andreshenao commited on
Commit
eea85a9
·
verified ·
1 Parent(s): 8b494c0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -125
README.md CHANGED
@@ -1,125 +1,87 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "id": "f12d78c8-bf84-4071-b14f-9f4a3f779c18",
6
- "metadata": {},
7
- "source": [
8
- "---\n",
9
- "license: mit\n",
10
- "library_name: scikit-learn\n",
11
- "tags:\n",
12
- " - regression\n",
13
- " - linear-regression\n",
14
- "datasets:\n",
15
- " - ObesityDataSet_raw_and_data_sinhtetic.csv\n",
16
- "model-index:\n",
17
- " - name: Obesity Weight Prediction Model\n",
18
- " results:\n",
19
- " - task:\n",
20
- " type: regression\n",
21
- " name: Weight prediction (kg)\n",
22
- " dataset:\n",
23
- " name: ObesityDataSet_raw_and_data_sinhtetic.csv\n",
24
- " metrics:\n",
25
- " - type: mean_squared_error\n",
26
- " value: 511.55\n",
27
- " - type: r2\n",
28
- " value: 0.2777\n",
29
- "---\n",
30
- "\n",
31
- "# Obesity Weight Prediction Model — Linear Regression\n",
32
- "\n",
33
- "## Overview\n",
34
- "This model predicts a person’s **weight (kg)** based on **height (m)** and **age (years)** using a Linear Regression model from scikit-learn. \n",
35
- "\n",
36
- "---\n",
37
- "\n",
38
- "## Training\n",
39
- "\n",
40
- "| Detail | Value |\n",
41
- "|--------|-------|\n",
42
- "| Algorithm | `LinearRegression()` |\n",
43
- "| Features | Height, Age |\n",
44
- "| Target | Weight |\n",
45
- "| Train/Test Split | 75% / 25% |\n",
46
- "| Random State | 42 |\n",
47
- "| Dataset | ObesityDataSet_raw_and_data_sinhtetic.csv |\n",
48
- "\n",
49
- "---\n",
50
- "\n",
51
- "## Performance\n",
52
- "\n",
53
- "| Metric | Score |\n",
54
- "|--------|-------|\n",
55
- "| MSE (Mean Squared Error) | **511.55** |\n",
56
- "| R^2 Score | **0.2777** |\n",
57
- "\n",
58
- "These results indicate that height and age alone **do not fully explain** weight — important factors like diet, genetics, and exercise are missing.\n",
59
- "\n",
60
- "---\n",
61
- "\n",
62
- "## Visualization\n",
63
- "\n",
64
- "Below is a scatter plot showing predicted vs true weights:\n",
65
- "\n",
66
- "![True vs Predicted Weight](plot.png)\n",
67
- "\n",
68
- "The wide spread around the regression line shows prediction uncertainty for heavier individuals.\n",
69
- "\n",
70
- "---\n",
71
- "\n",
72
- "## Limitations\n",
73
- "- Only two features used → reduced explanatory power \n",
74
- "- Synthetic dataset — not reflective of real population variation \n",
75
- "- Performance not suitable for real-world medical decisions \n",
76
- "\n",
77
- "This model is intended for **educational use only**.\n",
78
- "\n",
79
- "---\n",
80
- "## Strengths\n",
81
- "- Easy to interpret\n",
82
- "- Fast and simple\n",
83
- "- Good educational model\n",
84
- "\n",
85
- "## Weaknesses\n",
86
- "- Low accuracy\n",
87
- "- Missing key health variables\n",
88
- "- Not production-ready\n",
89
- "\n",
90
- "## Citation \n",
91
- "- \"Estimation of Obesity Levels Based On Eating Habits and Physical Condition .\" UCI Machine Learning Repository, 2019, https://doi.org/10.24432/C5H31Z.\n",
92
- "\n"
93
- ]
94
- },
95
- {
96
- "cell_type": "code",
97
- "execution_count": null,
98
- "id": "51036e3d-c32b-4102-b965-9759eb873131",
99
- "metadata": {},
100
- "outputs": [],
101
- "source": []
102
- }
103
- ],
104
- "metadata": {
105
- "kernelspec": {
106
- "display_name": "Python 3 (ipykernel)",
107
- "language": "python",
108
- "name": "python3"
109
- },
110
- "language_info": {
111
- "codemirror_mode": {
112
- "name": "ipython",
113
- "version": 3
114
- },
115
- "file_extension": ".py",
116
- "mimetype": "text/x-python",
117
- "name": "python",
118
- "nbconvert_exporter": "python",
119
- "pygments_lexer": "ipython3",
120
- "version": "3.13.2"
121
- }
122
- },
123
- "nbformat": 4,
124
- "nbformat_minor": 5
125
- }
 
1
+ ---
2
+ license: mit
3
+ library_name: scikit-learn
4
+ tags:
5
+ - regression
6
+ - linear-regression
7
+ - obesity
8
+ datasets:
9
+ - ObesityDataSet_raw_and_data_sinthetic.csv
10
+ model-index:
11
+ - name: Obesity Weight Prediction Model
12
+ results:
13
+ - task:
14
+ type: regression
15
+ name: Weight prediction (kg)
16
+ dataset:
17
+ name: ObesityDataSet_raw_and_data_sinthetic.csv
18
+ type: tabular
19
+ metrics:
20
+ - type: mean_squared_error
21
+ value: 511.55
22
+ - type: r2
23
+ value: 0.2777
24
+ ---
25
+
26
+ # Obesity Weight Prediction Model — Linear Regression
27
+
28
+ ## Overview
29
+ This model predicts a person’s **weight (kg)** based on **height (m)** and **age (years)** using a Linear Regression model from scikit-learn.
30
+
31
+ ---
32
+
33
+ ## Training
34
+
35
+ | Detail | Value |
36
+ |--------|-------|
37
+ | Algorithm | `LinearRegression()` |
38
+ | Features | Height, Age |
39
+ | Target | Weight |
40
+ | Train/Test Split | 75% / 25% |
41
+ | Random State | 42 |
42
+ | Dataset | ObesityDataSet_raw_and_data_sinhtetic.csv |
43
+
44
+ ---
45
+
46
+ ## Performance
47
+
48
+ | Metric | Score |
49
+ |--------|-------|
50
+ | MSE (Mean Squared Error) | **511.55** |
51
+ | R^2 Score | **0.2777** |
52
+
53
+ These results indicate that height and age alone **do not fully explain** weight — important factors like diet, genetics, and exercise are missing.
54
+
55
+ ---
56
+
57
+ ## Visualization
58
+
59
+ Below is a scatter plot showing predicted vs true weights:
60
+
61
+ ![True vs Predicted Weight](plot.png)
62
+
63
+ The wide spread around the regression line shows prediction uncertainty for heavier individuals.
64
+
65
+ ---
66
+
67
+ ## Limitations
68
+ - Only two features used reduced explanatory power
69
+ - Synthetic dataset — not reflective of real population variation
70
+ - Performance not suitable for real-world medical decisions
71
+
72
+ This model is intended for **educational use only**.
73
+
74
+ ---
75
+ ## Strengths
76
+ - Easy to interpret
77
+ - Fast and simple
78
+ - Good educational model
79
+
80
+ ## Weaknesses
81
+ - Low accuracy
82
+ - Missing key health variables
83
+ - Not production-ready
84
+
85
+ ## Citation
86
+ - "Estimation of Obesity Levels Based On Eating Habits and Physical Condition ." UCI Machine Learning Repository, 2019, https://doi.org/10.24432/C5H31Z.
87
+