samuelcahyawijaya commited on
Commit
713cbbe
1 Parent(s): 156928c

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,2759 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - mteb
8
+ - transformers
9
+ - transformers.js
10
+ model-index:
11
+ - name: epoch_0_model
12
+ results:
13
+ - task:
14
+ type: Classification
15
+ dataset:
16
+ type: mteb/amazon_counterfactual
17
+ name: MTEB AmazonCounterfactualClassification (en)
18
+ config: en
19
+ split: test
20
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
21
+ metrics:
22
+ - type: accuracy
23
+ value: 76.8507462686567
24
+ - type: ap
25
+ value: 40.592189159090495
26
+ - type: f1
27
+ value: 71.01634655512476
28
+ - task:
29
+ type: Classification
30
+ dataset:
31
+ type: mteb/amazon_polarity
32
+ name: MTEB AmazonPolarityClassification
33
+ config: default
34
+ split: test
35
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
36
+ metrics:
37
+ - type: accuracy
38
+ value: 91.51892500000001
39
+ - type: ap
40
+ value: 88.50346762975335
41
+ - type: f1
42
+ value: 91.50342077459624
43
+ - task:
44
+ type: Classification
45
+ dataset:
46
+ type: mteb/amazon_reviews_multi
47
+ name: MTEB AmazonReviewsClassification (en)
48
+ config: en
49
+ split: test
50
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
51
+ metrics:
52
+ - type: accuracy
53
+ value: 47.364
54
+ - type: f1
55
+ value: 46.72708080922794
56
+ - task:
57
+ type: Retrieval
58
+ dataset:
59
+ type: arguana
60
+ name: MTEB ArguAna
61
+ config: default
62
+ split: test
63
+ revision: None
64
+ metrics:
65
+ - type: map_at_1
66
+ value: 25.178
67
+ - type: map_at_10
68
+ value: 40.244
69
+ - type: map_at_100
70
+ value: 41.321999999999996
71
+ - type: map_at_1000
72
+ value: 41.331
73
+ - type: map_at_3
74
+ value: 35.016999999999996
75
+ - type: map_at_5
76
+ value: 37.99
77
+ - type: mrr_at_1
78
+ value: 25.605
79
+ - type: mrr_at_10
80
+ value: 40.422000000000004
81
+ - type: mrr_at_100
82
+ value: 41.507
83
+ - type: mrr_at_1000
84
+ value: 41.516
85
+ - type: mrr_at_3
86
+ value: 35.23
87
+ - type: mrr_at_5
88
+ value: 38.15
89
+ - type: ndcg_at_1
90
+ value: 25.178
91
+ - type: ndcg_at_10
92
+ value: 49.258
93
+ - type: ndcg_at_100
94
+ value: 53.776
95
+ - type: ndcg_at_1000
96
+ value: 53.995000000000005
97
+ - type: ndcg_at_3
98
+ value: 38.429
99
+ - type: ndcg_at_5
100
+ value: 43.803
101
+ - type: precision_at_1
102
+ value: 25.178
103
+ - type: precision_at_10
104
+ value: 7.831
105
+ - type: precision_at_100
106
+ value: 0.979
107
+ - type: precision_at_1000
108
+ value: 0.1
109
+ - type: precision_at_3
110
+ value: 16.121
111
+ - type: precision_at_5
112
+ value: 12.29
113
+ - type: recall_at_1
114
+ value: 25.178
115
+ - type: recall_at_10
116
+ value: 78.307
117
+ - type: recall_at_100
118
+ value: 97.866
119
+ - type: recall_at_1000
120
+ value: 99.57300000000001
121
+ - type: recall_at_3
122
+ value: 48.364000000000004
123
+ - type: recall_at_5
124
+ value: 61.451
125
+ - task:
126
+ type: Clustering
127
+ dataset:
128
+ type: mteb/arxiv-clustering-p2p
129
+ name: MTEB ArxivClusteringP2P
130
+ config: default
131
+ split: test
132
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
133
+ metrics:
134
+ - type: v_measure
135
+ value: 45.93034494751465
136
+ - task:
137
+ type: Clustering
138
+ dataset:
139
+ type: mteb/arxiv-clustering-s2s
140
+ name: MTEB ArxivClusteringS2S
141
+ config: default
142
+ split: test
143
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
144
+ metrics:
145
+ - type: v_measure
146
+ value: 36.64579480054327
147
+ - task:
148
+ type: Reranking
149
+ dataset:
150
+ type: mteb/askubuntudupquestions-reranking
151
+ name: MTEB AskUbuntuDupQuestions
152
+ config: default
153
+ split: test
154
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
155
+ metrics:
156
+ - type: map
157
+ value: 60.601310529222054
158
+ - type: mrr
159
+ value: 75.04484896451656
160
+ - task:
161
+ type: STS
162
+ dataset:
163
+ type: mteb/biosses-sts
164
+ name: MTEB BIOSSES
165
+ config: default
166
+ split: test
167
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
168
+ metrics:
169
+ - type: cos_sim_pearson
170
+ value: 88.57797718095814
171
+ - type: cos_sim_spearman
172
