MontgomeryIII commited on
Commit
c4dbd67
·
verified ·
1 Parent(s): b71f5b3

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. Maternal_Health_Risk.csv +204 -0
  2. README.md +186 -0
  3. config.json +1 -0
  4. model.pkl +3 -0
Maternal_Health_Risk.csv ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,Age,SystolicBP,DiastolicBP,BS,BodyTemp,HeartRate,RiskLevel
2
+ 1011,35,85,60,19.0,98.0,86,high risk
3
+ 508,32,140,100,7.9,98.0,78,high risk
4
+ 463,15,76,49,6.8,98.0,77,low risk
5
+ 623,23,90,60,7.5,98.0,76,low risk
6
+ 949,59,120,80,7.5,98.0,70,low risk
7
+ 447,15,76,49,6.8,98.0,77,low risk
8
+ 886,15,76,49,6.8,98.0,77,low risk
9
+ 598,40,120,85,15.0,98.0,60,high risk
10
+ 701,15,90,60,6.0,98.0,80,low risk
11
+ 858,18,120,80,6.9,102.0,76,mid risk
12
+ 808,23,120,90,7.9,98.0,70,mid risk
13
+ 728,20,110,60,7.0,100.0,70,mid risk
14
+ 177,54,140,100,15.0,98.0,66,high risk
15
+ 579,15,120,80,7.5,98.0,70,low risk
16
+ 11,19,120,80,7.0,98.0,70,mid risk
17
+ 638,29,90,70,11.0,100.0,80,high risk
18
+ 531,15,120,80,7.5,98.0,70,mid risk
19
+ 218,31,120,60,6.1,98.0,76,mid risk
20
+ 873,19,120,80,7.0,98.0,70,mid risk
21
+ 358,18,90,60,6.9,98.0,70,mid risk
22
+ 196,31,120,60,6.1,98.0,76,mid risk
23
+ 16,50,140,90,15.0,98.0,90,high risk
24
+ 719,29,130,70,6.1,98.0,78,mid risk
25
+ 335,35,120,80,6.9,98.0,78,mid risk
26
+ 425,35,100,60,15.0,98.0,80,high risk
27
+ 696,23,90,60,6.7,98.0,76,low risk
28
+ 142,17,90,63,6.9,101.0,70,mid risk
29
+ 222,32,120,90,6.4,98.0,70,low risk
30
+ 978,29,120,75,7.2,100.0,70,high risk
31
+ 748,19,120,80,7.0,98.0,70,mid risk
32
+ 891,18,120,80,6.8,102.0,76,low risk
33
+ 318,54,130,70,12.0,98.0,67,mid risk
34
+ 261,19,120,75,6.9,98.0,66,low risk
35
+ 64,31,120,60,6.1,98.0,76,mid risk
36
+ 667,15,90,49,6.0,98.0,77,low risk
37
+ 948,17,90,65,7.5,103.0,67,low risk
38
+ 280,60,120,80,7.7,98.0,75,low risk
39
+ 573,42,120,80,7.5,98.0,70,low risk
40
+ 619,29,130,70,7.5,98.0,78,mid risk
41
+ 514,15,80,60,7.5,98.0,80,low risk
42
+ 252,28,120,90,6.9,98.0,70,low risk
43
+ 754,54,130,70,12.0,98.0,67,mid risk
44
+ 855,20,120,75,7.01,100.0,70,mid risk
45
+ 489,30,140,100,15.0,98.0,70,high risk
46
+ 417,60,140,80,16.0,98.0,66,high risk
47
+ 287,17,90,65,7.7,103.0,67,high risk
48
+ 617,31,120,60,6.1,98.0,76,low risk
49
+ 353,40,120,90,6.9,98.0,80,high risk
50
+ 618,23,120,90,7.5,98.0,70,low risk
51
+ 483,35,100,70,7.9,98.0,60,low risk
52
+ 485,60,90,65,7.9,98.0,77,low risk
53
+ 443,32,120,90,6.8,98.0,70,low risk
54
+ 829,23,100,85,7.5,98.0,66,mid risk
55
+ 139,18,120,80,6.9,102.0,76,mid risk
56
+ 43,30,120,80,6.1,98.0,70,low risk
57
+ 610,13,90,65,7.5,101.0,80,high risk
58
+ 171,12,90,60,7.9,102.0,66,high risk
59
+ 992,17,110,75,13.0,101.0,76,high risk
60
+ 274,40,120,95,11.0,98.0,80,high risk
61
