UltimoUno commited on
Commit
af92de1
·
verified ·
1 Parent(s): d7bae43

Uploaded checkpoint-4000

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: deepseek-ai/deepseek-math-7b-base
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.8.2
adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "deepseek-ai/deepseek-math-7b-base",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 256,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v_proj",
23
+ "gate_proj",
24
+ "k_proj",
25
+ "up_proj",
26
+ "down_proj",
27
+ "q_proj",
28
+ "o_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_rslora": false
32
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f943cf168f81c0b4780998ccd2f2d9014f0660b61d51810facd73cee3cccb0c0
3
+ size 599711112
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5cffc2ef316bcb6051b160c2468da1dcdd022fe44218fca749ef1c194e87bc46
3
+ size 1199663358
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e0fd7345e7c48813165769aa7e7cd76e4d3dead3c8d53b1316b6dfc4883adfb
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:948007778af790ba1e8b2a9e06653de83530a4349973e96237fb52799c05c2d4
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,2837 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.4344629729245113,
5
+ "eval_steps": 2000,
6
+ "global_step": 4000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 0.9492120146751404,
14
+ "learning_rate": 1.0000000000000002e-06,
15
+ "loss": 0.9769,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.01,
20
+ "grad_norm": 1.344916582107544,
21
+ "learning_rate": 2.0000000000000003e-06,
22
+ "loss": 1.0718,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.01,
27
+ "grad_norm": 0.6680417060852051,
28
+ "learning_rate": 3e-06,
29
+ "loss": 0.8901,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.01,
34
+ "grad_norm": 0.8369797468185425,
35
+ "learning_rate": 4.000000000000001e-06,
36
+ "loss": 0.9398,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.02,
41
+ "grad_norm": 0.5738756656646729,
42
+ "learning_rate": 5e-06,
43
+ "loss": 0.9152,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.02,
48
+ "grad_norm": 1.028475284576416,
49
+ "learning_rate": 6e-06,
50
+ "loss": 0.849,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.03,
55
+ "grad_norm": 1.2893372774124146,
56
+ "learning_rate": 7e-06,
57
+ "loss": 0.7312,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.03,
62
+ "grad_norm": 0.8779547810554504,
63
+ "learning_rate": 8.000000000000001e-06,
64
+ "loss": 0.6707,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.03,
69
+ "grad_norm": 0.8972748517990112,
70
+ "learning_rate": 9e-06,
71
+ "loss": 0.6413,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.04,
76
+ "grad_norm": 1.505399227142334,
77
+ "learning_rate": 1e-05,
78
+ "loss": 0.6129,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.04,
83
+ "grad_norm": 0.6442121267318726,
84
+ "learning_rate": 9.989898989898991e-06,
85
+ "loss": 0.5579,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.04,
90
+ "grad_norm": 0.623290479183197,
91
+ "learning_rate": 9.97979797979798e-06,
92
+ "loss": 0.6022,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.05,
97
+ "grad_norm": 0.7216657996177673,
98
+ "learning_rate": 9.96969696969697e-06,
99
+ "loss": 0.5481,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.05,
104
+ "grad_norm": 0.7031328678131104,
105
+ "learning_rate": 9.95959595959596e-06,
106
+ "loss": 0.5594,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.05,
111
+ "grad_norm": 0.7411965727806091,
112
+ "learning_rate": 9.94949494949495e-06,
113
+ "loss": 0.6241,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.06,
118
+ "grad_norm": 0.8735277652740479,
119
+ "learning_rate": 9.939393939393939e-06,
120
+ "loss": 0.498,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.06,
125
+ "grad_norm": 1.1062073707580566,
126
+ "learning_rate": 9.92929292929293e-06,
127
+ "loss": 0.6463,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.06,
132
+ "grad_norm": 0.7930333614349365,
133
+ "learning_rate": 9.91919191919192e-06,
134
+ "loss": 0.6231,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.07,
139
+ "grad_norm": 0.8774802684783936,
140
+ "learning_rate": 9.90909090909091e-06,
141
+ "loss": 0.5895,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.07,
146
+ "grad_norm": 0.929542064666748,
147
+ "learning_rate": 9.8989898989899e-06,
148
+ "loss": 0.632,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.08,
153
+ "grad_norm": 0.6024735569953918,
154
+ "learning_rate": 9.88888888888889e-06,
155
+ "loss": 0.5682,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.08,
160
+ "grad_norm": 0.5887441635131836,
161
+ "learning_rate": 9.87878787878788e-06,
162
+ "loss": 0.5192,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.08,
167
+ "grad_norm": 0.7813496589660645,
168
+ "learning_rate": 9.86868686868687e-06,
169
+ "loss": 0.5841,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.09,
174
+ "grad_norm": 0.5949407815933228,
175
+ "learning_rate": 9.85858585858586e-06,
176
+ "loss": 0.5263,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.09,
181
+ "grad_norm": 0.8114556670188904,
182
+ "learning_rate": 9.84848484848485e-06,
183
+ "loss": 0.5513,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.09,
188
+ "grad_norm": 0.7692855596542358,
189
+ "learning_rate": 9.838383838383839e-06,
190
+ "loss": 0.5217,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.1,
195
+ "grad_norm": 0.8319826126098633,
196
+ "learning_rate": 9.828282828282829e-06,
197
+ "loss": 0.4386,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.1,
202
+ "grad_norm": 0.6725042462348938,
203
+ "learning_rate": 9.81818181818182e-06,
204
+ "loss": 0.4919,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.1,
209
+ "grad_norm": 0.779315173625946,
210
+ "learning_rate": 9.80808080808081e-06,
211
+ "loss": 0.5281,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.11,
216
+ "grad_norm": 0.8005223274230957,
217
+ "learning_rate": 9.797979797979798e-06,
218
+ "loss": 0.5206,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.11,
223
+ "grad_norm": 0.6395801901817322,
224
+ "learning_rate": 9.787878787878788e-06,
225
+ "loss": 0.474,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.11,
230
+ "grad_norm": 1.1016992330551147,
231
+ "learning_rate": 9.777777777777779e-06,
232
+ "loss": 0.5403,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.12,
237
+ "grad_norm": 1.395189881324768,
238
+ "learning_rate": 9.767676767676767e-06,
239
+ "loss": 0.5181,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.12,
244
+ "grad_norm": 0.801499605178833,
245
+ "learning_rate": 9.757575757575758e-06,
246
+ "loss": 0.5296,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.13,
251
+ "grad_norm": 0.7606889605522156,
252
+ "learning_rate": 9.747474747474748e-06,
253
+ "loss": 0.5406,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.13,
258
+ "grad_norm": 0.580170750617981,
259
+ "learning_rate": 9.737373737373738e-06,
260
+ "loss": 0.541,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.13,
265
+ "grad_norm": 0.6730871796607971,
266
+ "learning_rate": 9.727272727272728e-06,
267
+ "loss": 0.5665,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.14,
272
+ "grad_norm": 1.240430474281311,
273
+ "learning_rate": 9.717171717171719e-06,
274
+ "loss": 0.5148,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.14,
279
+ "grad_norm": 0.9439683556556702,
280
+ "learning_rate": 9.707070707070709e-06,
281
+ "loss": 0.513,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.14,
286
+ "grad_norm": 0.6674547791481018,
287
+ "learning_rate": 9.696969696969698e-06,
288
+ "loss": 0.5202,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.15,
293
+ "grad_norm": 0.8516045808792114,
294
+ "learning_rate": 9.686868686868688e-06,
295
+ "loss": 0.5162,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.15,
300
+ "grad_norm": 0.8700432181358337,
301
+ "learning_rate": 9.676767676767678e-06,
302
+ "loss": 0.5392,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.15,
307
+ "grad_norm": 0.5687388777732849,
308
+ "learning_rate": 9.666666666666667e-06,
309
+ "loss": 0.5106,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.16,
314
+ "grad_norm": 1.2382631301879883,
315
+ "learning_rate": 9.656565656565657e-06,
316
+ "loss": 0.5074,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.16,
321
+ "grad_norm": 0.8921974301338196,
322
+ "learning_rate": 9.646464646464647e-06,
323
+ "loss": 0.561,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.16,
328
+ "grad_norm": 1.3508048057556152,
329
+ "learning_rate": 9.636363636363638e-06,
330