+ value: 86.47064499110101
173
+ - type: euclidean_pearson
174
+ value: 87.4559602783142
175
+ - type: euclidean_spearman
176
+ value: 86.47064499110101
177
+ - type: manhattan_pearson
178
+ value: 87.7232764230245
179
+ - type: manhattan_spearman
180
+ value: 86.91222131777742
181
+ - task:
182
+ type: Classification
183
+ dataset:
184
+ type: mteb/banking77
185
+ name: MTEB Banking77Classification
186
+ config: default
187
+ split: test
188
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
189
+ metrics:
190
+ - type: accuracy
191
+ value: 84.5422077922078
192
+ - type: f1
193
+ value: 84.47657456950589
194
+ - task:
195
+ type: Clustering
196
+ dataset:
197
+ type: mteb/biorxiv-clustering-p2p
198
+ name: MTEB BiorxivClusteringP2P
199
+ config: default
200
+ split: test
201
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
202
+ metrics:
203
+ - type: v_measure
204
+ value: 38.48953561974464
205
+ - task:
206
+ type: Clustering
207
+ dataset:
208
+ type: mteb/biorxiv-clustering-s2s
209
+ name: MTEB BiorxivClusteringS2S
210
+ config: default
211
+ split: test
212
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
213
+ metrics:
214
+ - type: v_measure
215
+ value: 32.75995857510105
216
+ - task:
217
+ type: Retrieval
218
+ dataset:
219
+ type: BeIR/cqadupstack
220
+ name: MTEB CQADupstackAndroidRetrieval
221
+ config: default
222
+ split: test
223
+ revision: None
224
+ metrics:
225
+ - type: map_at_1
226
+ value: 30.008000000000003
227
+ - type: map_at_10
228
+ value: 39.51
229
+ - type: map_at_100
230
+ value: 40.841
231
+ - type: map_at_1000
232
+ value: 40.973
233
+ - type: map_at_3
234
+ value: 36.248999999999995
235
+ - type: map_at_5
236
+ value: 38.096999999999994
237
+ - type: mrr_at_1
238
+ value: 36.481
239
+ - type: mrr_at_10
240
+ value: 44.818000000000005
241
+ - type: mrr_at_100
242
+ value: 45.64
243
+ - type: mrr_at_1000
244
+ value: 45.687
245
+ - type: mrr_at_3
246
+ value: 42.036
247
+ - type: mrr_at_5
248
+ value: 43.782
249
+ - type: ndcg_at_1
250
+ value: 36.481
251
+ - type: ndcg_at_10
252
+ value: 45.152
253
+ - type: ndcg_at_100
254
+ value: 50.449
255
+ - type: ndcg_at_1000
256
+ value: 52.76499999999999
257
+ - type: ndcg_at_3
258
+ value: 40.161
259
+ - type: ndcg_at_5
260
+ value: 42.577999999999996
261
+ - type: precision_at_1
262
+ value: 36.481
263
+ - type: precision_at_10
264
+ value: 8.369
265
+ - type: precision_at_100
266
+ value: 1.373
267
+ - type: precision_at_1000
268
+ value: 0.186
269
+ - type: precision_at_3
270
+ value: 18.693
271
+ - type: precision_at_5
272
+ value: 13.533999999999999
273
+ - type: recall_at_1
274
+ value: 30.008000000000003
275
+ - type: recall_at_10
276
+ value: 56.108999999999995
277
+ - type: recall_at_100
278
+ value: 78.55499999999999
279
+ - type: recall_at_1000
280
+ value: 93.659
281
+ - type: recall_at_3
282
+ value: 41.754999999999995
283
+ - type: recall_at_5
284
+ value: 48.296
285
+ - task:
286
+ type: Retrieval
287
+ dataset:
288
+ type: BeIR/cqadupstack
289
+ name: MTEB CQADupstackEnglishRetrieval
290
+ config: default
291
+ split: test
292
+ revision: None
293
+ metrics:
294
+ - type: map_at_1
295
+ value: 30.262
296
+ - type: map_at_10
297
+ value: 40.139
298
+ - type: map_at_100
299
+ value: 41.394
300
+ - type: map_at_1000
301
+ value: 41.526
302
+ - type: map_at_3
303
+ value: 37.155
304
+ - type: map_at_5
305
+ value: 38.785
306
+ - type: mrr_at_1
307
+ value: 38.153
308
+ - type: mrr_at_10
309
+ value: 46.369
310
+ - type: mrr_at_100
311
+ value: 47.072
312
+ - type: mrr_at_1000
313
+ value: 47.111999999999995
314
+ - type: mrr_at_3
315
+ value: 44.268
316
+ - type: mrr_at_5
317
+ value: 45.389
318
+ - type: ndcg_at_1
319
+ value: 38.153
320
+ - type: ndcg_at_10
321
+ value: 45.925
322
+ - type: ndcg_at_100
323
+ value: 50.394000000000005
324
+ - type: ndcg_at_1000
325
+ value: 52.37500000000001
326
+ - type: ndcg_at_3
327
+ value: 41.754000000000005
328
+ - type: ndcg_at_5
329
+ value: 43.574
330
+ - type: precision_at_1
331
+ value: 38.153
332
+ - type: precision_at_10
333
+ value: 8.796
334
+ - type: precision_at_100
335
+ value: 1.432
336
+ - type: precision_at_1000
337
+ value: 0.189
338
+ - type: precision_at_3
339
+ value: 20.318
340