+ 418,12,120,90,6.8,98.0,80,mid risk
62
+ 408,12,120,95,6.8,98.0,60,mid risk
63
+ 759,35,120,80,6.9,98.0,78,mid risk
64
+ 718,31,120,60,6.1,98.0,76,mid risk
65
+ 621,32,120,90,7.5,98.0,70,low risk
66
+ 938,21,120,80,7.5,98.0,77,low risk
67
+ 349,25,120,90,6.9,98.0,80,low risk
68
+ 566,29,120,70,9.0,98.0,80,high risk
69
+ 440,23,140,90,6.8,98.0,70,high risk
70
+ 27,22,100,65,7.2,98.0,70,low risk
71
+ 932,49,120,90,7.5,98.0,77,low risk
72
+ 250,10,85,65,6.9,98.0,70,low risk
73
+ 716,17,120,80,6.7,102.0,76,mid risk
74
+ 375,60,120,80,7.8,98.0,75,high risk
75
+ 721,28,85,60,9.0,101.0,86,mid risk
76
+ 22,21,90,65,7.5,98.0,76,low risk
77
+ 682,25,140,100,7.01,98.0,80,high risk
78
+ 990,19,90,65,11.0,101.0,70,high risk
79
+ 807,31,120,60,6.1,98.0,76,mid risk
80
+ 955,40,140,100,18.0,98.0,90,high risk
81
+ 518,19,90,70,7.5,98.0,80,low risk
82
+ 475,19,120,80,7.0,98.0,70,mid risk
83
+ 782,25,120,80,6.8,98.0,66,mid risk
84
+ 235,28,120,80,9.0,102.0,76,high risk
85
+ 249,25,120,90,15.0,98.0,80,high risk
86
+ 441,23,130,70,6.8,98.0,78,mid risk
87
+ 211,35,100,70,7.0,98.0,60,low risk
88
+ 75,23,130,70,6.9,98.0,70,mid risk
89
+ 195,30,120,80,6.1,98.0,70,low risk
90
+ 580,24,120,80,7.5,98.0,66,low risk
91
+ 499,16,120,75,7.9,98.0,7,low risk
92
+ 806,25,120,80,7.9,98.0,66,mid risk
93
+ 88,19,120,75,6.9,98.0,66,mid risk
94
+ 809,29,130,70,7.9,98.0,78,mid risk
95
+ 900,60,90,65,7.9,98.0,77,low risk
96
+ 230,50,140,90,15.0,98.0,77,high risk
97
+ 120,48,120,80,11.0,98.0,88,high risk
98
+ 957,14,90,65,7.0,101.0,70,high risk
99
+ 299,19,120,80,7.0,98.0,70,mid risk
100
+ 131,32,140,90,18.0,98.0,88,high risk
101
+ 614,50,120,80,15.0,98.0,70,high risk
102
+ 675,35,140,90,13.0,98.0,70,high risk
103
+ 903,32,120,90,7.9,98.0,70,low risk
104
+ 643,39,110,70,7.9,98.0,80,mid risk
105
+ 271,21,120,80,7.0,98.0,77,low risk
106
+ 968,55,140,95,19.0,98.0,77,high risk
107
+ 678,23,140,80,7.01,98.0,70,high risk
108
+ 315,21,120,80,6.9,98.0,88,low risk
109
+ 155,12,95,60,7.5,98.0,65,low risk
110
+ 339,65,120,90,6.9,103.0,76,low risk
111
+ 827,12,90,60,7.5,102.0,66,mid risk
112
+ 584,32,140,90,18.0,98.0,88,high risk
113
+ 233,20,110,60,7.0,100.0,70,mid risk
114
+ 181,60,120,85,15.0,98.0,60,high risk
115
+ 153,25,120,90,7.5,98.0,80,low risk
116
+ 539,32,140,90,18.0,98.0,88,high risk
117
+ 173,23,100,85,7.1,98.0,66,low risk
118
+ 45,32,120,90,7.5,98.0,70,low risk
119
+ 839,28,85,60,9.0,101.0,86,mid risk
120
+ 694,31,120,60,6.1,98.0,76,low risk
121
+ 413,50,130,80,16.0,102.0,76,mid risk
122
+ 548,35,140,100,7.5,98.0,66,high risk
123
+ 491,23,120,90,7.9,98.0,70,mid risk
124
+ 1,35,140,90,13.0,98.0,70,high risk
125
+ 854,19,120,80,7.0,98.0,70,mid risk
126
+ 776,50,120,80,7.8,98.0,70,mid risk
127
+ 612,17,90,65,7.5,103.0,67,mid risk
128
+ 325,22,90,65,6.9,98.0,78,low risk
129