+ "loss": 0.5484,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.17,
335
+ "grad_norm": 1.1822205781936646,
336
+ "learning_rate": 9.626262626262626e-06,
337
+ "loss": 0.5719,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.17,
342
+ "grad_norm": 0.6617271304130554,
343
+ "learning_rate": 9.616161616161616e-06,
344
+ "loss": 0.535,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.18,
349
+ "grad_norm": 0.6614571809768677,
350
+ "learning_rate": 9.606060606060607e-06,
351
+ "loss": 0.4549,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.18,
356
+ "grad_norm": 0.8642953038215637,
357
+ "learning_rate": 9.595959595959597e-06,
358
+ "loss": 0.4789,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.18,
363
+ "grad_norm": 0.614743173122406,
364
+ "learning_rate": 9.585858585858586e-06,
365
+ "loss": 0.4854,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.19,
370
+ "grad_norm": 0.970829427242279,
371
+ "learning_rate": 9.575757575757576e-06,
372
+ "loss": 0.5196,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.19,
377
+ "grad_norm": 0.7311980128288269,
378
+ "learning_rate": 9.565656565656566e-06,
379
+ "loss": 0.5106,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.19,
384
+ "grad_norm": 0.765849769115448,
385
+ "learning_rate": 9.555555555555556e-06,
386
+ "loss": 0.5782,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.2,
391
+ "grad_norm": 1.0889312028884888,
392
+ "learning_rate": 9.545454545454547e-06,
393
+ "loss": 0.5824,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.2,
398
+ "grad_norm": 0.7402384877204895,
399
+ "learning_rate": 9.535353535353537e-06,
400
+ "loss": 0.5005,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.2,
405
+ "grad_norm": 0.707028329372406,
406
+ "learning_rate": 9.525252525252526e-06,
407
+ "loss": 0.5233,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.21,
412
+ "grad_norm": 0.8338315486907959,
413
+ "learning_rate": 9.515151515151516e-06,
414
+ "loss": 0.4694,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.21,
419
+ "grad_norm": 0.7450662851333618,
420
+ "learning_rate": 9.505050505050506e-06,
421
+ "loss": 0.4762,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.22,
426
+ "grad_norm": 0.7595840692520142,
427
+ "learning_rate": 9.494949494949497e-06,
428
+ "loss": 0.5018,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.22,
433
+ "grad_norm": 0.5880123376846313,
434
+ "learning_rate": 9.484848484848485e-06,
435
+ "loss": 0.5228,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.22,
440
+ "grad_norm": 0.9635146260261536,
441
+ "learning_rate": 9.474747474747475e-06,
442
+ "loss": 0.4987,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.23,
447
+ "grad_norm": 1.1274373531341553,
448
+ "learning_rate": 9.464646464646466e-06,
449
+ "loss": 0.5085,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.23,
454
+ "grad_norm": 1.1324831247329712,
455
+ "learning_rate": 9.454545454545456e-06,
456
+ "loss": 0.504,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.23,
461
+ "grad_norm": 0.5410157442092896,
462
+ "learning_rate": 9.444444444444445e-06,
463
+ "loss": 0.4619,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.24,
468
+ "grad_norm": 0.7583281993865967,
469
+ "learning_rate": 9.434343434343435e-06,
470
+ "loss": 0.5162,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.24,
475
+ "grad_norm": 0.6546668410301208,
476
+ "learning_rate": 9.424242424242425e-06,
477
+ "loss": 0.4969,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.24,
482
+ "grad_norm": 0.6070376634597778,
483
+ "learning_rate": 9.414141414141414e-06,
484
+ "loss": 0.4805,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.25,
489
+ "grad_norm": 1.0108693838119507,
490
+ "learning_rate": 9.404040404040404e-06,
491
+ "loss": 0.4808,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.25,
496
+ "grad_norm": 0.8799183368682861,
497
+ "learning_rate": 9.393939393939396e-06,
498
+ "loss": 0.5082,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.25,
503
+ "grad_norm": 1.3432070016860962,
504
+ "learning_rate": 9.383838383838385e-06,
505
+ "loss": 0.4353,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.26,
510
+ "grad_norm": 0.6518195271492004,
511
+ "learning_rate": 9.373737373737375e-06,
512
+ "loss": 0.4933,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.26,
517
+ "grad_norm": 0.6736329793930054,
518
+ "learning_rate": 9.363636363636365e-06,
519
+ "loss": 0.5342,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.27,
524
+ "grad_norm": 0.776785135269165,
525
+ "learning_rate": 9.353535353535354e-06,
526
+ "loss": 0.5162,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.27,
531
+ "grad_norm": 0.9443957805633545,
532
+ "learning_rate": 9.343434343434344e-06,
533
+ "loss": 0.4486,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.27,
538
+ "grad_norm": 0.8882728815078735,
539
+ "learning_rate": 9.333333333333334e-06,
540
+ "loss": 0.4774,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.28,
545
+ "grad_norm": 0.819239616394043,
546
+ "learning_rate": 9.323232323232325e-06,
547
+ "loss": 0.5,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.28,
552
+ "grad_norm": 0.8829065561294556,
553
+ "learning_rate": 9.313131313131313e-06,
554
+ "loss": 0.4655,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.28,
559
+ "grad_norm": 1.1993345022201538,
560
+ "learning_rate": 9.303030303030303e-06,
561
+ "loss": 0.5392,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.29,
566
+ "grad_norm": 0.681409478187561,
567
+ "learning_rate": 9.292929292929294e-06,
568
+ "loss": 0.5076,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.29,
573
+ "grad_norm": 1.075088381767273,
574
+ "learning_rate": 9.282828282828284e-06,
575
+ "loss": 0.4953,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.29,
580
+ "grad_norm": 0.7040195465087891,
581
+ "learning_rate": 9.272727272727273e-06,
582
+ "loss": 0.5596,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.3,
587
+ "grad_norm": 1.1210192441940308,
588
+ "learning_rate": 9.262626262626263e-06,
589
+ "loss": 0.5299,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.3,
594
+ "grad_norm": 0.583011269569397,
595
+ "learning_rate": 9.252525252525253e-06,
596
+ "loss": 0.497,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.3,
601
+ "grad_norm": 0.6583887338638306,
602
+ "learning_rate": 9.242424242424244e-06,
603
+ "loss": 0.5556,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.31,
608
+ "grad_norm": 0.8040810227394104,
609
+ "learning_rate": 9.232323232323232e-06,
610
+ "loss": 0.5257,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.31,
615
+ "grad_norm": 0.9269919991493225,
616
+ "learning_rate": 9.222222222222224e-06,
617
+ "loss": 0.4421,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.32,
622
+ "grad_norm": 0.9947918653488159,
623
+ "learning_rate": 9.212121212121213e-06,
624
+ "loss": 0.5297,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.32,
629
+ "grad_norm": 0.6900811791419983,
630
+ "learning_rate": 9.202020202020203e-06,
631
+ "loss": 0.4833,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.32,
636
+ "grad_norm": 0.8033557534217834,
637
+ "learning_rate": 9.191919191919193e-06,
638
+ "loss": 0.4894,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.33,
643
+ "grad_norm": 0.635124683380127,
644
+ "learning_rate": 9.181818181818184e-06,
645
+ "loss": 0.4554,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.33,
650
+ "grad_norm": 0.7293840646743774,
651
+ "learning_rate": 9.171717171717172e-06,
652
+ "loss": 0.4693,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.33,
657
+ "grad_norm": 0.7628031373023987,
658
+ "learning_rate": 9.161616161616162e-06,
659
+ "loss": 0.5181,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.34,
664
+ "grad_norm": 1.0783181190490723,
665
+ "learning_rate": 9.151515151515153e-06,
666
+ "loss": 0.4632,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.34,
671
+ "grad_norm": 0.5340379476547241,
672
+ "learning_rate": 9.141414141414143e-06,
673
+ "loss": 0.4664,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.34,
678
+ "grad_norm": 0.9029551148414612,
679
+ "learning_rate": 9.131313131313132e-06,
680
+ "loss": 0.5333,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.35,
685
+ "grad_norm": 0.7257616519927979,
686
+ "learning_rate": 9.121212121212122e-06,
687
+ "loss": 0.5168,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.35,
692
+ "grad_norm": 0.761325478553772,
693
+ "learning_rate": 9.111111111111112e-06,
694
+ "loss": 0.5606,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.36,
699
+ "grad_norm": 0.8582245707511902,
700
+ "learning_rate": 9.1010101010101e-06,