+ - type: precision_at_5
341
+ value: 14.395
342
+ - type: recall_at_1
343
+ value: 30.262
344
+ - type: recall_at_10
345
+ value: 55.72200000000001
346
+ - type: recall_at_100
347
+ value: 74.97500000000001
348
+ - type: recall_at_1000
349
+ value: 87.342
350
+ - type: recall_at_3
351
+ value: 43.129
352
+ - type: recall_at_5
353
+ value: 48.336
354
+ - task:
355
+ type: Retrieval
356
+ dataset:
357
+ type: BeIR/cqadupstack
358
+ name: MTEB CQADupstackGamingRetrieval
359
+ config: default
360
+ split: test
361
+ revision: None
362
+ metrics:
363
+ - type: map_at_1
364
+ value: 39.951
365
+ - type: map_at_10
366
+ value: 51.248000000000005
367
+ - type: map_at_100
368
+ value: 52.188
369
+ - type: map_at_1000
370
+ value: 52.247
371
+ - type: map_at_3
372
+ value: 48.211
373
+ - type: map_at_5
374
+ value: 49.797000000000004
375
+ - type: mrr_at_1
376
+ value: 45.329
377
+ - type: mrr_at_10
378
+ value: 54.749
379
+ - type: mrr_at_100
380
+ value: 55.367999999999995
381
+ - type: mrr_at_1000
382
+ value: 55.400000000000006
383
+ - type: mrr_at_3
384
+ value: 52.382
385
+ - type: mrr_at_5
386
+ value: 53.649
387
+ - type: ndcg_at_1
388
+ value: 45.329
389
+ - type: ndcg_at_10
390
+ value: 56.847
391
+ - type: ndcg_at_100
392
+ value: 60.738
393
+ - type: ndcg_at_1000
394
+ value: 61.976
395
+ - type: ndcg_at_3
396
+ value: 51.59
397
+ - type: ndcg_at_5
398
+ value: 53.915
399
+ - type: precision_at_1
400
+ value: 45.329
401
+ - type: precision_at_10
402
+ value: 8.959
403
+ - type: precision_at_100
404
+ value: 1.187
405
+ - type: precision_at_1000
406
+ value: 0.134
407
+ - type: precision_at_3
408
+ value: 22.612
409
+ - type: precision_at_5
410
+ value: 15.273
411
+ - type: recall_at_1
412
+ value: 39.951
413
+ - type: recall_at_10
414
+ value: 70.053
415
+ - type: recall_at_100
416
+ value: 86.996
417
+ - type: recall_at_1000
418
+ value: 95.707
419
+ - type: recall_at_3
420
+ value: 56.032000000000004
421
+ - type: recall_at_5
422
+ value: 61.629999999999995
423
+ - task:
424
+ type: Retrieval
425
+ dataset:
426
+ type: BeIR/cqadupstack
427
+ name: MTEB CQADupstackGisRetrieval
428
+ config: default
429
+ split: test
430
+ revision: None
431
+ metrics:
432
+ - type: map_at_1
433
+ value: 25.566
434
+ - type: map_at_10
435
+ value: 33.207
436
+ - type: map_at_100
437
+ value: 34.166000000000004
438
+ - type: map_at_1000
439
+ value: 34.245
440
+ - type: map_at_3
441
+ value: 30.94
442
+ - type: map_at_5
443
+ value: 32.01
444
+ - type: mrr_at_1
445
+ value: 27.345000000000002
446
+ - type: mrr_at_10
447
+ value: 35.193000000000005
448
+ - type: mrr_at_100
449
+ value: 35.965
450
+ - type: mrr_at_1000
451
+ value: 36.028999999999996
452
+ - type: mrr_at_3
453
+ value: 32.806000000000004
454
+ - type: mrr_at_5
455
+ value: 34.021
456
+ - type: ndcg_at_1
457
+ value: 27.345000000000002
458
+ - type: ndcg_at_10
459
+ value: 37.891999999999996
460
+ - type: ndcg_at_100
461
+ value: 42.664
462
+ - type: ndcg_at_1000
463
+ value: 44.757000000000005
464
+ - type: ndcg_at_3
465
+ value: 33.123000000000005
466
+ - type: ndcg_at_5
467
+ value: 35.035
468
+ - type: precision_at_1
469
+ value: 27.345000000000002
470
+ - type: precision_at_10
471
+ value: 5.763
472
+ - type: precision_at_100
473
+ value: 0.859
474
+ - type: precision_at_1000
475
+ value: 0.108
476
+ - type: precision_at_3
477
+ value: 13.71
478
+ - type: precision_at_5
479
+ value: 9.401
480
+ - type: recall_at_1
481
+ value: 25.566
482
+ - type: recall_at_10
483
+ value: 50.563
484
+ - type: recall_at_100
485
+ value: 72.86399999999999
486
+ - type: recall_at_1000
487
+ value: 88.68599999999999
488
+ - type: recall_at_3
489
+ value: 37.43
490
+ - type: recall_at_5
491
+ value: 41.894999999999996
492
+ - task:
493
+ type: Retrieval
494
+ dataset:
495
+ type: BeIR/cqadupstack
496
+ name: MTEB CQADupstackMathematicaRetrieval
497
+ config: default
498
+ split: test
499
+ revision: None
500
+ metrics:
501
+ - type: map_at_1
502
+ value: 16.663
503
+ - type: map_at_10
504
+ value: 23.552
505
+ - type: map_at_100
506
+ value: 24.538
507
+ - type: map_at_1000
508
+ value: 24.661
509
+ - type: map_at_3
510
+ value: 21.085
511
+ - type: map_at_5
512
+ value: 22.391
513
+ - type: mrr_at_1
514
+ value: 20.025000000000002
