ppo-LunarLander-v2 / config.json
CMYang's picture
Upload PPO LunarLander-v2 trained agent
d45d98a verified
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79d13ea204c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79d13ea20550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79d13ea205e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79d13ea20670>", "_build": "<function ActorCriticPolicy._build at 0x79d13ea20700>", "forward": "<function ActorCriticPolicy.forward at 0x79d13ea20790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79d13ea20820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79d13ea208b0>", "_predict": "<function ActorCriticPolicy._predict at 0x79d13ea20940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79d13ea209d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79d13ea20a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79d13ea20af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79d13ebafe80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711175434829596013, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2AxryPzmW65aLgOnzRtTXFgvG5zJIDugAAgD8AAIA/M96lPEhvmbr1MV05q6p5MyF7CLo1iny4AACAPwAAgD8Aqhq+UR6AP4F/w70FJ6a+EQPOvU50CrwAAAAAAAAAALLLhb7uzEw/cR4qPpPArb4jONW9LC/LPQAAAAAAAAAAALTAO7fnOj9dBFY9lFOWvgrPEjwJHbY8AAAAAAAAAADAccu9giitP25Fzb4lR7O+NEUHvtjPd74AAAAAAAAAAOpslT4Brwc/bIcovuK+oL5TAQE+Vrj2vQAAAAAAAAAAwy6nPpZ+Ez+GuzG+NnDCvl5mTT4giX29AAAAAAAAAADN4Yg96SaWP4I2gT46D+K+EBqUPedAqz0AAAAAAAAAADP7aDuxPbU/SijuPZ6bRT3B74+6xeJOOwAAAAAAAAAA2m/LPcuI0j51t8Q81UujvjpXYz0DhVA9AAAAAAAAAACtG2M+cyBVP5gQkbxAB8u+LXFCPu+8sb0AAAAAAAAAAJqlWr1s5gQ+Z4IWPTM7kL4Ld9I7eu3AvAAAAAAAAAAAZq/OPFybZ7o6m4c1Jo+KMOEQfzqb/bm0AACAPwAAgD+Afh+9VEjivBo9xb2ZKK69+vlIPvg3hj4AAIA/AACAPxorEb3X2zO7AACFPCOlmDy3kzC8/yCDPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBBcTWXkYKMAWyUTV0BjAF0lEdAmoLwgcLjP3V9lChoBkdAbDhTIeYD1WgHTSMBaAhHQJqDNuQ6p5x1fZQoaAZHQHD3SJGe+VVoB01UAWgIR0Cag4SElE7XdX2UKGgGR0BxzV5/smfHaAdNMAFoCEdAmoPoXKr7wnV9lChoBkdAcmqb3oLXtmgHTQ8