701
+ "loss": 0.4332,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.36,
706
+ "grad_norm": 0.8598415851593018,
707
+ "learning_rate": 9.090909090909091e-06,
708
+ "loss": 0.5884,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.36,
713
+ "grad_norm": 0.8292351365089417,
714
+ "learning_rate": 9.080808080808081e-06,
715
+ "loss": 0.4848,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.37,
720
+ "grad_norm": 1.0559266805648804,
721
+ "learning_rate": 9.070707070707072e-06,
722
+ "loss": 0.4588,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.37,
727
+ "grad_norm": 0.6693033576011658,
728
+ "learning_rate": 9.06060606060606e-06,
729
+ "loss": 0.5333,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.37,
734
+ "grad_norm": 0.8114706873893738,
735
+ "learning_rate": 9.050505050505052e-06,
736
+ "loss": 0.5166,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.38,
741
+ "grad_norm": 0.8659316301345825,
742
+ "learning_rate": 9.040404040404042e-06,
743
+ "loss": 0.4504,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.38,
748
+ "grad_norm": 0.9083582758903503,
749
+ "learning_rate": 9.030303030303031e-06,
750
+ "loss": 0.5611,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.38,
755
+ "grad_norm": 0.6691566109657288,
756
+ "learning_rate": 9.020202020202021e-06,
757
+ "loss": 0.5192,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.39,
762
+ "grad_norm": 0.5889317989349365,
763
+ "learning_rate": 9.010101010101012e-06,
764
+ "loss": 0.4515,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.39,
769
+ "grad_norm": 0.9215373992919922,
770
+ "learning_rate": 9e-06,
771
+ "loss": 0.4776,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.39,
776
+ "grad_norm": 0.7439729571342468,
777
+ "learning_rate": 8.98989898989899e-06,
778
+ "loss": 0.4656,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.4,
783
+ "grad_norm": 1.1780657768249512,
784
+ "learning_rate": 8.97979797979798e-06,
785
+ "loss": 0.4933,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.4,
790
+ "grad_norm": 0.9686077833175659,
791
+ "learning_rate": 8.969696969696971e-06,
792
+ "loss": 0.5167,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.41,
797
+ "grad_norm": 0.829994261264801,
798
+ "learning_rate": 8.95959595959596e-06,
799
+ "loss": 0.491,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.41,
804
+ "grad_norm": 0.6313827633857727,
805
+ "learning_rate": 8.94949494949495e-06,
806
+ "loss": 0.4864,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.41,
811
+ "grad_norm": 0.596537709236145,
812
+ "learning_rate": 8.93939393939394e-06,
813
+ "loss": 0.4807,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.42,
818
+ "grad_norm": 0.8714896440505981,
819
+ "learning_rate": 8.92929292929293e-06,
820
+ "loss": 0.512,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.42,
825
+ "grad_norm": 0.9466399550437927,
826
+ "learning_rate": 8.919191919191919e-06,
827
+ "loss": 0.4883,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.42,
832
+ "grad_norm": 0.7337993383407593,
833
+ "learning_rate": 8.90909090909091e-06,
834
+ "loss": 0.4757,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.43,
839
+ "grad_norm": 0.7684504985809326,
840
+ "learning_rate": 8.8989898989899e-06,
841
+ "loss": 0.5224,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.43,
846
+ "grad_norm": 0.6455299854278564,
847
+ "learning_rate": 8.888888888888888e-06,
848
+ "loss": 0.5346,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.43,
853
+ "grad_norm": 0.7279661893844604,
854
+ "learning_rate": 8.87878787878788e-06,
855
+ "loss": 0.4845,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.44,
860
+ "grad_norm": 0.7996425032615662,
861
+ "learning_rate": 8.86868686868687e-06,
862
+ "loss": 0.4812,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.44,
867
+ "grad_norm": 0.7299336791038513,
868
+ "learning_rate": 8.85858585858586e-06,
869
+ "loss": 0.4985,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.44,
874
+ "grad_norm": 0.7462379932403564,
875
+ "learning_rate": 8.84848484848485e-06,
876
+ "loss": 0.5742,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.45,
881
+ "grad_norm": 0.7165307998657227,
882
+ "learning_rate": 8.83838383838384e-06,
883
+ "loss": 0.4627,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.45,
888
+ "grad_norm": 0.7239411473274231,
889
+ "learning_rate": 8.82828282828283e-06,
890
+ "loss": 0.5469,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.46,
895
+ "grad_norm": 0.5761345028877258,
896
+ "learning_rate": 8.818181818181819e-06,
897
+ "loss": 0.4391,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 0.46,
902
+ "grad_norm": 0.8207817077636719,
903
+ "learning_rate": 8.808080808080809e-06,
904
+ "loss": 0.5477,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 0.46,
909
+ "grad_norm": 0.9331930875778198,
910
+ "learning_rate": 8.7979797979798e-06,
911
+ "loss": 0.4975,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 0.47,
916
+ "grad_norm": 1.0401968955993652,
917
+ "learning_rate": 8.787878787878788e-06,
918
+ "loss": 0.5149,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 0.47,
923
+ "grad_norm": 0.7848596572875977,
924
+ "learning_rate": 8.777777777777778e-06,
925
+ "loss": 0.5448,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 0.47,
930
+ "grad_norm": 1.5979989767074585,
931
+ "learning_rate": 8.767676767676768e-06,
932
+ "loss": 0.4861,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 0.48,
937
+ "grad_norm": 0.7734145522117615,
938
+ "learning_rate": 8.757575757575759e-06,
939
+ "loss": 0.5955,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 0.48,
944
+ "grad_norm": 0.9506089687347412,
945
+ "learning_rate": 8.747474747474747e-06,
946
+ "loss": 0.5212,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 0.48,
951
+ "grad_norm": 0.7118907570838928,
952
+ "learning_rate": 8.737373737373738e-06,
953
+ "loss": 0.474,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 0.49,
958
+ "grad_norm": 1.0045005083084106,
959
+ "learning_rate": 8.727272727272728e-06,
960
+ "loss": 0.509,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 0.49,
965
+ "grad_norm": 1.1283302307128906,
966
+ "learning_rate": 8.717171717171718e-06,
967
+ "loss": 0.5096,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 0.49,
972
+ "grad_norm": 1.3884085416793823,
973
+ "learning_rate": 8.707070707070707e-06,
974
+ "loss": 0.5008,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 0.5,
979
+ "grad_norm": 0.7452566027641296,
980
+ "learning_rate": 8.696969696969699e-06,
981
+ "loss": 0.4792,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 0.5,
986
+ "grad_norm": 1.3434414863586426,
987
+ "learning_rate": 8.686868686868687e-06,
988
+ "loss": 0.5385,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 0.51,
993
+ "grad_norm": 0.9600369930267334,
994
+ "learning_rate": 8.676767676767678e-06,
995
+ "loss": 0.4743,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 0.51,
1000
+ "grad_norm": 0.6895599961280823,
1001
+ "learning_rate": 8.666666666666668e-06,
1002
+ "loss": 0.5639,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 0.51,
1007
+ "grad_norm": 0.9460670948028564,
1008
+ "learning_rate": 8.656565656565658e-06,
1009
+ "loss": 0.5957,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 0.52,
1014
+ "grad_norm": 0.6181186437606812,
1015
+ "learning_rate": 8.646464646464647e-06,
1016
+ "loss": 0.5032,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 0.52,
1021
+ "grad_norm": 0.6992838382720947,
1022
+ "learning_rate": 8.636363636363637e-06,
1023
+ "loss": 0.5371,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 0.52,
1028
+ "grad_norm": 0.6007195711135864,
1029
+ "learning_rate": 8.626262626262627e-06,
1030
+ "loss": 0.4446,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 0.53,
1035
+ "grad_norm": 0.8171485662460327,
1036
+ "learning_rate": 8.616161616161618e-06,
1037
+ "loss": 0.4835,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 0.53,
1042
+ "grad_norm": 0.9369902610778809,
1043
+ "learning_rate": 8.606060606060606e-06,
1044
+ "loss": 0.5437,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 0.53,
1049
+ "grad_norm": 1.1894652843475342,
1050
+ "learning_rate": 8.595959595959596e-06,
1051
+ "loss": 0.5151,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 0.54,
1056
+ "grad_norm": 0.694837212562561,
1057
+ "learning_rate": 8.585858585858587e-06,
1058
+ "loss": 0.488,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 0.54,
1063
+ "grad_norm": 0.8813522458076477,
1064
+ "learning_rate": 8.575757575757575e-06,
1065
+ "loss": 0.5129,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 0.55,
1070