515
+ - type: mrr_at_10
516
+ value: 27.643
517
+ - type: mrr_at_100
518
+ value: 28.499999999999996
519
+ - type: mrr_at_1000
520
+ value: 28.582
521
+ - type: mrr_at_3
522
+ value: 25.083
523
+ - type: mrr_at_5
524
+ value: 26.544
525
+ - type: ndcg_at_1
526
+ value: 20.025000000000002
527
+ - type: ndcg_at_10
528
+ value: 28.272000000000002
529
+ - type: ndcg_at_100
530
+ value: 33.353
531
+ - type: ndcg_at_1000
532
+ value: 36.454
533
+ - type: ndcg_at_3
534
+ value: 23.579
535
+ - type: ndcg_at_5
536
+ value: 25.685000000000002
537
+ - type: precision_at_1
538
+ value: 20.025000000000002
539
+ - type: precision_at_10
540
+ value: 5.187
541
+ - type: precision_at_100
542
+ value: 0.897
543
+ - type: precision_at_1000
544
+ value: 0.13
545
+ - type: precision_at_3
546
+ value: 10.987
547
+ - type: precision_at_5
548
+ value: 8.06
549
+ - type: recall_at_1
550
+ value: 16.663
551
+ - type: recall_at_10
552
+ value: 38.808
553
+ - type: recall_at_100
554
+ value: 61.305
555
+ - type: recall_at_1000
556
+ value: 83.571
557
+ - type: recall_at_3
558
+ value: 25.907999999999998
559
+ - type: recall_at_5
560
+ value: 31.214
561
+ - task:
562
+ type: Retrieval
563
+ dataset:
564
+ type: BeIR/cqadupstack
565
+ name: MTEB CQADupstackPhysicsRetrieval
566
+ config: default
567
+ split: test
568
+ revision: None
569
+ metrics:
570
+ - type: map_at_1
571
+ value: 27.695999999999998
572
+ - type: map_at_10
573
+ value: 37.018
574
+ - type: map_at_100
575
+ value: 38.263000000000005
576
+ - type: map_at_1000
577
+ value: 38.371
578
+ - type: map_at_3
579
+ value: 34.226
580
+ - type: map_at_5
581
+ value: 35.809999999999995
582
+ - type: mrr_at_1
583
+ value: 32.916000000000004
584
+ - type: mrr_at_10
585
+ value: 42.067
586
+ - type: mrr_at_100
587
+ value: 42.925000000000004
588
+ - type: mrr_at_1000
589
+ value: 42.978
590
+ - type: mrr_at_3
591
+ value: 39.637
592
+ - type: mrr_at_5
593
+ value: 41.134
594
+ - type: ndcg_at_1
595
+ value: 32.916000000000004
596
+ - type: ndcg_at_10
597
+ value: 42.539
598
+ - type: ndcg_at_100
599
+ value: 47.873
600
+ - type: ndcg_at_1000
601
+ value: 50.08200000000001
602
+ - type: ndcg_at_3
603
+ value: 37.852999999999994
604
+ - type: ndcg_at_5
605
+ value: 40.201
606
+ - type: precision_at_1
607
+ value: 32.916000000000004
608
+ - type: precision_at_10
609
+ value: 7.5840000000000005
610
+ - type: precision_at_100
611
+ value: 1.199
612
+ - type: precision_at_1000
613
+ value: 0.155
614
+ - type: precision_at_3
615
+ value: 17.485
616
+ - type: precision_at_5
617
+ value: 12.512
618
+ - type: recall_at_1
619
+ value: 27.695999999999998
620
+ - type: recall_at_10
621
+ value: 53.638
622
+ - type: recall_at_100
623
+ value: 76.116
624
+ - type: recall_at_1000
625
+ value: 91.069
626
+ - type: recall_at_3
627
+ value: 41.13
628
+ - type: recall_at_5
629
+ value: 46.872
630
+ - task:
631
+ type: Retrieval
632
+ dataset:
633
+ type: BeIR/cqadupstack
634
+ name: MTEB CQADupstackProgrammersRetrieval
635
+ config: default
636
+ split: test
637
+ revision: None
638
+ metrics:
639
+ - type: map_at_1
640
+ value: 24.108
641
+ - type: map_at_10
642
+ value: 33.372
643
+ - type: map_at_100
644
+ value: 34.656
645
+ - type: map_at_1000
646
+ value: 34.768
647
+ - type: map_at_3
648
+ value: 30.830999999999996
649
+ - type: map_at_5
650
+ value: 32.204
651
+ - type: mrr_at_1
652
+ value: 29.110000000000003
653
+ - type: mrr_at_10
654
+ value: 37.979
655
+ - type: mrr_at_100
656
+ value: 38.933
657
+ - type: mrr_at_1000
658
+ value: 38.988
659
+ - type: mrr_at_3
660
+ value: 35.731
661
+ - type: mrr_at_5
662
+ value: 36.963
663
+ - type: ndcg_at_1
664
+ value: 29.110000000000003
665
+ - type: ndcg_at_10
666
+ value: 38.635000000000005
667
+ - type: ndcg_at_100
668
+ value: 44.324999999999996
669
+ - type: ndcg_at_1000
670
+ value: 46.747
671
+ - type: ndcg_at_3
672
+ value: 34.37
673
+ - type: ndcg_at_5
674
+ value: 36.228
675
+ - type: precision_at_1
676
+ value: 29.110000000000003
677
+ - type: precision_at_10
678
+ value: 6.963
679
+ - type: precision_at_100
680
+ value: 1.146
681
+ - type: precision_at_1000
682
+ value: 0.152
683
+ - type: precision_at_3
684
+ value: 16.400000000000002
685
+ - type: precision_at_5
