Image-to-Image
fastai
climate
donaldcummins commited on
Commit
b1a06a9
·
verified ·
1 Parent(s): d31fb50

Add brief description

Browse files
Files changed (1) hide show
  1. README.md +29 -3
README.md CHANGED
@@ -1,3 +1,29 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - CEMAC/synthetic_lee_waves
5
+ metrics:
6
+ - mse
7
+ pipeline_tag: image-to-image
8
+ library_name: fastai
9
+ tags:
10
+ - climate
11
+ ---
12
+
13
+ # Model Card for LeeWaveNet
14
+
15
+ <!-- Provide a quick summary of the model. -->
16
+
17
+ This repository contains four neural-network models, trained using [fastai](https://docs.fast.ai/), for detecting and determining characteristics of trapped lee waves using maps of 700 hPa vertical velocity as input.
18
+
19
+ * The base model [segmodel.pkl](https://huggingface.co/CEMAC/LeeWaveNet/blob/main/segmodel.pkl) generates a segmentation mask indicating where trapped lee waves are present. This model uses a U-Net architecture with Resnet-34 (pre-trained on ImageNet) as the encoder model.
20
+ * Three alternative model heads have been trained on synthetic data: [amplitude_0.0625.pkl](https://huggingface.co/CEMAC/LeeWaveNet/blob/main/amplitude_0.0625.pkl), [wavelength_0.125.pkl](https://huggingface.co/CEMAC/LeeWaveNet/blob/main/wavelength_0.125.pkl) and [orientation_0.25.pkl](https://huggingface.co/CEMAC/LeeWaveNet/blob/main/orientation_0.25.pkl). These predict the amplitude, wavelength and orientation of detected waves respectively.
21
+
22
+ For full details, please see the article by [Coney et al. (2023)](https://doi.org/10.1002/qj.4592).
23
+
24
+
25
+
26
+
27
+
28
+
29
+