+ "grad_norm": 1.0121350288391113,
1071
+ "learning_rate": 8.565656565656566e-06,
1072
+ "loss": 0.5165,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 0.55,
1077
+ "grad_norm": 0.7935439944267273,
1078
+ "learning_rate": 8.555555555555556e-06,
1079
+ "loss": 0.4736,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 0.55,
1084
+ "grad_norm": 0.7670463919639587,
1085
+ "learning_rate": 8.545454545454546e-06,
1086
+ "loss": 0.5214,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 0.56,
1091
+ "grad_norm": 1.212927222251892,
1092
+ "learning_rate": 8.535353535353535e-06,
1093
+ "loss": 0.5125,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 0.56,
1098
+ "grad_norm": 0.7966919541358948,
1099
+ "learning_rate": 8.525252525252527e-06,
1100
+ "loss": 0.4823,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 0.56,
1105
+ "grad_norm": 1.0880494117736816,
1106
+ "learning_rate": 8.515151515151517e-06,
1107
+ "loss": 0.478,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 0.57,
1112
+ "grad_norm": 1.0308737754821777,
1113
+ "learning_rate": 8.505050505050506e-06,
1114
+ "loss": 0.5368,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 0.57,
1119
+ "grad_norm": 0.7291275262832642,
1120
+ "learning_rate": 8.494949494949496e-06,
1121
+ "loss": 0.4838,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 0.57,
1126
+ "grad_norm": 0.6764214038848877,
1127
+ "learning_rate": 8.484848484848486e-06,
1128
+ "loss": 0.4882,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 0.58,
1133
+ "grad_norm": 1.051628828048706,
1134
+ "learning_rate": 8.474747474747475e-06,
1135
+ "loss": 0.4564,
1136
+ "step": 1610
1137
+ },
1138
+ {
1139
+ "epoch": 0.58,
1140
+ "grad_norm": 0.8614614605903625,
1141
+ "learning_rate": 8.464646464646465e-06,
1142
+ "loss": 0.5632,
1143
+ "step": 1620
1144
+ },
1145
+ {
1146
+ "epoch": 0.58,
1147
+ "grad_norm": 1.1045228242874146,
1148
+ "learning_rate": 8.454545454545455e-06,
1149
+ "loss": 0.4535,
1150
+ "step": 1630
1151
+ },
1152
+ {
1153
+ "epoch": 0.59,
1154
+ "grad_norm": 0.8160364031791687,
1155
+ "learning_rate": 8.444444444444446e-06,
1156
+ "loss": 0.4964,
1157
+ "step": 1640
1158
+ },
1159
+ {
1160
+ "epoch": 0.59,
1161
+ "grad_norm": 0.7776429653167725,
1162
+ "learning_rate": 8.434343434343434e-06,
1163
+ "loss": 0.4554,
1164
+ "step": 1650
1165
+ },
1166
+ {
1167
+ "epoch": 0.6,
1168
+ "grad_norm": 0.7589672207832336,
1169
+ "learning_rate": 8.424242424242425e-06,
1170
+ "loss": 0.4458,
1171
+ "step": 1660
1172
+ },
1173
+ {
1174
+ "epoch": 0.6,
1175
+ "grad_norm": 0.825233519077301,
1176
+ "learning_rate": 8.414141414141415e-06,
1177
+ "loss": 0.4814,
1178
+ "step": 1670
1179
+ },
1180
+ {
1181
+ "epoch": 0.6,
1182
+ "grad_norm": 0.8226912617683411,
1183
+ "learning_rate": 8.404040404040405e-06,
1184
+ "loss": 0.4892,
1185
+ "step": 1680
1186
+ },
1187
+ {
1188
+ "epoch": 0.61,
1189
+ "grad_norm": 0.9273412823677063,
1190
+ "learning_rate": 8.393939393939394e-06,
1191
+ "loss": 0.5143,
1192
+ "step": 1690
1193
+ },
1194
+ {
1195
+ "epoch": 0.61,
1196
+ "grad_norm": 0.9043828248977661,
1197
+ "learning_rate": 8.383838383838384e-06,
1198
+ "loss": 0.4598,
1199
+ "step": 1700
1200
+ },
1201
+ {
1202
+ "epoch": 0.61,
1203
+ "grad_norm": 2.2596805095672607,
1204
+ "learning_rate": 8.373737373737374e-06,
1205
+ "loss": 0.5415,
1206
+ "step": 1710
1207
+ },
1208
+ {
1209
+ "epoch": 0.62,
1210
+ "grad_norm": 1.0041202306747437,
1211
+ "learning_rate": 8.363636363636365e-06,
1212
+ "loss": 0.5899,
1213
+ "step": 1720
1214
+ },
1215
+ {
1216
+ "epoch": 0.62,
1217
+ "grad_norm": 0.9188370704650879,
1218
+ "learning_rate": 8.353535353535355e-06,
1219
+ "loss": 0.5119,
1220
+ "step": 1730
1221
+ },
1222
+ {
1223
+ "epoch": 0.62,
1224
+ "grad_norm": 0.7778961062431335,
1225
+ "learning_rate": 8.343434343434345e-06,
1226
+ "loss": 0.5237,
1227
+ "step": 1740
1228
+ },
1229
+ {
1230
+ "epoch": 0.63,
1231
+ "grad_norm": 0.7438649535179138,
1232
+ "learning_rate": 8.333333333333334e-06,
1233
+ "loss": 0.4999,
1234
+ "step": 1750
1235
+ },
1236
+ {
1237
+ "epoch": 0.63,
1238
+ "grad_norm": 0.5649489760398865,
1239
+ "learning_rate": 8.323232323232324e-06,
1240
+ "loss": 0.552,
1241
+ "step": 1760
1242
+ },
1243
+ {
1244
+ "epoch": 0.63,
1245
+ "grad_norm": 0.5625451803207397,
1246
+ "learning_rate": 8.313131313131314e-06,
1247
+ "loss": 0.4549,
1248
+ "step": 1770
1249
+ },
1250
+ {
1251
+ "epoch": 0.64,
1252
+ "grad_norm": 1.3711755275726318,
1253
+ "learning_rate": 8.303030303030305e-06,
1254
+ "loss": 0.445,
1255
+ "step": 1780
1256
+ },
1257
+ {
1258
+ "epoch": 0.64,
1259
+ "grad_norm": 1.4339165687561035,
1260
+ "learning_rate": 8.292929292929293e-06,
1261
+ "loss": 0.4975,
1262
+ "step": 1790
1263
+ },
1264
+ {
1265
+ "epoch": 0.65,
1266
+ "grad_norm": 0.8113200068473816,
1267
+ "learning_rate": 8.282828282828283e-06,
1268
+ "loss": 0.5288,
1269
+ "step": 1800
1270
+ },
1271
+ {
1272
+ "epoch": 0.65,
1273
+ "grad_norm": 1.1567124128341675,
1274
+ "learning_rate": 8.272727272727274e-06,
1275
+ "loss": 0.4669,
1276
+ "step": 1810
1277
+ },
1278
+ {
1279
+ "epoch": 0.65,
1280
+ "grad_norm": 0.7966761589050293,
1281
+ "learning_rate": 8.262626262626264e-06,
1282
+ "loss": 0.4856,
1283
+ "step": 1820
1284
+ },
1285
+ {
1286
+ "epoch": 0.66,
1287
+ "grad_norm": 1.0181186199188232,
1288
+ "learning_rate": 8.252525252525253e-06,
1289
+ "loss": 0.4576,
1290
+ "step": 1830
1291
+ },
1292
+ {
1293
+ "epoch": 0.66,
1294
+ "grad_norm": 0.611566960811615,
1295
+ "learning_rate": 8.242424242424243e-06,
1296
+ "loss": 0.496,
1297
+ "step": 1840
1298
+ },
1299
+ {
1300
+ "epoch": 0.66,
1301
+ "grad_norm": 0.6482832431793213,
1302
+ "learning_rate": 8.232323232323233e-06,
1303
+ "loss": 0.4601,
1304
+ "step": 1850
1305
+ },
1306
+ {
1307
+ "epoch": 0.67,
1308
+ "grad_norm": 0.7550622820854187,
1309
+ "learning_rate": 8.222222222222222e-06,
1310
+ "loss": 0.5036,
1311
+ "step": 1860
1312
+ },
1313
+ {
1314
+ "epoch": 0.67,
1315
+ "grad_norm": 0.7835694551467896,
1316
+ "learning_rate": 8.212121212121212e-06,
1317
+ "loss": 0.5617,
1318
+ "step": 1870
1319
+ },
1320
+ {
1321
+ "epoch": 0.67,
1322
+ "grad_norm": 0.7926068305969238,
1323
+ "learning_rate": 8.202020202020202e-06,
1324
+ "loss": 0.4327,
1325
+ "step": 1880
1326
+ },
1327
+ {
1328
+ "epoch": 0.68,
1329
+ "grad_norm": 0.786851167678833,
1330
+ "learning_rate": 8.191919191919193e-06,
1331
+ "loss": 0.4654,
1332
+ "step": 1890
1333
+ },
1334
+ {
1335
+ "epoch": 0.68,
1336
+ "grad_norm": 0.9023171663284302,
1337
+ "learning_rate": 8.181818181818183e-06,
1338
+ "loss": 0.5426,
1339
+ "step": 1900
1340
+ },
1341
+ {
1342
+ "epoch": 0.68,
1343
+ "grad_norm": 1.0345401763916016,
1344
+ "learning_rate": 8.171717171717173e-06,
1345
+ "loss": 0.52,
1346
+ "step": 1910
1347
+ },
1348
+ {
1349
+ "epoch": 0.69,
1350
+ "grad_norm": 0.945004940032959,
1351
+ "learning_rate": 8.161616161616162e-06,
1352
+ "loss": 0.5512,
1353
+ "step": 1920
1354
+ },
1355
+ {
1356
+ "epoch": 0.69,
1357
+ "grad_norm": 0.658362090587616,
1358
+ "learning_rate": 8.151515151515152e-06,
1359
+ "loss": 0.513,
1360
+ "step": 1930
1361
+ },
1362
+ {
1363
+ "epoch": 0.7,
1364
+ "grad_norm": 0.6390058398246765,
1365
+ "learning_rate": 8.141414141414142e-06,
1366
+ "loss": 0.5652,
1367
+ "step": 1940
1368
+ },
1369
+ {
1370
+ "epoch": 0.7,
1371
+ "grad_norm": 0.7705880403518677,
1372
+ "learning_rate": 8.131313131313133e-06,
1373
+ "loss": 0.4929,
1374
+ "step": 1950
1375
+ },
1376
+ {
1377
+ "epoch": 0.7,
1378
+ "grad_norm": 0.5400047302246094,
1379
+ "learning_rate": 8.121212121212121e-06,
1380
+ "loss": 0.4932,
1381
+ "step": 1960
1382
+ },
1383
+ {
1384
+ "epoch": 0.71,
1385
+ "grad_norm": 0.9128320217132568,
1386
+ "learning_rate": 8.111111111111112e-06,
1387
+ "loss": 0.5085,
1388
+ "step": 1970
1389
+ },
1390
+ {
1391
+ "epoch": 0.71,
1392
+ "grad_norm": 1.0019017457962036,
1393
+ "learning_rate": 8.101010101010102e-06,
1394
+ "loss": 0.4552,
1395
+ "step": 1980
1396
+ },
1397
+ {
1398
+ "epoch": 0.71,
1399
+ "grad_norm": 0.818148136138916,
1400
+ "learning_rate": 8.090909090909092e-06,
1401
+ "loss": 0.5517,
1402
+ "step": 1990
1403
+ },
1404
+ {
1405
+ "epoch": 0.72,
1406
+ "grad_norm": 0.8848174810409546,
1407
+ "learning_rate": 8.08080808080808e-06,
1408
+ "loss": 0.5094,
1409
+ "step": 2000
1410
+ },
1411
+ {
1412
+ "epoch": 0.72,
1413
+ "eval_loss": 0.6485620141029358,
1414
+ "eval_runtime": 340.5095,
1415
+ "eval_samples_per_second": 2.937,
1416
+ "eval_steps_per_second": 2.937,
1417
+ "step": 2000
1418
+ },
1419
+ {
1420
+ "epoch": 0.72,
1421
+ "grad_norm": 0.9389908313751221,
1422
+ "learning_rate": 8.070707070707071e-06,
1423
+ "loss": 0.5228,