686
+ value: 11.552999999999999
687
+ - type: recall_at_1
688
+ value: 24.108
689
+ - type: recall_at_10
690
+ value: 49.597
691
+ - type: recall_at_100
692
+ value: 73.88900000000001
693
+ - type: recall_at_1000
694
+ value: 90.62400000000001
695
+ - type: recall_at_3
696
+ value: 37.662
697
+ - type: recall_at_5
698
+ value: 42.565
699
+ - task:
700
+ type: Retrieval
701
+ dataset:
702
+ type: BeIR/cqadupstack
703
+ name: MTEB CQADupstackRetrieval
704
+ config: default
705
+ split: test
706
+ revision: None
707
+ metrics:
708
+ - type: map_at_1
709
+ value: 25.00791666666667
710
+ - type: map_at_10
711
+ value: 33.287749999999996
712
+ - type: map_at_100
713
+ value: 34.41141666666667
714
+ - type: map_at_1000
715
+ value: 34.52583333333333
716
+ - type: map_at_3
717
+ value: 30.734416666666668
718
+ - type: map_at_5
719
+ value: 32.137166666666666
720
+ - type: mrr_at_1
721
+ value: 29.305666666666664
722
+ - type: mrr_at_10
723
+ value: 37.22966666666666
724
+ - type: mrr_at_100
725
+ value: 38.066583333333334
726
+ - type: mrr_at_1000
727
+ value: 38.12616666666667
728
+ - type: mrr_at_3
729
+ value: 34.92275
730
+ - type: mrr_at_5
731
+ value: 36.23333333333334
732
+ - type: ndcg_at_1
733
+ value: 29.305666666666664
734
+ - type: ndcg_at_10
735
+ value: 38.25533333333333
736
+ - type: ndcg_at_100
737
+ value: 43.25266666666666
738
+ - type: ndcg_at_1000
739
+ value: 45.63583333333334
740
+ - type: ndcg_at_3
741
+ value: 33.777166666666666
742
+ - type: ndcg_at_5
743
+ value: 35.85
744
+ - type: precision_at_1
745
+ value: 29.305666666666664
746
+ - type: precision_at_10
747
+ value: 6.596416666666667
748
+ - type: precision_at_100
749
+ value: 1.0784166666666668
750
+ - type: precision_at_1000
751
+ value: 0.14666666666666664
752
+ - type: precision_at_3
753
+ value: 15.31075
754
+ - type: precision_at_5
755
+ value: 10.830916666666667
756
+ - type: recall_at_1
757
+ value: 25.00791666666667
758
+ - type: recall_at_10
759
+ value: 49.10933333333333
760
+ - type: recall_at_100
761
+ value: 71.09216666666667
762
+ - type: recall_at_1000
763
+ value: 87.77725000000001
764
+ - type: recall_at_3
765
+ value: 36.660916666666665
766
+ - type: recall_at_5
767
+ value: 41.94149999999999
768
+ - task:
769
+ type: Retrieval
770
+ dataset:
771
+ type: BeIR/cqadupstack
772
+ name: MTEB CQADupstackStatsRetrieval
773
+ config: default
774
+ split: test
775
+ revision: None
776
+ metrics:
777
+ - type: map_at_1
778
+ value: 23.521
779
+ - type: map_at_10
780
+ value: 30.043
781
+ - type: map_at_100
782
+ value: 30.936000000000003
783
+ - type: map_at_1000
784
+ value: 31.022
785
+ - type: map_at_3
786
+ value: 27.926000000000002
787
+ - type: map_at_5
788
+ value: 29.076999999999998
789
+ - type: mrr_at_1
790
+ value: 26.227
791
+ - type: mrr_at_10
792
+ value: 32.822
793
+ - type: mrr_at_100
794
+ value: 33.61
795
+ - type: mrr_at_1000
796
+ value: 33.672000000000004
797
+ - type: mrr_at_3
798
+ value: 30.776999999999997
799
+ - type: mrr_at_5
800
+ value: 31.866
801
+ - type: ndcg_at_1
802
+ value: 26.227
803
+ - type: ndcg_at_10
804
+ value: 34.041
805
+ - type: ndcg_at_100
806
+ value: 38.394
807
+ - type: ndcg_at_1000
808
+ value: 40.732
809
+ - type: ndcg_at_3
810
+ value: 30.037999999999997
811
+ - type: ndcg_at_5
812
+ value: 31.845000000000002
813
+ - type: precision_at_1
814
+ value: 26.227
815
+ - type: precision_at_10
816
+ value: 5.244999999999999
817
+ - type: precision_at_100
818
+ value: 0.808
819
+ - type: precision_at_1000
820
+ value: 0.107
821
+ - type: precision_at_3
822
+ value: 12.679000000000002
823
+ - type: precision_at_5
824
+ value: 8.773
825
+ - type: recall_at_1
826
+ value: 23.521
827
+ - type: recall_at_10
828
+ value: 43.633
829
+ - type: recall_at_100
830
+ value: 63.126000000000005
831
+ - type: recall_at_1000
832
+ value: 80.765
833
+ - type: recall_at_3
834
+ value: 32.614
835
+ - type: recall_at_5
836
+ value: 37.15
837
+ - task:
838
+ type: Retrieval
839
+ dataset:
840
+ type: BeIR/cqadupstack
841
+ name: MTEB CQADupstackTexRetrieval
842
+ config: default
843
+ split: test
844
+ revision: None
845
+ metrics:
846
+ - type: map_at_1
847
+ value: 16.236
848
+ - type: map_at_10
849
+ value: 22.898
850
+ - type: map_at_100
