61p3nGePUCUhpRSlGgVS7poFkdAry1GaF23a3V9lChoBmgJaA9DCNAPI4THNXBAlIaUUpRoFU2lAWgWR0CvLeycbzbwdX2UKGgGaAloD0MIt17TgwIdcUCUhpRSlGgVTWUBaBZHQK8ublS0jTt1fZQoaAZoCWgPQwi/K4L/LWdxQJSGlFKUaBVNbAFoFkdAry7sURFqjHV9lChoBmgJaA9DCMsvgzEi7G5AlIaUUpRoFU1PAWgWR0CvLwewC8vmdX2UKGgGaAloD0MIOiLfpdQkaECUhpRSlGgVTS0CaBZHQK8vE0zCUHJ1fZQoaAZoCWgPQwgAA0GAzLZxQJSGlFKUaBVNPAFoFkdAry87vy9VWHV9lChoBmgJaA9DCN4CCYof3W9AlIaUUpRoFU1HAWgWR0CvL0Zd4VyndX2UKGgGaAloD0MIlL4Qct5nb0CUhpRSlGgVTXcBaBZHQK8vReQdS2p1fZQoaAZoCWgPQwikpfJ2hDJqQJSGlFKUaBVNsgFoFkdArzBWrlvIfnV9lChoBmgJaA9DCI7onnVNP3BAlIaUUpRoFU0eAWgWR0CvMJxK6FufdX2UKGgGaAloD0MIvRqgNBRlckCUhpRSlGgVTSUBaBZHQK8xMbTc6/91fZQoaAZoCWgPQwjJdr6fGuNoQJSGlFKUaBVNTwFoFkdArzE2sq8UVXV9lChoBmgJaA9DCMi1oWIclG9AlIaUUpRoFU1JAWgWR0CvMT9cB2fTdX2UKGgGaAloD0MIvsCsUKQyb0CUhpRSlGgVTVkBaBZHQK8xQ2Kl54Z1fZQoaAZoCWgPQwgi/fZ1YNltQJSGlFKUaBVL7GgWR0CvMWOgxrSFdWUu"
81
  },
82
  "ep_success_buffer": {
83
  ":type:": "<class 'collections.deque'>",
84
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
  },
86
+ "_n_updates": 1224,
87
  "n_steps": 1024,
88
  "gamma": 0.999,
89
  "gae_lambda": 0.98,
ppo-LunarLander-rc/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9faa9aec73916a96db4951608bab9c7e5a28bfefab795ff4bb0c1744c4053eb6
3
- size 4673
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:020619c20604d907d4d87d93468353110be350a760660d423d5326f1b159dbce
3
+ size 44853
ppo-LunarLander-rc/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:60a0dd5a37ef1527d7d80d8bdb44feb2f126d43c9447889312ae5c9320d4d447
3
- size 2967
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c1747bdb5d9e46e512ca5ecc11d2d481432fa9fd494ef9597d855351a9cf003
3
+ size 23055
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3ddb612df6b2276217a48ffc2eb2beb273111e6ab3817729dda91f49bc21e7b9
3
- size 146386
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0ba6858217e953606ffc33ca6f375df02995446c64c37edb06ee69449bf283c
3
+ size 252957
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -1128.761531242763, "std_reward": 885.8789298311565, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T02:15:38.373867"}
 
1
+ {"mean_reward": -19.34708520305576, "std_reward": 20.09428371325277, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T02:19:02.365466"}