1424
+ "step": 2010
1425
+ },
1426
+ {
1427
+ "epoch": 0.72,
1428
+ "grad_norm": 0.901942789554596,
1429
+ "learning_rate": 8.060606060606061e-06,
1430
+ "loss": 0.4322,
1431
+ "step": 2020
1432
+ },
1433
+ {
1434
+ "epoch": 0.73,
1435
+ "grad_norm": 0.6482081413269043,
1436
+ "learning_rate": 8.050505050505052e-06,
1437
+ "loss": 0.4123,
1438
+ "step": 2030
1439
+ },
1440
+ {
1441
+ "epoch": 0.73,
1442
+ "grad_norm": 1.188251256942749,
1443
+ "learning_rate": 8.04040404040404e-06,
1444
+ "loss": 0.3863,
1445
+ "step": 2040
1446
+ },
1447
+ {
1448
+ "epoch": 0.74,
1449
+ "grad_norm": 0.6995498538017273,
1450
+ "learning_rate": 8.03030303030303e-06,
1451
+ "loss": 0.4834,
1452
+ "step": 2050
1453
+ },
1454
+ {
1455
+ "epoch": 0.74,
1456
+ "grad_norm": 0.7236158847808838,
1457
+ "learning_rate": 8.02020202020202e-06,
1458
+ "loss": 0.5279,
1459
+ "step": 2060
1460
+ },
1461
+ {
1462
+ "epoch": 0.74,
1463
+ "grad_norm": 0.6699327826499939,
1464
+ "learning_rate": 8.010101010101011e-06,
1465
+ "loss": 0.5294,
1466
+ "step": 2070
1467
+ },
1468
+ {
1469
+ "epoch": 0.75,
1470
+ "grad_norm": 0.7172369956970215,
1471
+ "learning_rate": 8.000000000000001e-06,
1472
+ "loss": 0.4882,
1473
+ "step": 2080
1474
+ },
1475
+ {
1476
+ "epoch": 0.75,
1477
+ "grad_norm": 0.7741474509239197,
1478
+ "learning_rate": 7.989898989898992e-06,
1479
+ "loss": 0.4928,
1480
+ "step": 2090
1481
+ },
1482
+ {
1483
+ "epoch": 0.75,
1484
+ "grad_norm": 0.7598722577095032,
1485
+ "learning_rate": 7.97979797979798e-06,
1486
+ "loss": 0.477,
1487
+ "step": 2100
1488
+ },
1489
+ {
1490
+ "epoch": 0.76,
1491
+ "grad_norm": 0.7849257588386536,
1492
+ "learning_rate": 7.96969696969697e-06,
1493
+ "loss": 0.497,
1494
+ "step": 2110
1495
+ },
1496
+ {
1497
+ "epoch": 0.76,
1498
+ "grad_norm": 0.7920640707015991,
1499
+ "learning_rate": 7.95959595959596e-06,
1500
+ "loss": 0.4974,
1501
+ "step": 2120
1502
+ },
1503
+ {
1504
+ "epoch": 0.76,
1505
+ "grad_norm": 0.7092992067337036,
1506
+ "learning_rate": 7.949494949494951e-06,
1507
+ "loss": 0.5234,
1508
+ "step": 2130
1509
+ },
1510
+ {
1511
+ "epoch": 0.77,
1512
+ "grad_norm": 0.8268713355064392,
1513
+ "learning_rate": 7.93939393939394e-06,
1514
+ "loss": 0.3966,
1515
+ "step": 2140
1516
+ },
1517
+ {
1518
+ "epoch": 0.77,
1519
+ "grad_norm": 1.1046198606491089,
1520
+ "learning_rate": 7.92929292929293e-06,
1521
+ "loss": 0.452,
1522
+ "step": 2150
1523
+ },
1524
+ {
1525
+ "epoch": 0.77,
1526
+ "grad_norm": 0.8234682083129883,
1527
+ "learning_rate": 7.91919191919192e-06,
1528
+ "loss": 0.5364,
1529
+ "step": 2160
1530
+ },
1531
+ {
1532
+ "epoch": 0.78,
1533
+ "grad_norm": 0.8524590730667114,
1534
+ "learning_rate": 7.909090909090909e-06,
1535
+ "loss": 0.3922,
1536
+ "step": 2170
1537
+ },
1538
+ {
1539
+ "epoch": 0.78,
1540
+ "grad_norm": 0.964320182800293,
1541
+ "learning_rate": 7.898989898989899e-06,
1542
+ "loss": 0.4991,
1543
+ "step": 2180
1544
+ },
1545
+ {
1546
+ "epoch": 0.79,
1547
+ "grad_norm": 1.2167562246322632,
1548
+ "learning_rate": 7.88888888888889e-06,
1549
+ "loss": 0.4237,
1550
+ "step": 2190
1551
+ },
1552
+ {
1553
+ "epoch": 0.79,
1554
+ "grad_norm": 0.893385648727417,
1555
+ "learning_rate": 7.87878787878788e-06,
1556
+ "loss": 0.503,
1557
+ "step": 2200
1558
+ },
1559
+ {
1560
+ "epoch": 0.79,
1561
+ "grad_norm": 1.4781544208526611,
1562
+ "learning_rate": 7.868686868686868e-06,
1563
+ "loss": 0.4084,
1564
+ "step": 2210
1565
+ },
1566
+ {
1567
+ "epoch": 0.8,
1568
+ "grad_norm": 1.0282255411148071,
1569
+ "learning_rate": 7.858585858585859e-06,
1570
+ "loss": 0.5531,
1571
+ "step": 2220
1572
+ },
1573
+ {
1574
+ "epoch": 0.8,
1575
+ "grad_norm": 0.5956897139549255,
1576
+ "learning_rate": 7.848484848484849e-06,
1577
+ "loss": 0.421,
1578
+ "step": 2230
1579
+ },
1580
+ {
1581
+ "epoch": 0.8,
1582
+ "grad_norm": 0.674526572227478,
1583
+ "learning_rate": 7.838383838383839e-06,
1584
+ "loss": 0.5221,
1585
+ "step": 2240
1586
+ },
1587
+ {
1588
+ "epoch": 0.81,
1589
+ "grad_norm": 0.7602831125259399,
1590
+ "learning_rate": 7.82828282828283e-06,
1591
+ "loss": 0.4826,
1592
+ "step": 2250
1593
+ },
1594
+ {
1595
+ "epoch": 0.81,
1596
+ "grad_norm": 0.637804388999939,
1597
+ "learning_rate": 7.81818181818182e-06,
1598
+ "loss": 0.4965,
1599
+ "step": 2260
1600
+ },
1601
+ {
1602
+ "epoch": 0.81,
1603
+ "grad_norm": 1.0468482971191406,
1604
+ "learning_rate": 7.808080808080808e-06,
1605
+ "loss": 0.4352,
1606
+ "step": 2270
1607
+ },
1608
+ {
1609
+ "epoch": 0.82,
1610
+ "grad_norm": 0.8232371807098389,
1611
+ "learning_rate": 7.797979797979799e-06,
1612
+ "loss": 0.4314,
1613
+ "step": 2280
1614
+ },
1615
+ {
1616
+ "epoch": 0.82,
1617
+ "grad_norm": 1.2416061162948608,
1618
+ "learning_rate": 7.787878787878789e-06,
1619
+ "loss": 0.4559,
1620
+ "step": 2290
1621
+ },
1622
+ {
1623
+ "epoch": 0.82,
1624
+ "grad_norm": 0.7591462135314941,
1625
+ "learning_rate": 7.77777777777778e-06,
1626
+ "loss": 0.5443,
1627
+ "step": 2300
1628
+ },
1629
+ {
1630
+ "epoch": 0.83,
1631
+ "grad_norm": 0.7769295573234558,
1632
+ "learning_rate": 7.767676767676768e-06,
1633
+ "loss": 0.4915,
1634
+ "step": 2310
1635
+ },
1636
+ {
1637
+ "epoch": 0.83,
1638
+ "grad_norm": 0.7007648944854736,
1639
+ "learning_rate": 7.757575757575758e-06,
1640
+ "loss": 0.4102,
1641
+ "step": 2320
1642
+ },
1643
+ {
1644
+ "epoch": 0.84,
1645
+ "grad_norm": 0.8512477874755859,
1646
+ "learning_rate": 7.747474747474748e-06,
1647
+ "loss": 0.488,
1648
+ "step": 2330
1649
+ },
1650
+ {
1651
+ "epoch": 0.84,
1652
+ "grad_norm": 1.0806859731674194,
1653
+ "learning_rate": 7.737373737373739e-06,
1654
+ "loss": 0.4482,
1655
+ "step": 2340
1656
+ },
1657
+ {
1658
+ "epoch": 0.84,
1659
+ "grad_norm": 0.8377964496612549,
1660
+ "learning_rate": 7.727272727272727e-06,
1661
+ "loss": 0.4714,
1662
+ "step": 2350
1663
+ },
1664
+ {
1665
+ "epoch": 0.85,
1666
+ "grad_norm": 0.9962327480316162,
1667
+ "learning_rate": 7.717171717171717e-06,
1668
+ "loss": 0.4354,
1669
+ "step": 2360
1670
+ },
1671
+ {
1672
+ "epoch": 0.85,
1673
+ "grad_norm": 0.7444832921028137,
1674
+ "learning_rate": 7.707070707070708e-06,
1675
+ "loss": 0.5651,
1676
+ "step": 2370
1677
+ },
1678
+ {
1679
+ "epoch": 0.85,
1680
+ "grad_norm": 0.7137871384620667,
1681
+ "learning_rate": 7.696969696969696e-06,
1682
+ "loss": 0.4773,
1683
+ "step": 2380
1684
+ },
1685
+ {
1686
+ "epoch": 0.86,
1687
+ "grad_norm": 0.8521376252174377,
1688
+ "learning_rate": 7.686868686868687e-06,
1689
+ "loss": 0.4961,
1690
+ "step": 2390
1691
+ },
1692
+ {
1693
+ "epoch": 0.86,
1694
+ "grad_norm": 0.9442594647407532,
1695
+ "learning_rate": 7.676767676767677e-06,
1696
+ "loss": 0.4627,
1697
+ "step": 2400
1698
+ },
1699
+ {
1700
+ "epoch": 0.86,
1701
+ "grad_norm": 1.169360876083374,
1702
+ "learning_rate": 7.666666666666667e-06,
1703
+ "loss": 0.4601,
1704
+ "step": 2410
1705
+ },
1706
+ {
1707
+ "epoch": 0.87,
1708
+ "grad_norm": 0.8181536197662354,
1709
+ "learning_rate": 7.656565656565658e-06,
1710
+ "loss": 0.4635,
1711
+ "step": 2420
1712
+ },
1713
+ {
1714
+ "epoch": 0.87,
1715
+ "grad_norm": 0.9113516211509705,
1716
+ "learning_rate": 7.646464646464648e-06,
1717
+ "loss": 0.4219,
1718
+ "step": 2430
1719
+ },
1720
+ {
1721
+ "epoch": 0.88,
1722
+ "grad_norm": 1.26584792137146,
1723
+ "learning_rate": 7.636363636363638e-06,
1724
+ "loss": 0.5165,
1725
+ "step": 2440
1726
+ },
1727
+ {
1728
+ "epoch": 0.88,
1729
+ "grad_norm": 0.6445989608764648,
1730
+ "learning_rate": 7.6262626262626275e-06,
1731
+ "loss": 0.4755,
1732
+ "step": 2450
1733
+ },
1734
+ {
1735
+ "epoch": 0.88,
1736
+ "grad_norm": 0.7551100850105286,
1737
+ "learning_rate": 7.616161616161617e-06,
1738
+ "loss": 0.4976,
1739
+ "step": 2460
1740
+ },
1741
+ {
1742
+ "epoch": 0.89,
1743
+ "grad_norm": 1.0578736066818237,
1744
+ "learning_rate": 7.606060606060606e-06,
1745
+ "loss": 0.524,
1746
+ "step": 2470
1747
+ },
1748
+ {
1749
+ "epoch": 0.89,
1750
+ "grad_norm": 1.0422261953353882,
1751
+ "learning_rate": 7.595959595959597e-06,
1752
+ "loss": 0.5136,
1753
+ "step": 2480
1754
+ },
1755
+ {
1756
+ "epoch": 0.89,
1757
+ "grad_norm": 1.0524308681488037,
1758
+ "learning_rate": 7.585858585858586e-06,
1759
+ "loss": 0.5058,
1760
+ "step": 2490
1761
+ },
1762
+ {
1763
+ "epoch": 0.9,
1764
+ "grad_norm": 0.8334051966667175,
1765
+ "learning_rate": 7.5757575757575764e-06,
1766
+ "loss": 0.4487,
1767
+ "step": 2500
1768
+ },
1769
+ {
1770
+ "epoch": 0.9,
1771
+ "grad_norm": 0.9613906145095825,
1772
+ "learning_rate": 7.565656565656566e-06,
1773
+ "loss": 0.5055,
1774
+ "step": 2510
1775
+ },
1776
+ {
1777
+ "epoch": 0.9,
1778
+ "grad_norm": 0.9347293972969055,
1779
+ "learning_rate": 7.555555555555556e-06,