851
+ value: 23.878
852
+ - type: map_at_1000
853
+ value: 24.009
854
+ - type: map_at_3
855
+ value: 20.87
856
+ - type: map_at_5
857
+ value: 22.025
858
+ - type: mrr_at_1
859
+ value: 19.339000000000002
860
+ - type: mrr_at_10
861
+ value: 26.382
862
+ - type: mrr_at_100
863
+ value: 27.245
864
+ - type: mrr_at_1000
865
+ value: 27.33
866
+ - type: mrr_at_3
867
+ value: 24.386
868
+ - type: mrr_at_5
869
+ value: 25.496000000000002
870
+ - type: ndcg_at_1
871
+ value: 19.339000000000002
872
+ - type: ndcg_at_10
873
+ value: 27.139999999999997
874
+ - type: ndcg_at_100
875
+ value: 31.944
876
+ - type: ndcg_at_1000
877
+ value: 35.077999999999996
878
+ - type: ndcg_at_3
879
+ value: 23.424
880
+ - type: ndcg_at_5
881
+ value: 25.188
882
+ - type: precision_at_1
883
+ value: 19.339000000000002
884
+ - type: precision_at_10
885
+ value: 4.8309999999999995
886
+ - type: precision_at_100
887
+ value: 0.845
888
+ - type: precision_at_1000
889
+ value: 0.128
890
+ - type: precision_at_3
891
+ value: 10.874
892
+ - type: precision_at_5
893
+ value: 7.825
894
+ - type: recall_at_1
895
+ value: 16.236
896
+ - type: recall_at_10
897
+ value: 36.513
898
+ - type: recall_at_100
899
+ value: 57.999
900
+ - type: recall_at_1000
901
+ value: 80.512
902
+ - type: recall_at_3
903
+ value: 26.179999999999996
904
+ - type: recall_at_5
905
+ value: 30.712
906
+ - task:
907
+ type: Retrieval
908
+ dataset:
909
+ type: BeIR/cqadupstack
910
+ name: MTEB CQADupstackUnixRetrieval
911
+ config: default
912
+ split: test
913
+ revision: None
914
+ metrics:
915
+ - type: map_at_1
916
+ value: 24.11
917
+ - type: map_at_10
918
+ value: 31.566
919
+ - type: map_at_100
920
+ value: 32.647
921
+ - type: map_at_1000
922
+ value: 32.753
923
+ - type: map_at_3
924
+ value: 29.24
925
+ - type: map_at_5
926
+ value: 30.564999999999998
927
+ - type: mrr_at_1
928
+ value: 28.265
929
+ - type: mrr_at_10
930
+ value: 35.504000000000005
931
+ - type: mrr_at_100
932
+ value: 36.436
933
+ - type: mrr_at_1000
934
+ value: 36.503
935
+ - type: mrr_at_3
936
+ value: 33.349000000000004
937
+ - type: mrr_at_5
938
+ value: 34.622
939
+ - type: ndcg_at_1
940
+ value: 28.265
941
+ - type: ndcg_at_10
942
+ value: 36.192
943
+ - type: ndcg_at_100
944
+ value: 41.388000000000005
945
+ - type: ndcg_at_1000
946
+ value: 43.948
947
+ - type: ndcg_at_3
948
+ value: 31.959
949
+ - type: ndcg_at_5
950
+ value: 33.998
951
+ - type: precision_at_1
952
+ value: 28.265
953
+ - type: precision_at_10
954
+ value: 5.989
955
+ - type: precision_at_100
956
+ value: 0.9650000000000001
957
+ - type: precision_at_1000
958
+ value: 0.13
959
+ - type: precision_at_3
960
+ value: 14.335
961
+ - type: precision_at_5
962
+ value: 10.112
963
+ - type: recall_at_1
964
+ value: 24.11
965
+ - type: recall_at_10
966
+ value: 46.418
967
+ - type: recall_at_100
968
+ value: 69.314
969
+ - type: recall_at_1000
970
+ value: 87.397
971
+ - type: recall_at_3
972
+ value: 34.724
973
+ - type: recall_at_5
974
+ value: 39.925
975
+ - task:
976
+ type: Retrieval
977
+ dataset:
978
+ type: BeIR/cqadupstack
979
+ name: MTEB CQADupstackWebmastersRetrieval
980
+ config: default
981
+ split: test
982
+ revision: None
983
+ metrics:
984
+ - type: map_at_1
985
+ value: 22.091
986
+ - type: map_at_10
987
+ value: 29.948999999999998
988
+ - type: map_at_100
989
+ value: 31.502000000000002
990
+ - type: map_at_1000
991
+ value: 31.713
992
+ - type: map_at_3
993
+ value: 27.464
994
+ - type: map_at_5
995
+ value: 28.968
996
+ - type: mrr_at_1
997
+ value: 26.482
998
+ - type: mrr_at_10
999
+ value: 34.009
1000
+ - type: mrr_at_100
1001
+ value: 35.081
1002
+ - type: mrr_at_1000
1003
+ value: 35.138000000000005
1004
+ - type: mrr_at_3
1005
+ value: 31.785000000000004
1006
+ - type: mrr_at_5
1007
+ value: 33.178999999999995
1008
+ - type: ndcg_at_1
1009
+ value: 26.482
1010
+ - type: ndcg_at_10
1011
+ value: 35.008
1012
+ - type: ndcg_at_100
1013
+ value: 41.272999999999996
1014
+ - type: ndcg_at_1000
1015
+ value: 43.972
1016
+ - type: ndcg_at_3
1017
+ value: 30.804
1018
+ - type: ndcg_at_5
1019
+ value: 33.046
1020
+ - type: precision_at_1
1021
+ value: 26.482
1022
+ - type: precision_at_10
1023
+ value: 6.462
1024
+ - type: precision_at_100