+ 448,30,120,75,6.8,98.0,70,mid risk
130
+ 529,23,120,75,8.0,98.0,70,mid risk
131
+ 688,40,120,90,12.0,98.0,80,high risk
132
+ 121,49,140,90,15.0,98.0,90,high risk
133
+ 625,15,76,49,7.5,98.0,77,low risk
134
+ 761,16,90,65,6.9,98.0,76,mid risk
135
+ 52,35,100,70,7.0,98.0,60,low risk
136
+ 203,19,120,80,7.0,98.0,70,mid risk
137
+ 450,15,120,80,6.8,98.0,70,low risk
138
+ 264,22,100,65,6.9,98.0,70,low risk
139
+ 763,12,95,60,6.9,98.0,65,mid risk
140
+ 562,23,120,90,7.5,98.0,60,low risk
141
+ 831,21,120,80,7.5,98.0,77,mid risk
142
+ 68,20,110,60,7.0,100.0,70,mid risk
143
+ 738,13,90,65,7.9,101.0,80,mid risk
144
+ 225,19,120,80,7.0,98.0,70,mid risk
145
+ 964,35,140,100,8.0,98.0,66,high risk
146
+ 387,31,120,60,6.1,98.0,76,low risk
147
+ 837,19,120,85,9.0,98.0,60,mid risk
148
+ 240,17,120,80,7.0,102.0,76,high risk
149
+ 298,23,90,60,7.7,98.0,76,low risk
150
+ 223,42,120,80,6.4,98.0,70,low risk
151
+ 253,40,120,90,6.9,98.0,80,low risk
152
+ 138,50,130,100,16.0,98.0,75,high risk
153
+ 565,59,120,80,7.5,98.0,70,low risk
154
+ 323,60,120,80,6.9,98.0,76,low risk
155
+ 790,12,120,90,6.8,98.0,80,mid risk
156
+ 929,16,100,70,7.5,98.0,80,low risk
157
+ 843,17,90,60,9.0,102.0,86,mid risk
158
+ 92,13,90,65,7.8,101.0,80,mid risk
159
+ 615,34,110,70,7.0,98.0,80,high risk
160
+ 300,15,75,49,7.7,98.0,77,low risk
161
+ 875,32,120,65,6.0,101.0,76,mid risk
162
+ 882,29,100,70,6.8,98.0,80,low risk
163
+ 939,21,75,50,7.5,98.0,60,low risk
164
+ 888,48,120,80,11.0,98.0,88,low risk
165
+ 724,31,120,60,6.1,98.0,76,mid risk
166
+ 775,28,115,60,7.8,101.0,86,mid risk
167
+ 104,23,140,90,6.8,98.0,70,high risk
168
+ 191,17,90,65,6.1,103.0,67,high risk
169
+ 172,20,100,90,7.1,98.0,88,low risk
170
+ 179,21,75,50,6.1,98.0,70,low risk
171
+ 558,45,120,95,7.5,98.0,66,low risk
172
+ 345,37,120,90,11.0,98.0,88,high risk
173
+ 217,30,140,100,15.0,98.0,70,high risk
174
+ 871,29,130,70,6.7,98.0,78,mid risk
175
+ 307,35,100,70,6.9,98.0,60,low risk
176
+ 914,17,120,80,7.5,102.0,76,low risk
177
+ 722,50,140,80,6.7,98.0,70,mid risk
178
+ 979,48,120,80,11.0,98.0,88,high risk
179
+ 295,17,85,60,6.3,102.0,86,high risk
180
+ 6,23,130,70,7.01,98.0,78,mid risk
181
+ 639,19,120,60,7.0,98.4,70,low risk
182
+ 867,28,85,60,9.0,101.0,86,mid risk
183
+ 704,12,100,50,6.0,98.0,70,mid risk
184
+ 285,13,90,65,9.0,101.0,80,high risk
185
+ 917,60,90,65,7.5,98.0,77,low risk
186
+ 284,22,120,85,7.7,98.0,88,low risk
187
+ 850,12,100,50,6.4,98.0,70,mid risk
188
+ 590,23,100,85,7.5,98.0,66,mid risk
189
+ 726,17,85,60,9.0,102.0,86,mid risk
190
+ 664,21,90,50,6.9,98.0,60,low risk
191
+ 787,50,130,80,16.0,102.0,76,mid risk
192
+ 85,18,90,60,6.9,98.0,70,mid risk
193
+ 163,21,120,80,7.5,98.0,76,low risk
194
+ 34,21,75,50,6.1,98.0,70,low risk
195
+ 124,32,140,90,18.0,98.0,88,high risk
196