1780
+ "loss": 0.4672,
1781
+ "step": 2520
1782
+ },
1783
+ {
1784
+ "epoch": 0.91,
1785
+ "grad_norm": 1.0498868227005005,
1786
+ "learning_rate": 7.545454545454546e-06,
1787
+ "loss": 0.4336,
1788
+ "step": 2530
1789
+ },
1790
+ {
1791
+ "epoch": 0.91,
1792
+ "grad_norm": 1.0005099773406982,
1793
+ "learning_rate": 7.535353535353536e-06,
1794
+ "loss": 0.523,
1795
+ "step": 2540
1796
+ },
1797
+ {
1798
+ "epoch": 0.91,
1799
+ "grad_norm": 1.027875542640686,
1800
+ "learning_rate": 7.525252525252525e-06,
1801
+ "loss": 0.5088,
1802
+ "step": 2550
1803
+ },
1804
+ {
1805
+ "epoch": 0.92,
1806
+ "grad_norm": 0.7960171103477478,
1807
+ "learning_rate": 7.515151515151516e-06,
1808
+ "loss": 0.4636,
1809
+ "step": 2560
1810
+ },
1811
+ {
1812
+ "epoch": 0.92,
1813
+ "grad_norm": 1.1945937871932983,
1814
+ "learning_rate": 7.505050505050505e-06,
1815
+ "loss": 0.4736,
1816
+ "step": 2570
1817
+ },
1818
+ {
1819
+ "epoch": 0.93,
1820
+ "grad_norm": 0.9849948287010193,
1821
+ "learning_rate": 7.494949494949496e-06,
1822
+ "loss": 0.4766,
1823
+ "step": 2580
1824
+ },
1825
+ {
1826
+ "epoch": 0.93,
1827
+ "grad_norm": 0.7381343841552734,
1828
+ "learning_rate": 7.484848484848486e-06,
1829
+ "loss": 0.4427,
1830
+ "step": 2590
1831
+ },
1832
+ {
1833
+ "epoch": 0.93,
1834
+ "grad_norm": 0.964435875415802,
1835
+ "learning_rate": 7.474747474747476e-06,
1836
+ "loss": 0.5179,
1837
+ "step": 2600
1838
+ },
1839
+ {
1840
+ "epoch": 0.94,
1841
+ "grad_norm": 1.0832308530807495,
1842
+ "learning_rate": 7.464646464646465e-06,
1843
+ "loss": 0.5179,
1844
+ "step": 2610
1845
+ },
1846
+ {
1847
+ "epoch": 0.94,
1848
+ "grad_norm": 0.8275842070579529,
1849
+ "learning_rate": 7.454545454545456e-06,
1850
+ "loss": 0.3957,
1851
+ "step": 2620
1852
+ },
1853
+ {
1854
+ "epoch": 0.94,
1855
+ "grad_norm": 1.7618038654327393,
1856
+ "learning_rate": 7.444444444444445e-06,
1857
+ "loss": 0.4626,
1858
+ "step": 2630
1859
+ },
1860
+ {
1861
+ "epoch": 0.95,
1862
+ "grad_norm": 0.9667460918426514,
1863
+ "learning_rate": 7.434343434343435e-06,
1864
+ "loss": 0.4338,
1865
+ "step": 2640
1866
+ },
1867
+ {
1868
+ "epoch": 0.95,
1869
+ "grad_norm": 0.8243513107299805,
1870
+ "learning_rate": 7.424242424242425e-06,
1871
+ "loss": 0.496,
1872
+ "step": 2650
1873
+ },
1874
+ {
1875
+ "epoch": 0.95,
1876
+ "grad_norm": 0.8097424507141113,
1877
+ "learning_rate": 7.414141414141415e-06,
1878
+ "loss": 0.4911,
1879
+ "step": 2660
1880
+ },
1881
+ {
1882
+ "epoch": 0.96,
1883
+ "grad_norm": 1.219351053237915,
1884
+ "learning_rate": 7.4040404040404045e-06,
1885
+ "loss": 0.5163,
1886
+ "step": 2670
1887
+ },
1888
+ {
1889
+ "epoch": 0.96,
1890
+ "grad_norm": 0.7272489666938782,
1891
+ "learning_rate": 7.393939393939395e-06,
1892
+ "loss": 0.4783,
1893
+ "step": 2680
1894
+ },
1895
+ {
1896
+ "epoch": 0.96,
1897
+ "grad_norm": 0.9799202084541321,
1898
+ "learning_rate": 7.383838383838384e-06,
1899
+ "loss": 0.4638,
1900
+ "step": 2690
1901
+ },
1902
+ {
1903
+ "epoch": 0.97,
1904
+ "grad_norm": 1.1537474393844604,
1905
+ "learning_rate": 7.373737373737374e-06,
1906
+ "loss": 0.4184,
1907
+ "step": 2700
1908
+ },
1909
+ {
1910
+ "epoch": 0.97,
1911
+ "grad_norm": 0.750483512878418,
1912
+ "learning_rate": 7.363636363636364e-06,
1913
+ "loss": 0.4544,
1914
+ "step": 2710
1915
+ },
1916
+ {
1917
+ "epoch": 0.98,
1918
+ "grad_norm": 0.915256679058075,
1919
+ "learning_rate": 7.353535353535353e-06,
1920
+ "loss": 0.4579,
1921
+ "step": 2720
1922
+ },
1923
+ {
1924
+ "epoch": 0.98,
1925
+ "grad_norm": 1.0220776796340942,
1926
+ "learning_rate": 7.343434343434344e-06,
1927
+ "loss": 0.4568,
1928
+ "step": 2730
1929
+ },
1930
+ {
1931
+ "epoch": 0.98,
1932
+ "grad_norm": 1.0540516376495361,
1933
+ "learning_rate": 7.333333333333333e-06,
1934
+ "loss": 0.5228,
1935
+ "step": 2740
1936
+ },
1937
+ {
1938
+ "epoch": 0.99,
1939
+ "grad_norm": 2.014601230621338,
1940
+ "learning_rate": 7.323232323232324e-06,
1941
+ "loss": 0.4482,
1942
+ "step": 2750
1943
+ },
1944
+ {
1945
+ "epoch": 0.99,
1946
+ "grad_norm": 0.9005866646766663,
1947
+ "learning_rate": 7.3131313131313146e-06,
1948
+ "loss": 0.4868,
1949
+ "step": 2760
1950
+ },
1951
+ {
1952
+ "epoch": 0.99,
1953
+ "grad_norm": 1.0538028478622437,
1954
+ "learning_rate": 7.303030303030304e-06,
1955
+ "loss": 0.4884,
1956
+ "step": 2770
1957
+ },
1958
+ {
1959
+ "epoch": 1.0,
1960
+ "grad_norm": 0.9115027785301208,
1961
+ "learning_rate": 7.2929292929292934e-06,
1962
+ "loss": 0.4421,
1963
+ "step": 2780
1964
+ },
1965
+ {
1966
+ "epoch": 1.0,
1967
+ "grad_norm": 1.5715361833572388,
1968
+ "learning_rate": 7.282828282828284e-06,
1969
+ "loss": 0.4442,
1970
+ "step": 2790
1971
+ },
1972
+ {
1973
+ "epoch": 1.0,
1974
+ "grad_norm": 0.8492701649665833,
1975
+ "learning_rate": 7.272727272727273e-06,
1976
+ "loss": 0.4828,
1977
+ "step": 2800
1978
+ },
1979
+ {
1980
+ "epoch": 1.01,
1981
+ "grad_norm": 0.7459146976470947,
1982
+ "learning_rate": 7.2626262626262635e-06,
1983
+ "loss": 0.4649,
1984
+ "step": 2810
1985
+ },
1986
+ {
1987
+ "epoch": 1.01,
1988
+ "grad_norm": 0.6268482804298401,
1989
+ "learning_rate": 7.252525252525253e-06,
1990
+ "loss": 0.4521,
1991
+ "step": 2820
1992
+ },
1993
+ {
1994
+ "epoch": 1.01,
1995
+ "grad_norm": 0.9125592112541199,
1996
+ "learning_rate": 7.242424242424243e-06,
1997
+ "loss": 0.57,
1998
+ "step": 2830
1999
+ },
2000
+ {
2001
+ "epoch": 1.02,
2002
+ "grad_norm": 0.8162791132926941,
2003
+ "learning_rate": 7.232323232323233e-06,
2004
+ "loss": 0.4746,
2005
+ "step": 2840
2006
+ },
2007
+ {
2008
+ "epoch": 1.02,
2009
+ "grad_norm": 0.9345506429672241,
2010
+ "learning_rate": 7.222222222222223e-06,
2011
+ "loss": 0.4777,
2012
+ "step": 2850
2013
+ },
2014
+ {
2015
+ "epoch": 1.03,
2016
+ "grad_norm": 0.6382574439048767,
2017
+ "learning_rate": 7.212121212121212e-06,
2018
+ "loss": 0.4832,
2019
+ "step": 2860
2020
+ },
2021
+ {
2022
+ "epoch": 1.03,
2023
+ "grad_norm": 0.9409840703010559,
2024
+ "learning_rate": 7.202020202020203e-06,
2025
+ "loss": 0.4659,
2026
+ "step": 2870
2027
+ },
2028
+ {
2029
+ "epoch": 1.03,
2030
+ "grad_norm": 1.0053200721740723,
2031
+ "learning_rate": 7.191919191919192e-06,
2032
+ "loss": 0.4041,
2033
+ "step": 2880
2034
+ },
2035
+ {
2036
+ "epoch": 1.04,
2037
+ "grad_norm": 0.8394672870635986,
2038
+ "learning_rate": 7.181818181818182e-06,
2039
+ "loss": 0.4477,
2040
+ "step": 2890
2041
+ },
2042
+ {
2043
+ "epoch": 1.04,
2044
+ "grad_norm": 0.8685116171836853,
2045
+ "learning_rate": 7.171717171717172e-06,
2046
+ "loss": 0.4155,
2047
+ "step": 2900
2048
+ },
2049
+ {
2050
+ "epoch": 1.04,
2051
+ "grad_norm": 0.8150361776351929,
2052
+ "learning_rate": 7.161616161616162e-06,
2053
+ "loss": 0.3901,
2054
+ "step": 2910
2055
+ },
2056
+ {
2057
+ "epoch": 1.05,
2058
+ "grad_norm": 0.7799510955810547,
2059
+ "learning_rate": 7.151515151515152e-06,
2060
+ "loss": 0.4273,
2061
+ "step": 2920
2062
+ },
2063
+ {
2064
+ "epoch": 1.05,
2065
+ "grad_norm": 1.1197009086608887,
2066
+ "learning_rate": 7.141414141414143e-06,
2067
+ "loss": 0.447,
2068
+ "step": 2930
2069
+ },
2070
+ {
2071
+ "epoch": 1.05,
2072
+ "grad_norm": 0.8753387331962585,
2073
+ "learning_rate": 7.131313131313132e-06,
2074
+ "loss": 0.3847,
2075
+ "step": 2940
2076
+ },
2077
+ {
2078
+ "epoch": 1.06,
2079
+ "grad_norm": 0.9633245468139648,
2080
+ "learning_rate": 7.121212121212122e-06,
2081
+ "loss": 0.4985,
2082
+ "step": 2950
2083
+ },
2084
+ {
2085
+ "epoch": 1.06,
2086
+ "grad_norm": 1.0391559600830078,
2087
+ "learning_rate": 7.111111111111112e-06,
2088
+ "loss": 0.4476,
2089
+ "step": 2960
2090
+ },
2091
+ {
2092
+ "epoch": 1.07,
2093
+ "grad_norm": 0.9432191252708435,
2094
+ "learning_rate": 7.101010101010102e-06,
2095
+ "loss": 0.4669,
2096
+ "step": 2970
2097
+ },
2098
+ {
2099
+ "epoch": 1.07,
2100
+ "grad_norm": 1.078410267829895,
2101
+ "learning_rate": 7.0909090909090916e-06,
2102
+ "loss": 0.401,
2103
+ "step": 2980
2104
+ },
2105
+ {
2106
+ "epoch": 1.07,
2107
+ "grad_norm": 0.9405683875083923,
2108
+ "learning_rate": 7.080808080808082e-06,
2109
+ "loss": 0.4744,
2110
+ "step": 2990
2111
+ },
2112
+ {
2113
+ "epoch": 1.08,
2114
+ "grad_norm": 1.4189893007278442,
2115
+ "learning_rate": 7.070707070707071e-06,
2116
+ "loss": 0.4334,
2117
+ "step": 3000
2118
+ },
2119
+ {
2120
+ "epoch": 1.08,
2121
+ "grad_norm": 0.9169256091117859,
2122
+ "learning_rate": 7.060606060606061e-06,
2123
+ "loss": 0.4234,
2124
+ "step": 3010
2125
+ },
2126
+ {
2127
+ "epoch": 1.08,
2128
+ "grad_norm": 0.8117393851280212,
2129
+ "learning_rate": 7.050505050505051e-06,
2130
+ "loss": 0.4676,
2131
+ "step": 3020
2132
+ },
2133
+ {
2134
+ "epoch": 1.09,
2135