1025
+ value: 1.431
1026
+ - type: precision_at_1000
1027
+ value: 0.22899999999999998
1028
+ - type: precision_at_3
1029
+ value: 14.360999999999999
1030
+ - type: precision_at_5
1031
+ value: 10.474
1032
+ - type: recall_at_1
1033
+ value: 22.091
1034
+ - type: recall_at_10
1035
+ value: 45.125
1036
+ - type: recall_at_100
1037
+ value: 72.313
1038
+ - type: recall_at_1000
1039
+ value: 89.503
1040
+ - type: recall_at_3
1041
+ value: 33.158
1042
+ - type: recall_at_5
1043
+ value: 39.086999999999996
1044
+ - task:
1045
+ type: Retrieval
1046
+ dataset:
1047
+ type: BeIR/cqadupstack
1048
+ name: MTEB CQADupstackWordpressRetrieval
1049
+ config: default
1050
+ split: test
1051
+ revision: None
1052
+ metrics:
1053
+ - type: map_at_1
1054
+ value: 19.883
1055
+ - type: map_at_10
1056
+ value: 26.951000000000004
1057
+ - type: map_at_100
1058
+ value: 27.927999999999997
1059
+ - type: map_at_1000
1060
+ value: 28.022000000000002
1061
+ - type: map_at_3
1062
+ value: 24.616
1063
+ - type: map_at_5
1064
+ value: 25.917
1065
+ - type: mrr_at_1
1066
+ value: 21.996
1067
+ - type: mrr_at_10
1068
+ value: 29.221000000000004
1069
+ - type: mrr_at_100
1070
+ value: 30.024
1071
+ - type: mrr_at_1000
1072
+ value: 30.095
1073
+ - type: mrr_at_3
1074
+ value: 26.833000000000002
1075
+ - type: mrr_at_5
1076
+ value: 28.155
1077
+ - type: ndcg_at_1
1078
+ value: 21.996
1079
+ - type: ndcg_at_10
1080
+ value: 31.421
1081
+ - type: ndcg_at_100
1082
+ value: 36.237
1083
+ - type: ndcg_at_1000
1084
+ value: 38.744
1085
+ - type: ndcg_at_3
1086
+ value: 26.671
1087
+ - type: ndcg_at_5
1088
+ value: 28.907
1089
+ - type: precision_at_1
1090
+ value: 21.996
1091
+ - type: precision_at_10
1092
+ value: 5.009
1093
+ - type: precision_at_100
1094
+ value: 0.799
1095
+ - type: precision_at_1000
1096
+ value: 0.11199999999999999
1097
+ - type: precision_at_3
1098
+ value: 11.275
1099
+ - type: precision_at_5
1100
+ value: 8.059
1101
+ - type: recall_at_1
1102
+ value: 19.883
1103
+ - type: recall_at_10
1104
+ value: 43.132999999999996
1105
+ - type: recall_at_100
1106
+ value: 65.654
1107
+ - type: recall_at_1000
1108
+ value: 84.492
1109
+ - type: recall_at_3
1110
+ value: 30.209000000000003
1111
+ - type: recall_at_5
1112
+ value: 35.616
1113
+ - task:
1114
+ type: Retrieval
1115
+ dataset:
1116
+ type: climate-fever
1117
+ name: MTEB ClimateFEVER
1118
+ config: default
1119
+ split: test
1120
+ revision: None
1121
+ metrics:
1122
+ - type: map_at_1
1123
+ value: 17.756
1124
+ - type: map_at_10
1125
+ value: 30.378
1126
+ - type: map_at_100
1127
+ value: 32.537
1128
+ - type: map_at_1000
1129
+ value: 32.717
1130
+ - type: map_at_3
1131
+ value: 25.599
1132
+ - type: map_at_5
1133
+ value: 28.372999999999998
1134
+ - type: mrr_at_1
1135
+ value: 41.303
1136
+ - type: mrr_at_10
1137
+ value: 53.483999999999995
1138
+ - type: mrr_at_100
1139
+ value: 54.106
1140
+ - type: mrr_at_1000
1141
+ value: 54.127
1142
+ - type: mrr_at_3
1143
+ value: 50.315
1144
+ - type: mrr_at_5
1145
+ value: 52.396
1146
+ - type: ndcg_at_1
1147
+ value: 41.303
1148
+ - type: ndcg_at_10
1149
+ value: 40.503
1150
+ - type: ndcg_at_100
1151
+ value: 47.821000000000005
1152
+ - type: ndcg_at_1000
1153
+ value: 50.788
1154
+ - type: ndcg_at_3
1155
+ value: 34.364
1156
+ - type: ndcg_at_5
1157
+ value: 36.818
1158
+ - type: precision_at_1
1159
+ value: 41.303
1160
+ - type: precision_at_10
1161
+ value: 12.463000000000001
1162
+ - type: precision_at_100
1163
+ value: 2.037
1164
+ - type: precision_at_1000
1165
+ value: 0.26
1166
+ - type: precision_at_3
1167
+ value: 25.798
1168
+ - type: precision_at_5
1169
+ value: 19.896
1170
+ - type: recall_at_1
1171
+ value: 17.756
1172
+ - type: recall_at_10
1173
+ value: 46.102
1174
+ - type: recall_at_100
1175
+ value: 70.819
1176
+ - type: recall_at_1000
1177
+ value: 87.21799999999999
1178
+ - type: recall_at_3
1179
+ value: 30.646
1180
+ - type: recall_at_5
1181
+ value: 38.022
1182
+ - task:
1183
+ type: Retrieval
1184
+ dataset:
1185
+ type: dbpedia-entity
1186
+ name: MTEB DBPedia
1187
+ config: default
1188
+ split: test
1189
+ revision: None
1190
+ metrics:
1191
+ - type: map_at_1
1192
+ value: 9.033
1193
+ - type: map_at_10
1194
+ value: 20.584
