|
import gradio as gr |
|
import matplotlib.pyplot as plt |
|
import PIL |
|
import tensorflow as tf |
|
from tensorflow import keras |
|
from keras import layers |
|
from keras.models import Sequential |
|
from keras.preprocessing.image import ImageDataGenerator |
|
import pathlib |
|
from keras.models import Model |
|
from PIL import Image |
|
|
|
model = keras.models.load_model('model.h5') |
|
class_names = ['sea', 'glacier'] |
|
|
|
def predict_image(img): |
|
img_4d=img.reshape(1,224,224,3) |
|
prediction=model.predict(img_4d)[0] |
|
return {class_names[i]: float(prediction[i]) for i in range(2)} |
|
|
|
image = gr.inputs.Image(shape=(224,224)) |
|
label = gr.outputs.Label(num_top_classes=2) |
|
|
|
gr.Interface(css=None, |
|
fn=predict_image, |
|
inputs=image, |
|
description="Please upload a Chest X-Ray image in JPG, JPEG or PNG.", |
|
title='Identifying Adenoid by Convolutional neural network',outputs=label).launch(share=None) |
|
|
|
gr.launch() |