+ "grad_norm": 0.967890739440918,
2136
+ "learning_rate": 7.0404040404040404e-06,
2137
+ "loss": 0.4497,
2138
+ "step": 3030
2139
+ },
2140
+ {
2141
+ "epoch": 1.09,
2142
+ "grad_norm": 1.0548313856124878,
2143
+ "learning_rate": 7.030303030303031e-06,
2144
+ "loss": 0.4429,
2145
+ "step": 3040
2146
+ },
2147
+ {
2148
+ "epoch": 1.09,
2149
+ "grad_norm": 1.071303367614746,
2150
+ "learning_rate": 7.02020202020202e-06,
2151
+ "loss": 0.4251,
2152
+ "step": 3050
2153
+ },
2154
+ {
2155
+ "epoch": 1.1,
2156
+ "grad_norm": 1.1772490739822388,
2157
+ "learning_rate": 7.0101010101010105e-06,
2158
+ "loss": 0.4897,
2159
+ "step": 3060
2160
+ },
2161
+ {
2162
+ "epoch": 1.1,
2163
+ "grad_norm": 1.3903322219848633,
2164
+ "learning_rate": 7e-06,
2165
+ "loss": 0.4953,
2166
+ "step": 3070
2167
+ },
2168
+ {
2169
+ "epoch": 1.1,
2170
+ "grad_norm": 0.8463280200958252,
2171
+ "learning_rate": 6.98989898989899e-06,
2172
+ "loss": 0.3923,
2173
+ "step": 3080
2174
+ },
2175
+ {
2176
+ "epoch": 1.11,
2177
+ "grad_norm": 1.146888256072998,
2178
+ "learning_rate": 6.979797979797981e-06,
2179
+ "loss": 0.4723,
2180
+ "step": 3090
2181
+ },
2182
+ {
2183
+ "epoch": 1.11,
2184
+ "grad_norm": 1.0877312421798706,
2185
+ "learning_rate": 6.969696969696971e-06,
2186
+ "loss": 0.4822,
2187
+ "step": 3100
2188
+ },
2189
+ {
2190
+ "epoch": 1.12,
2191
+ "grad_norm": 0.7444977164268494,
2192
+ "learning_rate": 6.95959595959596e-06,
2193
+ "loss": 0.4591,
2194
+ "step": 3110
2195
+ },
2196
+ {
2197
+ "epoch": 1.12,
2198
+ "grad_norm": 0.7259607911109924,
2199
+ "learning_rate": 6.9494949494949505e-06,
2200
+ "loss": 0.4564,
2201
+ "step": 3120
2202
+ },
2203
+ {
2204
+ "epoch": 1.12,
2205
+ "grad_norm": 0.9535048604011536,
2206
+ "learning_rate": 6.93939393939394e-06,
2207
+ "loss": 0.4402,
2208
+ "step": 3130
2209
+ },
2210
+ {
2211
+ "epoch": 1.13,
2212
+ "grad_norm": 0.9428088068962097,
2213
+ "learning_rate": 6.92929292929293e-06,
2214
+ "loss": 0.4039,
2215
+ "step": 3140
2216
+ },
2217
+ {
2218
+ "epoch": 1.13,
2219
+ "grad_norm": 0.9858347177505493,
2220
+ "learning_rate": 6.91919191919192e-06,
2221
+ "loss": 0.4334,
2222
+ "step": 3150
2223
+ },
2224
+ {
2225
+ "epoch": 1.13,
2226
+ "grad_norm": 1.0837122201919556,
2227
+ "learning_rate": 6.90909090909091e-06,
2228
+ "loss": 0.3957,
2229
+ "step": 3160
2230
+ },
2231
+ {
2232
+ "epoch": 1.14,
2233
+ "grad_norm": 1.0605705976486206,
2234
+ "learning_rate": 6.898989898989899e-06,
2235
+ "loss": 0.4195,
2236
+ "step": 3170
2237
+ },
2238
+ {
2239
+ "epoch": 1.14,
2240
+ "grad_norm": 1.0856525897979736,
2241
+ "learning_rate": 6.88888888888889e-06,
2242
+ "loss": 0.4286,
2243
+ "step": 3180
2244
+ },
2245
+ {
2246
+ "epoch": 1.14,
2247
+ "grad_norm": 1.02509605884552,
2248
+ "learning_rate": 6.878787878787879e-06,
2249
+ "loss": 0.4413,
2250
+ "step": 3190
2251
+ },
2252
+ {
2253
+ "epoch": 1.15,
2254
+ "grad_norm": 0.8847616314888,
2255
+ "learning_rate": 6.868686868686869e-06,
2256
+ "loss": 0.4117,
2257
+ "step": 3200
2258
+ },
2259
+ {
2260
+ "epoch": 1.15,
2261
+ "grad_norm": 1.1464060544967651,
2262
+ "learning_rate": 6.858585858585859e-06,
2263
+ "loss": 0.44,
2264
+ "step": 3210
2265
+ },
2266
+ {
2267
+ "epoch": 1.15,
2268
+ "grad_norm": 0.9589990973472595,
2269
+ "learning_rate": 6.848484848484849e-06,
2270
+ "loss": 0.4896,
2271
+ "step": 3220
2272
+ },
2273
+ {
2274
+ "epoch": 1.16,
2275
+ "grad_norm": 1.080541968345642,
2276
+ "learning_rate": 6.8383838383838386e-06,
2277
+ "loss": 0.4203,
2278
+ "step": 3230
2279
+ },
2280
+ {
2281
+ "epoch": 1.16,
2282
+ "grad_norm": 1.3150702714920044,
2283
+ "learning_rate": 6.828282828282828e-06,
2284
+ "loss": 0.4213,
2285
+ "step": 3240
2286
+ },
2287
+ {
2288
+ "epoch": 1.17,
2289
+ "grad_norm": 1.0854105949401855,
2290
+ "learning_rate": 6.818181818181818e-06,
2291
+ "loss": 0.4538,
2292
+ "step": 3250
2293
+ },
2294
+ {
2295
+ "epoch": 1.17,
2296
+ "grad_norm": 0.7211188673973083,
2297
+ "learning_rate": 6.808080808080809e-06,
2298
+ "loss": 0.4332,
2299
+ "step": 3260
2300
+ },
2301
+ {
2302
+ "epoch": 1.17,
2303
+ "grad_norm": 1.0323004722595215,
2304
+ "learning_rate": 6.797979797979799e-06,
2305
+ "loss": 0.465,
2306
+ "step": 3270
2307
+ },
2308
+ {
2309
+ "epoch": 1.18,
2310
+ "grad_norm": 0.9176574349403381,
2311
+ "learning_rate": 6.787878787878789e-06,
2312
+ "loss": 0.4898,
2313
+ "step": 3280
2314
+ },
2315
+ {
2316
+ "epoch": 1.18,
2317
+ "grad_norm": 1.2033518552780151,
2318
+ "learning_rate": 6.777777777777779e-06,
2319
+ "loss": 0.4652,
2320
+ "step": 3290
2321
+ },
2322
+ {
2323
+ "epoch": 1.18,
2324
+ "grad_norm": 0.6069207191467285,
2325
+ "learning_rate": 6.767676767676769e-06,
2326
+ "loss": 0.4663,
2327
+ "step": 3300
2328
+ },
2329
+ {
2330
+ "epoch": 1.19,
2331
+ "grad_norm": 0.9627435803413391,
2332
+ "learning_rate": 6.757575757575758e-06,
2333
+ "loss": 0.4992,
2334
+ "step": 3310
2335
+ },
2336
+ {
2337
+ "epoch": 1.19,
2338
+ "grad_norm": 0.7333098649978638,
2339
+ "learning_rate": 6.747474747474749e-06,
2340
+ "loss": 0.4876,
2341
+ "step": 3320
2342
+ },
2343
+ {
2344
+ "epoch": 1.19,
2345
+ "grad_norm": 0.6735036969184875,
2346
+ "learning_rate": 6.737373737373738e-06,
2347
+ "loss": 0.4797,
2348
+ "step": 3330
2349
+ },
2350
+ {
2351
+ "epoch": 1.2,
2352
+ "grad_norm": 0.8416649699211121,
2353
+ "learning_rate": 6.7272727272727275e-06,
2354
+ "loss": 0.3889,
2355
+ "step": 3340
2356
+ },
2357
+ {
2358
+ "epoch": 1.2,
2359
+ "grad_norm": 1.227149486541748,
2360
+ "learning_rate": 6.717171717171718e-06,
2361
+ "loss": 0.4677,
2362
+ "step": 3350
2363
+ },
2364
+ {
2365
+ "epoch": 1.2,
2366
+ "grad_norm": 1.5126155614852905,
2367
+ "learning_rate": 6.707070707070707e-06,
2368
+ "loss": 0.4444,
2369
+ "step": 3360
2370
+ },
2371
+ {
2372
+ "epoch": 1.21,
2373
+ "grad_norm": 1.1622529029846191,
2374
+ "learning_rate": 6.6969696969696975e-06,
2375
+ "loss": 0.4372,
2376
+ "step": 3370
2377
+ },
2378
+ {
2379
+ "epoch": 1.21,
2380
+ "grad_norm": 0.975615918636322,
2381
+ "learning_rate": 6.686868686868687e-06,
2382
+ "loss": 0.4037,
2383
+ "step": 3380
2384
+ },
2385
+ {
2386
+ "epoch": 1.22,
2387
+ "grad_norm": 0.8992089033126831,
2388
+ "learning_rate": 6.676767676767677e-06,
2389
+ "loss": 0.3785,
2390
+ "step": 3390
2391
+ },
2392
+ {
2393
+ "epoch": 1.22,
2394
+ "grad_norm": 1.4439970254898071,
2395
+ "learning_rate": 6.666666666666667e-06,
2396
+ "loss": 0.5169,
2397
+ "step": 3400
2398
+ },
2399
+ {
2400
+ "epoch": 1.22,
2401
+ "grad_norm": 0.9601142406463623,
2402
+ "learning_rate": 6.656565656565657e-06,
2403
+ "loss": 0.4396,
2404
+ "step": 3410
2405
+ },
2406
+ {
2407
+ "epoch": 1.23,
2408
+ "grad_norm": 1.0457966327667236,
2409
+ "learning_rate": 6.646464646464646e-06,
2410
+ "loss": 0.4065,
2411
+ "step": 3420
2412
+ },
2413
+ {
2414
+ "epoch": 1.23,
2415
+ "grad_norm": 1.0014325380325317,
2416
+ "learning_rate": 6.6363636363636375e-06,
2417
+ "loss": 0.4616,
2418
+ "step": 3430
2419
+ },
2420
+ {
2421
+ "epoch": 1.23,
2422
+ "grad_norm": 1.3321492671966553,
2423
+ "learning_rate": 6.626262626262627e-06,
2424
+ "loss": 0.4164,
2425
+ "step": 3440
2426
+ },
2427
+ {
2428
+ "epoch": 1.24,
2429
+ "grad_norm": 0.9500308036804199,
2430
+ "learning_rate": 6.616161616161617e-06,
2431
+ "loss": 0.4156,
2432
+ "step": 3450
2433
+ },
2434
+ {
2435
+ "epoch": 1.24,
2436
+ "grad_norm": 1.1907135248184204,
2437
+ "learning_rate": 6.606060606060607e-06,
2438
+ "loss": 0.4353,
2439
+ "step": 3460
2440
+ },
2441
+ {
2442
+ "epoch": 1.24,
2443
+ "grad_norm": 1.7826789617538452,
2444
+ "learning_rate": 6.595959595959597e-06,
2445
+ "loss": 0.4764,
2446
+ "step": 3470
2447
+ },
2448
+ {
2449
+ "epoch": 1.25,
2450
+ "grad_norm": 1.0160069465637207,
2451
+ "learning_rate": 6.585858585858586e-06,
2452
+ "loss": 0.4594,
2453
+ "step": 3480
2454
+ },
2455
+ {
2456
+ "epoch": 1.25,
2457
+ "grad_norm": 1.0795533657073975,
2458
+ "learning_rate": 6.575757575757577e-06,
2459
+ "loss": 0.4557,
2460
+ "step": 3490
2461
+ },
2462
+ {
2463
+ "epoch": 1.26,
2464
+ "grad_norm": 1.2484716176986694,
2465
+ "learning_rate": 6.565656565656566e-06,
2466
+ "loss": 0.5057,
2467
+ "step": 3500
2468
+ },
2469
+ {
2470
+ "epoch": 1.26,
2471
+ "grad_norm": 1.6144826412200928,
2472
+ "learning_rate": 6.555555555555556e-06,
2473
+ "loss": 0.4554,
2474
+ "step": 3510
2475
+ },
2476
+ {
2477
+ "epoch": 1.26,
2478
+ "grad_norm": 1.3575657606124878,
2479
+ "learning_rate": 6.545454545454546e-06,
2480
+ "loss": 0.3373,
2481
+ "step": 3520
2482
+ },
2483
+ {
2484
+ "epoch": 1.27,
2485
+ "grad_norm": 0.9021044373512268,
2486
+ "learning_rate": 6.535353535353536e-06,
2487
+ "loss": 0.4765,
2488
+ "step": 3530
2489
+ },
2490
+ {