+ 467,50,140,90,15.0,98.0,90,high risk
197
+ 752,29,130,70,7.7,98.0,78,mid risk
198
+ 176,35,140,100,8.0,98.0,66,high risk
199
+ 519,30,140,100,15.0,98.0,70,high risk
200
+ 426,40,140,100,13.0,101.0,66,high risk
201
+ 399,25,120,80,7.8,98.0,66,low risk
202
+ 504,30,120,80,7.9,101.0,76,high risk
203
+ 981,25,140,100,7.2,98.0,80,high risk
204
+ 370,21,75,50,7.8,98.0,60,low risk
README.md ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # Model description
3
+
4
+ This is a Decision tree model.
5
+
6
+ ## Intended uses & limitations
7
+
8
+ This model is made for educational purposes and is not suitable for real world deployment due to biased predictions.
9
+
10
+ ## Training Procedure
11
+
12
+ [More Information Needed]
13
+
14
+ ### Hyperparameters
15
+
16
+ <details>
17
+ <summary> Click to expand </summary>
18
+
19
+ | Hyperparameter | Value |
20
+ | :----------------------: | :---: |
21
+ | ccp_alpha | 0.0 |
22
+ | class_weight | None |
23
+ | criterion | gini |
24
+ | max_depth | 3 |
25
+ | max_features | None |
26
+ | max_leaf_nodes | None |
27
+ | min_impurity_decrease | 0.0 |
28
+ | min_samples_leaf | 2 |
29
+ | min_samples_split | 2 |
30
+ | min_weight_fraction_leaf | 0.0 |
31
+ | monotonic_cst | None |
32
+ | random_state | 100 |
33
+ | splitter | best |
34
+
35
+ </details>
36
+
37
+ ### Model Plot
38
+
39
+ <style>#sk-container-id-3 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: #000;--sklearn-color-text-muted: #666;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
40
+ }#sk-container-id-3 {color: var(--sklearn-color-text);
41
+ }#sk-container-id-3 pre {padding: 0;
42
+ }#sk-container-id-3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
43
+ }#sk-container-id-3 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
44
+ }#sk-container-id-3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
45
+ }#sk-container-id-3 div.sk-text-repr-fallback {display: none;
46
+ }div.sk-parallel-item,
47
+ div.sk-serial,
48
+ div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
49
+ }/* Parallel-specific style estimator block */#sk-container-id-3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
50
+ }#sk-container-id-3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
51
+ }#sk-container-id-3 div.sk-parallel-item {display: flex;flex-direction: column;
52
+ }#sk-container-id-3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
53
+ }#sk-container-id-3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
54
+ }#sk-container-id-3 div.sk-parallel-item:only-child::after {width: 0;
55
+ }/* Serial-specific style estimator block */#sk-container-id-3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
56
+ }/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
57
+ clickable and can be expanded/collapsed.