BaAhHQJqFXTjNpud1fZQoaAZHQHBK9OuaF25oB00rAWgIR0CahePRiPQwdX2UKGgGR0BxSabNKRMfaAdNHAFoCEdAmoZAwTM7l3V9lChoBkdAcN1Ku0TlDGgHTRQBaAhHQJqHZKHwgDB1fZQoaAZHQHCKm0mdAgRoB014AWgIR0Cah74QjD8+dX2UKGgGR0Bv76w+t8u0aAdNfAFoCEdAmomsd5prUXV9lChoBkdAbQTgw482aWgHTTEBaAhHQJqKa/etSyd1fZQoaAZHQG/lf/3nIQxoB00EAmgIR0CaizXlr/KhdX2UKGgGR0BvRsAaNuLraAdNyAFoCEdAmozR3NcGDHV9lChoBkdAcDohAGB4EGgHTTEBaAhHQJqNOmCROlB1fZQoaAZHQHDJgEMb3oNoB00iAWgIR0CajUzH0btJdX2UKGgGR0BxGoPatcOcaAdNIQFoCEdAmo3ujRD1G3V9lChoBkdAcVI6uW8h92gHTWgBaAhHQJqORwT/Q0J1fZQoaAZHQHI2UN4JNTNoB003AWgIR0CajkUkOZssdX2UKGgGR0BxUkCaJAMVaAdNggJoCEdAmo7hXXAdn3V9lChoBkdAcLYUHY6GQGgHS/9oCEdAmo8BNRFZxXV9lChoBkdAcK+88La24WgHTUQBaAhHQJqQxhhH9WJ1fZQoaAZHQHDV/ZElVtJoB00PAWgIR0CakNgKF7D3dX2UKGgGR0BwupvwVj7RaAdNpgFoCEdAmpEcSf16FHV9lChoBkdAcoWsA/9pAWgHTV4BaAhHQJqRGmj0tiB1fZQoaAZHQHFlmhysCDFoB00TAWgIR0Cakw+3H7xedX2UKGgGR0Bvc0gW8AaOaAdNMQFoCEdAmpNZDRc/uHV9lChoBkdAb6GyHEdeY2gHTQcBaAhHQJqTaTgVGkN1fZQoaAZHQHBLgnc+JP9oB02UAWgIR0CalHAi3XqadX2UKGgGR0BwTOqo60Y1aAdNEwFoCEdAmpWIvalDW3V9lChoBkdAcXMznied1GgHTTcBaAhHQJqXFU2kzoF1fZQoaAZHQHKN2y5Zr59oB00cAWgIR0CamFjCpFTedX2UKGgGR0Bvc5q7AckuaAdNZQFoCEdAmpjNtIkJKXV9lChoBkdAcfhO5avA5GgHTU4BaAhHQJqZOh24d6t1fZQoaAZHQHBT+fVZs9BoB00sAWgIR0CamVMRHww1dX2UKGgGR0Bt6BhlUZNxaAdNXQFoCEdAmpprRjSXt3V9lChoBkdAcICfra/RFGgHTRMBaAhHQJqbUHlfZ291fZQoaAZHQHBpjkp7TlVoB00eAWgIR0Cam1Hu7YkFdX2UKGgGR0BuUthuwX67aAdNMAFoCEdAmpwfH5rP+nV9lChoBkdAcURoGY8dP2gHTZoBaAhHQJqc87HQyAR1fZQoaAZHQHJ36Ezwc5toB01CAWgIR0CanS2BreqJdX2UKGgGR0BwbQU1yeZoaAdNNgFoCEdAmp/0BGQSz3V9lChoBkdAcj4YyO7xu2gHTTYBaAhHQJqgC5RTCLx1fZQoaAZHQG/Tf6O5rgxoB00iAWgIR0CaoKPU8V59dX2UKGgGR0Bvxd6HCXQdaAdNUwFoCEdAmqDsuWa+e3V9lChoBkdAcZEtozvZy2gHTRkBaAhHQJqh27QLNOd1fZQoaAZHQHDCdnoPkJdoB00RAWgIR0Cao/7Z39rHdX2UKGgGR0BwtOu9vjwQaAdNNQFoCEdAmqQZcPe54HV9lChoBkdAcC86p5u63GgHTSMBaAhHQJqkTFuNxVB1fZQoaAZHQEY5vitJWeZoB00FAWgIR0CapLhAnlXBdX2UKGgGR0BxmjDXOGCaaAdNNQFoCEdAmqVmGRFI/nV9lChoBkdAcAne+mFajmgHS/5oCEdAmrgP0/W1+nV9lChoBkdAcMpPAfuCw2gHTVwBaAhHQJq4Kwqy4Wl1fZQoaAZHQG4dp17pmmNoB00kAWgIR0CauGnXumaZdX2UKGgGR0BxZHAqNIbwaAdNQAFoCEdAmrijYZl4DHV9lChoBkdATWWh7E5yVGgHS9JoCEdAmrlXcpLEk3V9lChoBkdAcQ5nFo+OfmgHTYwBaAhHQJq7AtOEdvN1fZQoaAZHQHIohjOLR8doB00eAWgIR0CauzD8tPHldX2UKGgGR0Bxfr7oB7u2aAdNPgFoCEdAmrwc/lhgE3V9lChoBkdARWQb6xgRb2gHS8RoCEdAmrz8r3CbdHV9lChoBkdAcNuaEi+tbWgHTTQBaAhHQJq9HhXKbKB1fZQoaAZHQEgyZXuE25xoB0vjaAhHQJq/YVLzwtt1fZQoaAZHQHKpB3u/k/9oB01JAWgIR0CawDvE0iyIdX2UKGgGR0BwBt25hBqsaAdL/2gIR0CawJb7j1f3dX2UKGgGR0BvjYYixFAnaAdNawFoCEdAmsHQI+nqFHV9lChoBkdASU8Jx//ecmgHS8toCEdAmsJhMSK3u3V9lChoBkdAbEkXIlt0m2gHTd0BaAhHQJrCbWqcVgx1fZQoaAZHQHG9H5BTn7poB019AWgIR0Cawv19fCyhdX2UKGgGR0BwRFuk1uR+aAdNTwFoCEdAmsPbu6VdHHV9lChoBkdAcJsvKU3XI2gHTVQBaAhHQJrETMC9ytF1fZQoaAZHQHAPn9itq59oB03DAWgIR0CaxJR+z+m4dX2UKGgGR0BucvmLcbiqaAdNGQFoCEdAmsTSF49ovnV9lChoBkdAcWgsS00FbGgHTVEBaAhHQJrE8J3PiUB1fZQoaAZHQHBrWjsUqQRoB00cAWgIR0CaxscsDnvEdX2UKGgGR0Bw4Kogmqo7aAdNVAFoCEdAmshlopQUH3V9lChoBkdAcWjLjPv8ZWgHTRsBaAhHQJrIzZbpu/F1fZQoaAZHQHGT/KQq7RRoB00ZAWgIR0CayXqWTot+dX2UKGgGR0Bv1LtTkyULaAdNIwFoCEdAmsy9L127nXV9lChoBkdAcVIRk3CKrWgHTdIBaAhHQJrMywQlKK51fZQoaAZHQHDXePzWf9RoB003AWgIR0CazPPfKp1idX2UKGgGR0BxIQY2sJY1aAdNYwFoCEdAms2ZWaMJhXV9lChoBkdAUnW1WsA/92gHS/RoCEdAms4x8hLXc3V9lChoBkdAbQ2NI9TxXmgHTTcBaAhHQJrOm+7Dl5p1fZQoaAZHQG3+riMo+fRoB00sAWgIR0Caz+aakRBedX2UKGgGR0BsYWXNTtLMaAdNPgFoCEdAmtAffO2RaHV9lChoBkdAcVxYKpkwvmgHTW8BaAhHQJrQZU6xPft1fZQoaAZHQG+h6TOgQH1oB01GAWgIR0Ca0aJXQtz0dX2UKGgGR0BVKz9sJpnIaAdN6ANoCEdAmtNFByCFsnV9lChoBkdAcf/YCQtBfWgHTY0BaAhHQJrUVXmvGId1fZQoaAZHQHLfpEpiI+JoB01NAWgIR0Ca1PafBeoldX2UKGgGR0Bwrww9JSR9aAdNKAFoCEdAmtWauGKyfXV9lChoBkdAcZX2Jzkp7WgHTVgBaAhHQJrXx3JPqLV1fZQoaAZHQHB6x+az/qBoB00jAWgIR0Ca2XiwSrYHdX2UKGgGR0Bwko0HhS9/aAdNFwFoCEdAmtm7jtG/e3V9lChoBkdAcGFjoZAIIGgHS/ZoCEdAmtnvjCHh0nV9lChoBkdAcrknmq5sj2gHTUgBaAhHQJraLurp7kZ1fZQoaAZHQHFvjvZyuIRoB01TAWgIR0Ca2o67ulXSdX2UKGgGR0BwO6QPqcEvaAdNRQFoCEdAmtsAPuogm3V9lChoBkdAQdEQXhwVCWgHS9poCEdAmtwKCHymRHV9lChoBkdAclNSQYDT0GgHTUcBaAhHQJrcIwRGtp51fZQoaAZHQHMbf9UCJXRoB03bAWgIR0Ca3LLKFIuodWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}