2491
+ "epoch": 1.27,
2492
+ "grad_norm": 1.0576077699661255,
2493
+ "learning_rate": 6.525252525252526e-06,
2494
+ "loss": 0.4344,
2495
+ "step": 3540
2496
+ },
2497
+ {
2498
+ "epoch": 1.27,
2499
+ "grad_norm": 1.0687928199768066,
2500
+ "learning_rate": 6.515151515151516e-06,
2501
+ "loss": 0.5022,
2502
+ "step": 3550
2503
+ },
2504
+ {
2505
+ "epoch": 1.28,
2506
+ "grad_norm": 0.9124734401702881,
2507
+ "learning_rate": 6.505050505050505e-06,
2508
+ "loss": 0.4133,
2509
+ "step": 3560
2510
+ },
2511
+ {
2512
+ "epoch": 1.28,
2513
+ "grad_norm": 0.8715507984161377,
2514
+ "learning_rate": 6.494949494949495e-06,
2515
+ "loss": 0.454,
2516
+ "step": 3570
2517
+ },
2518
+ {
2519
+ "epoch": 1.28,
2520
+ "grad_norm": 1.0889540910720825,
2521
+ "learning_rate": 6.484848484848485e-06,
2522
+ "loss": 0.443,
2523
+ "step": 3580
2524
+ },
2525
+ {
2526
+ "epoch": 1.29,
2527
+ "grad_norm": 0.9323639273643494,
2528
+ "learning_rate": 6.4747474747474745e-06,
2529
+ "loss": 0.4983,
2530
+ "step": 3590
2531
+ },
2532
+ {
2533
+ "epoch": 1.29,
2534
+ "grad_norm": 0.6946113109588623,
2535
+ "learning_rate": 6.464646464646466e-06,
2536
+ "loss": 0.4364,
2537
+ "step": 3600
2538
+ },
2539
+ {
2540
+ "epoch": 1.29,
2541
+ "grad_norm": 1.1879271268844604,
2542
+ "learning_rate": 6.454545454545456e-06,
2543
+ "loss": 0.4816,
2544
+ "step": 3610
2545
+ },
2546
+ {
2547
+ "epoch": 1.3,
2548
+ "grad_norm": 1.337172031402588,
2549
+ "learning_rate": 6.444444444444445e-06,
2550
+ "loss": 0.4963,
2551
+ "step": 3620
2552
+ },
2553
+ {
2554
+ "epoch": 1.3,
2555
+ "grad_norm": 0.9384005069732666,
2556
+ "learning_rate": 6.434343434343436e-06,
2557
+ "loss": 0.5185,
2558
+ "step": 3630
2559
+ },
2560
+ {
2561
+ "epoch": 1.31,
2562
+ "grad_norm": 1.2666473388671875,
2563
+ "learning_rate": 6.424242424242425e-06,
2564
+ "loss": 0.389,
2565
+ "step": 3640
2566
+ },
2567
+ {
2568
+ "epoch": 1.31,
2569
+ "grad_norm": 1.037668228149414,
2570
+ "learning_rate": 6.4141414141414145e-06,
2571
+ "loss": 0.4529,
2572
+ "step": 3650
2573
+ },
2574
+ {
2575
+ "epoch": 1.31,
2576
+ "grad_norm": 1.4652140140533447,
2577
+ "learning_rate": 6.404040404040405e-06,
2578
+ "loss": 0.3915,
2579
+ "step": 3660
2580
+ },
2581
+ {
2582
+ "epoch": 1.32,
2583
+ "grad_norm": 1.1823006868362427,
2584
+ "learning_rate": 6.393939393939394e-06,
2585
+ "loss": 0.5123,
2586
+ "step": 3670
2587
+ },
2588
+ {
2589
+ "epoch": 1.32,
2590
+ "grad_norm": 1.0706424713134766,
2591
+ "learning_rate": 6.3838383838383845e-06,
2592
+ "loss": 0.4989,
2593
+ "step": 3680
2594
+ },
2595
+ {
2596
+ "epoch": 1.32,
2597
+ "grad_norm": 0.9993262887001038,
2598
+ "learning_rate": 6.373737373737374e-06,
2599
+ "loss": 0.4268,
2600
+ "step": 3690
2601
+ },
2602
+ {
2603
+ "epoch": 1.33,
2604
+ "grad_norm": 0.9947906732559204,
2605
+ "learning_rate": 6.363636363636364e-06,
2606
+ "loss": 0.4246,
2607
+ "step": 3700
2608
+ },
2609
+ {
2610
+ "epoch": 1.33,
2611
+ "grad_norm": 0.8563311696052551,
2612
+ "learning_rate": 6.353535353535354e-06,
2613
+ "loss": 0.4439,
2614
+ "step": 3710
2615
+ },
2616
+ {
2617
+ "epoch": 1.33,
2618
+ "grad_norm": 1.2519429922103882,
2619
+ "learning_rate": 6.343434343434344e-06,
2620
+ "loss": 0.3973,
2621
+ "step": 3720
2622
+ },
2623
+ {
2624
+ "epoch": 1.34,
2625
+ "grad_norm": 1.2925148010253906,
2626
+ "learning_rate": 6.333333333333333e-06,
2627
+ "loss": 0.4179,
2628
+ "step": 3730
2629
+ },
2630
+ {
2631
+ "epoch": 1.34,
2632
+ "grad_norm": 1.1731756925582886,
2633
+ "learning_rate": 6.323232323232324e-06,
2634
+ "loss": 0.4748,
2635
+ "step": 3740
2636
+ },
2637
+ {
2638
+ "epoch": 1.34,
2639
+ "grad_norm": 1.030536413192749,
2640
+ "learning_rate": 6.313131313131313e-06,
2641
+ "loss": 0.4131,
2642
+ "step": 3750
2643
+ },
2644
+ {
2645
+ "epoch": 1.35,
2646
+ "grad_norm": 1.1279093027114868,
2647
+ "learning_rate": 6.303030303030303e-06,
2648
+ "loss": 0.4143,
2649
+ "step": 3760
2650
+ },
2651
+ {
2652
+ "epoch": 1.35,
2653
+ "grad_norm": 1.1602801084518433,
2654
+ "learning_rate": 6.292929292929294e-06,
2655
+ "loss": 0.4718,
2656
+ "step": 3770
2657
+ },
2658
+ {
2659
+ "epoch": 1.36,
2660
+ "grad_norm": 1.5314010381698608,
2661
+ "learning_rate": 6.282828282828284e-06,
2662
+ "loss": 0.5463,
2663
+ "step": 3780
2664
+ },
2665
+ {
2666
+ "epoch": 1.36,
2667
+ "grad_norm": 1.6124476194381714,
2668
+ "learning_rate": 6.2727272727272734e-06,
2669
+ "loss": 0.4857,
2670
+ "step": 3790
2671
+ },
2672
+ {
2673
+ "epoch": 1.36,
2674
+ "grad_norm": 1.185355305671692,
2675
+ "learning_rate": 6.262626262626264e-06,
2676
+ "loss": 0.4167,
2677
+ "step": 3800
2678
+ },
2679
+ {
2680
+ "epoch": 1.37,
2681
+ "grad_norm": 1.1900933980941772,
2682
+ "learning_rate": 6.252525252525253e-06,
2683
+ "loss": 0.4658,
2684
+ "step": 3810
2685
+ },
2686
+ {
2687
+ "epoch": 1.37,
2688
+ "grad_norm": 1.2930880784988403,
2689
+ "learning_rate": 6.2424242424242434e-06,
2690
+ "loss": 0.4912,
2691
+ "step": 3820
2692
+ },
2693
+ {
2694
+ "epoch": 1.37,
2695
+ "grad_norm": 1.1819838285446167,
2696
+ "learning_rate": 6.232323232323233e-06,
2697
+ "loss": 0.4129,
2698
+ "step": 3830
2699
+ },
2700
+ {
2701
+ "epoch": 1.38,
2702
+ "grad_norm": 1.315292477607727,
2703
+ "learning_rate": 6.222222222222223e-06,
2704
+ "loss": 0.477,
2705
+ "step": 3840
2706
+ },
2707
+ {
2708
+ "epoch": 1.38,
2709
+ "grad_norm": 1.007524013519287,
2710
+ "learning_rate": 6.212121212121213e-06,
2711
+ "loss": 0.414,
2712
+ "step": 3850
2713
+ },
2714
+ {
2715
+ "epoch": 1.38,
2716
+ "grad_norm": 1.1948471069335938,
2717
+ "learning_rate": 6.202020202020203e-06,
2718
+ "loss": 0.4576,
2719
+ "step": 3860
2720
+ },
2721
+ {
2722
+ "epoch": 1.39,
2723
+ "grad_norm": 1.3339303731918335,
2724
+ "learning_rate": 6.191919191919192e-06,
2725
+ "loss": 0.5547,
2726
+ "step": 3870
2727
+ },
2728
+ {
2729
+ "epoch": 1.39,
2730
+ "grad_norm": 1.2568715810775757,
2731
+ "learning_rate": 6.181818181818182e-06,
2732
+ "loss": 0.3941,
2733
+ "step": 3880
2734
+ },
2735
+ {
2736
+ "epoch": 1.4,
2737
+ "grad_norm": 1.2084232568740845,
2738
+ "learning_rate": 6.171717171717172e-06,
2739
+ "loss": 0.462,
2740
+ "step": 3890
2741
+ },
2742
+ {
2743
+ "epoch": 1.4,
2744
+ "grad_norm": 1.0328818559646606,
2745
+ "learning_rate": 6.1616161616161615e-06,
2746
+ "loss": 0.4484,
2747
+ "step": 3900
2748
+ },
2749
+ {
2750
+ "epoch": 1.4,
2751
+ "grad_norm": 1.9673748016357422,
2752
+ "learning_rate": 6.151515151515152e-06,
2753
+ "loss": 0.4543,
2754
+ "step": 3910
2755
+ },
2756
+ {
2757
+ "epoch": 1.41,
2758
+ "grad_norm": 1.4105424880981445,
2759
+ "learning_rate": 6.141414141414141e-06,
2760
+ "loss": 0.4964,
2761
+ "step": 3920
2762
+ },
2763
+ {
2764
+ "epoch": 1.41,
2765
+ "grad_norm": 0.7082942128181458,
2766
+ "learning_rate": 6.1313131313131315e-06,
2767
+ "loss": 0.5297,
2768
+ "step": 3930
2769
+ },
2770
+ {
2771
+ "epoch": 1.41,
2772
+ "grad_norm": 1.2604327201843262,
2773
+ "learning_rate": 6.121212121212121e-06,
2774
+ "loss": 0.4207,
2775
+ "step": 3940
2776
+ },
2777
+ {
2778
+ "epoch": 1.42,
2779
+ "grad_norm": 0.999332070350647,
2780
+ "learning_rate": 6.111111111111112e-06,
2781
+ "loss": 0.4791,
2782
+ "step": 3950
2783
+ },
2784
+ {
2785
+ "epoch": 1.42,
2786
+ "grad_norm": 1.139615535736084,
2787
+ "learning_rate": 6.1010101010101015e-06,
2788
+ "loss": 0.4281,
2789
+ "step": 3960
2790
+ },
2791
+ {
2792
+ "epoch": 1.42,
2793
+ "grad_norm": 1.1164727210998535,
2794
+ "learning_rate": 6.090909090909092e-06,
2795
+ "loss": 0.3807,
2796
+ "step": 3970
2797
+ },
2798
+ {
2799
+ "epoch": 1.43,
2800
+ "grad_norm": 1.0829392671585083,
2801
+ "learning_rate": 6.080808080808081e-06,
2802
+ "loss": 0.4996,
2803
+ "step": 3980
2804
+ },
2805
+ {
2806
+ "epoch": 1.43,
2807
+ "grad_norm": 0.8551573753356934,
2808
+ "learning_rate": 6.0707070707070715e-06,
2809
+ "loss": 0.4759,
2810
+ "step": 3990
2811
+ },
2812
+ {
2813
+ "epoch": 1.43,
2814
+ "grad_norm": 1.224134087562561,
2815
+ "learning_rate": 6.060606060606061e-06,
2816
+ "loss": 0.4244,
2817
+ "step": 4000
2818
+ },
2819
+ {
2820
+ "epoch": 1.43,
2821
+ "eval_loss": 0.5992664694786072,
2822
+ "eval_runtime": 334.8169,
2823
+ "eval_samples_per_second": 2.987,
2824
+ "eval_steps_per_second": 2.987,
2825
+ "step": 4000
2826
+ }
2827
+ ],
2828
+ "logging_steps": 10,
2829
+ "max_steps": 10000,
2830
+ "num_input_tokens_seen": 0,
2831
+ "num_train_epochs": 4,
2832
+ "save_steps": 2000,
2833
+ "total_flos": 3.26411004936192e+17,
2834
+ "train_batch_size": 1,
2835
+ "trial_name": null,
2836
+ "trial_params": null
2837
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b7d24b2588c9cc7f5b00158042ea7d4bff93ddd70bd49ab7701d433ce1fc925
3
+ size 4920