58
+ - Pipeline and ColumnTransformer use this feature and define the default style
59
+ - Estimators will overwrite some part of the style using the `sk-estimator` class
60
+ *//* Pipeline and ColumnTransformer style (default) */#sk-container-id-3 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
61
+ }/* Toggleable label */
62
+ #sk-container-id-3 label.sk-toggleable__label {cursor: pointer;display: flex;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;align-items: start;justify-content: space-between;gap: 0.5em;
63
+ }#sk-container-id-3 label.sk-toggleable__label .caption {font-size: 0.6rem;font-weight: lighter;color: var(--sklearn-color-text-muted);
64
+ }#sk-container-id-3 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
65
+ }#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
66
+ }/* Toggleable content - dropdown */#sk-container-id-3 div.sk-toggleable__content {display: none;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
67
+ }#sk-container-id-3 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
68
+ }#sk-container-id-3 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
69
+ }#sk-container-id-3 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
70
+ }#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */display: block;width: 100%;overflow: visible;
71
+ }#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
72
+ }/* Pipeline/ColumnTransformer-specific style */#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
73
+ }#sk-container-id-3 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
74
+ }/* Estimator-specific style *//* Colorize estimator box */
75
+ #sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
76
+ }#sk-container-id-3 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
77
+ }#sk-container-id-3 div.sk-label label.sk-toggleable__label,
78
+ #sk-container-id-3 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
79
+ }/* On hover, darken the color of the background */
80
+ #sk-container-id-3 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
81
+ }/* Label box, darken color on hover, fitted */
82
+ #sk-container-id-3 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
83
+ }/* Estimator label */#sk-container-id-3 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
84
+ }#sk-container-id-3 div.sk-label-container {text-align: center;
85
+ }/* Estimator-specific */
86
+ #sk-container-id-3 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
87
+ }#sk-container-id-3 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
88
+ }/* on hover */
89
+ #sk-container-id-3 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
90
+ }#sk-container-id-3 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
91
+ }/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
92
+ a:link.sk-estimator-doc-link,
93
+ a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 0.5em;text-align: center;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
94
+ }.sk-estimator-doc-link.fitted,
95
+ a:link.sk-estimator-doc-link.fitted,
96
+ a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
97
+ }/* On hover */
98
+ div.sk-estimator:hover .sk-estimator-doc-link:hover,
99
+ .sk-estimator-doc-link:hover,
100
+ div.sk-label-container:hover .sk-estimator-doc-link:hover,
101
+ .sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
102
+ }div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
103
+ .sk-estimator-doc-link.fitted:hover,
104
+ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
105
+ .sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
106
+ }/* Span, style for the box shown on hovering the info icon */
107
+ .sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
108
+ }.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
109
+ }.sk-estimator-doc-link:hover span {display: block;
110
+ }/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-3 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
111
+ }#sk-container-id-3 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
112
+ }/* On hover */
113
+ #sk-container-id-3 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
114
+ }#sk-container-id-3 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
115
+ }.estimator-table summary {padding: .5rem;font-family: monospace;cursor: pointer;
116
+ }.estimator-table details[open] {padding-left: 0.1rem;padding-right: 0.1rem;padding-bottom: 0.3rem;
117
+ }.estimator-table .parameters-table {margin-left: auto !important;margin-right: auto !important;
118
+ }.estimator-table .parameters-table tr:nth-child(odd) {background-color: #fff;
119
+ }.estimator-table .parameters-table tr:nth-child(even) {background-color: #f6f6f6;
120
+ }.estimator-table .parameters-table tr:hover {background-color: #e0e0e0;
121
+ }.estimator-table table td {border: 1px solid rgba(106, 105, 104, 0.232);
122
+ }.user-set td {color:rgb(255, 94, 0);text-align: left;
123
+ }.user-set td.value pre {color:rgb(255, 94, 0) !important;background-color: transparent !important;
124
+ }.default td {color: black;text-align: left;
125
+ }.user-set td i,
126
+ .default td i {color: black;
127
+ }.copy-paste-icon {background-image: url();background-repeat: no-repeat;background-size: 14px 14px;background-position: 0;display: inline-block;width: 14px;height: 14px;cursor: pointer;
128
+ }
129
+ </style><body><div id="sk-container-id-3" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>DecisionTreeClassifier(max_depth=3, min_samples_leaf=2, random_state=100)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" checked><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow"><div><div>DecisionTreeClassifier</div></div><div><a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.7/modules/generated/sklearn.tree.DecisionTreeClassifier.html">?<span>Documentation for DecisionTreeClassifier</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></div></label><div class="sk-toggleable__content fitted" data-param-prefix=""><div class="estimator-table"><details><summary>Parameters</summary><table class="parameters-table"><tbody><tr class="default"><td><i class="copy-paste-icon"onclick="copyToClipboard('criterion',this.parentElement.nextElementSibling)"></i></td><td class="param">criterion&nbsp;</td><td class="value">&#x27;gini&#x27;</td></tr><tr class="default"><td><i class="copy-paste-icon"onclick="copyToClipboard('splitter',this.parentElement.nextElementSibling)"></i></td><td class="param">splitter&nbsp;</td><td class="value">&#x27;best&#x27;</td></tr><tr class="user-set"><td><i class="copy-paste-icon"onclick="copyToClipboard('max_depth',this.parentElement.nextElementSibling)"></i></td><td class="param">max_depth&nbsp;</td><td class="value">3</td></tr><tr class="default"><td><i class="copy-paste-icon"onclick="copyToClipboard('min_samples_split',this.parentElement.nextElementSibling)"></i></td><td class="param">min_samples_split&nbsp;</td><td class="value">2</td></tr><tr class="user-set"><td><i class="copy-paste-icon"onclick="copyToClipboard('min_samples_leaf',this.parentElement.nextElementSibling)"></i></td><td class="param">min_samples_leaf&nbsp;</td><td class="value">2</td></tr><tr class="default"><td><i class="copy-paste-icon"onclick="copyToClipboard('min_weight_fraction_leaf',this.parentElement.nextElementSibling)"></i></td><td class="param">min_weight_fraction_leaf&nbsp;</td><td class="value">0.0</td></tr><tr class="default"><td><i class="copy-paste-icon"onclick="copyToClipboard('max_features',this.parentElement.nextElementSibling)"></i></td><td class="param">max_features&nbsp;</td><td class="value">None</td></tr><tr class="user-set"><td><i class="copy-paste-icon"onclick="copyToClipboard('random_state',this.parentElement.nextElementSibling)"></i></td><td class="param">random_state&nbsp;</td><td class="value">100</td></tr><tr class="default"><td><i class="copy-paste-icon"onclick="copyToClipboard('max_leaf_nodes',this.parentElement.nextElementSibling)"></i></td><td class="param">max_leaf_nodes&nbsp;</td><td class="value">None</td></tr><tr class="default"><td><i class="copy-paste-icon"onclick="copyToClipboard('min_impurity_decrease',this.parentElement.nextElementSibling)"></i></td><td class="param">min_impurity_decrease&nbsp;</td><td class="value">0.0</td></tr><tr class="default"><td><i class="copy-paste-icon"onclick="copyToClipboard('class_weight',this.parentElement.nextElementSibling)"></i></td><td class="param">class_weight&nbsp;</td><td class="value">None</td></tr><tr class="default"><td><i class="copy-paste-icon"onclick="copyToClipboard('ccp_alpha',this.parentElement.nextElementSibling)"></i></td><td class="param">ccp_alpha&nbsp;</td><td class="value">0.0</td></tr><tr class="default"><td><i class="copy-paste-icon"onclick="copyToClipboard('monotonic_cst',this.parentElement.nextElementSibling)"></i></td><td class="param">monotonic_cst&nbsp;</td><td class="value">None</td></tr></tbody></table></details></div></div></div></div></div></div><script>function copyToClipboard(text, element) {// Get the parameter prefix from the closest toggleable contentconst toggleableContent = element.closest('.sk-toggleable__content');const paramPrefix = toggleableContent ? toggleableContent.dataset.paramPrefix : '';const fullParamName = paramPrefix ? `${paramPrefix}${text}` : text;const originalStyle = element.style;const computedStyle = window.getComputedStyle(element);const originalWidth = computedStyle.width;const originalHTML = element.innerHTML.replace('Copied!', '');navigator.clipboard.writeText(fullParamName).then(() => {element.style.width = originalWidth;element.style.color = 'green';element.innerHTML = "Copied!";setTimeout(() => {element.innerHTML = originalHTML;element.style = originalStyle;}, 2000);}).catch(err => {console.error('Failed to copy:', err);element.style.color = 'red';element.innerHTML = "Failed!";setTimeout(() => {element.innerHTML = originalHTML;element.style = originalStyle;}, 2000);});return false;
130
+ }document.querySelectorAll('.fa-regular.fa-copy').forEach(function(element) {const toggleableContent = element.closest('.sk-toggleable__content');const paramPrefix = toggleableContent ? toggleableContent.dataset.paramPrefix : '';const paramName = element.parentElement.nextElementSibling.textContent.trim();const fullParamName = paramPrefix ? `${paramPrefix}${paramName}` : paramName;element.setAttribute('title', fullParamName);
131
+ });
132
+ </script></body>
133
+
134
+ ## Evaluation Results
135
+
136
+ [More Information Needed]
137
+
138
+ # How to Get Started with the Model
139
+
140
+ [More Information Needed]
141
+
142
+ # Model Card Authors
143
+
144
+ Richard S. Montgomery III
145
+
146
+ # Model Card Contact
147
+
148
+ You can contact the model card authors through following channels:
149
+ [More Information Needed]
150
+
151
+ # Citation
152
+
153
+ Below you can find information related to citation.
154
+
155
+ **BibTeX:**
156
+ ```
157
+ [More Information Needed]
158
+ ```
159
+
160
+ # Intended uses & limitations
161
+
162
+ This model is made for educational purposes and is not suitable for real world deployment due to biased predictions.
163
+
164
+ # Features
165
+
166
+ SystolicBP
167
+ DiastolicBP
168
+ BS
169
+ BodyTemp
170
+ HeartRate
171
+ RiskLevel
172
+
173
+
174
+ # Hyperparameters
175
+
176
+ max_depth: 3
177
+ sin_samples_leaf: 2
178
+ random_state: 100
179
+
180
+
181
+ # Evaluation Results
182
+
183
+ Accuracy: 0.65
184
+ precision_avg: 0.68
185
+ recall_avg: 0.67
186
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"sklearn": {"columns": ["Age", "SystolicBP", "DiastolicBP", "BS", "BodyTemp", "HeartRate", "RiskLevel"], "environment": ["scikit-learn=1.0.2"], "example_input": {"Age": [25, 35, 29], "SystolicBP": [130, 140, 90], "DiastolicBP": [80, 90, 70], "BS": [15.0, 13.0, 8.0], "BodyTemp": [98.0, 98.0, 100.0], "HeartRate": [86, 70, 80], "RiskLevel": ["low_risk", "mid_risk", "high_risk"]}, "model": {"file": "model.pkl"}, "task": "tabular-classification"}}
model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3a8dff13430079b89817b7d3799373a0303e8fcc518860c22fccc8fe59b2fd8
3
+ size 17101