1195
+ - type: map_at_100
1196
+ value: 29.518
1197
+ - type: map_at_1000
1198
+ value: 31.186000000000003
1199
+ - type: map_at_3
1200
+ value: 14.468
1201
+ - type: map_at_5
1202
+ value: 17.177
1203
+ - type: mrr_at_1
1204
+ value: 69.75
1205
+ - type: mrr_at_10
1206
+ value: 77.025
1207
+ - type: mrr_at_100
1208
+ value: 77.36699999999999
1209
+ - type: mrr_at_1000
1210
+ value: 77.373
1211
+ - type: mrr_at_3
1212
+ value: 75.583
1213
+ - type: mrr_at_5
1214
+ value: 76.396
1215
+ - type: ndcg_at_1
1216
+ value: 58.5
1217
+ - type: ndcg_at_10
1218
+ value: 45.033
1219
+ - type: ndcg_at_100
1220
+ value: 49.071
1221
+ - type: ndcg_at_1000
1222
+ value: 56.056
1223
+ - type: ndcg_at_3
1224
+ value: 49.936
1225
+ - type: ndcg_at_5
1226
+ value: 47.471999999999994
1227
+ - type: precision_at_1
1228
+ value: 69.75
1229
+ - type: precision_at_10
1230
+ value: 35.775
1231
+ - type: precision_at_100
1232
+ value: 11.594999999999999
1233
+ - type: precision_at_1000
1234
+ value: 2.062
1235
+ - type: precision_at_3
1236
+ value: 52.5
1237
+ - type: precision_at_5
1238
+ value: 45.300000000000004
1239
+ - type: recall_at_1
1240
+ value: 9.033
1241
+ - type: recall_at_10
1242
+ value: 26.596999999999998
1243
+ - type: recall_at_100
1244
+ value: 54.607000000000006
1245
+ - type: recall_at_1000
1246
+ value: 76.961
1247
+ - type: recall_at_3
1248
+ value: 15.754999999999999
1249
+ - type: recall_at_5
1250
+ value: 20.033
1251
+ - task:
1252
+ type: Classification
1253
+ dataset:
1254
+ type: mteb/emotion
1255
+ name: MTEB EmotionClassification
1256
+ config: default
1257
+ split: test
1258
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1259
+ metrics:
1260
+ - type: accuracy
1261
+ value: 48.345000000000006
1262
+ - type: f1
1263
+ value: 43.4514918068706
1264
+ - task:
1265
+ type: Retrieval
1266
+ dataset:
1267
+ type: fever
1268
+ name: MTEB FEVER
1269
+ config: default
1270
+ split: test
1271
+ revision: None
1272
+ metrics:
1273
+ - type: map_at_1
1274
+ value: 71.29100000000001
1275
+ - type: map_at_10
1276
+ value: 81.059
1277
+ - type: map_at_100
1278
+ value: 81.341
1279
+ - type: map_at_1000
1280
+ value: 81.355
1281
+ - type: map_at_3
1282
+ value: 79.74799999999999
1283
+ - type: map_at_5
1284
+ value: 80.612
1285
+ - type: mrr_at_1
1286
+ value: 76.40299999999999
1287
+ - type: mrr_at_10
1288
+ value: 84.615
1289
+ - type: mrr_at_100
1290
+ value: 84.745
1291
+ - type: mrr_at_1000
1292
+ value: 84.748
1293
+ - type: mrr_at_3
1294
+ value: 83.776
1295
+ - type: mrr_at_5
1296
+ value: 84.343
1297
+ - type: ndcg_at_1
1298
+ value: 76.40299999999999
1299
+ - type: ndcg_at_10
1300
+ value: 84.981
1301
+ - type: ndcg_at_100
1302
+ value: 86.00999999999999
1303
+ - type: ndcg_at_1000
1304
+ value: 86.252
1305
+ - type: ndcg_at_3
1306
+ value: 82.97
1307
+ - type: ndcg_at_5
1308
+ value: 84.152
1309
+ - type: precision_at_1
1310
+ value: 76.40299999999999
1311
+ - type: precision_at_10
1312
+ value: 10.446
1313
+ - type: precision_at_100
1314
+ value: 1.1199999999999999
1315
+ - type: precision_at_1000
1316
+ value: 0.116
1317
+ - type: precision_at_3
1318
+ value: 32.147999999999996
1319
+ - type: precision_at_5
1320
+ value: 20.135
1321
+ - type: recall_at_1
1322
+ value: 71.29100000000001
1323
+ - type: recall_at_10
1324
+ value: 93.232
1325
+ - type: recall_at_100
1326
+ value: 97.363
1327
+ - type: recall_at_1000
1328
+ value: 98.905
1329
+ - type: recall_at_3
1330
+ value: 87.893
1331
+ - type: recall_at_5
1332
+ value: 90.804
1333
+ - task:
1334
+ type: Retrieval
1335
+ dataset:
1336
+ type: fiqa
1337
+ name: MTEB FiQA2018
1338
+ config: default
1339
+ split: test
1340
+ revision: None
1341
+ metrics:
1342
+ - type: map_at_1
1343
+ value: 18.667
1344
+ - type: map_at_10
1345
+ value: 30.853
1346
+ - type: map_at_100
1347
+ value: 32.494
1348
+ - type: map_at_1000
1349
+ value: 32.677
1350
+ - type: map_at_3
1351
+ value: 26.91
1352
+ - type: map_at_5
1353
+ value: 29.099000000000004
1354
+ - type: mrr_at_1
1355
+ value: 37.191
1356
+ - type: mrr_at_10
1357
+ value: 46.171
1358
+ - type: mrr_at_100
1359
+ value: 47.056
1360
+ - type: mrr_at_1000
1361
+ value: 47.099000000000004
1362
+ - type: mrr_at_3
1363
+ value: 44.059
1364
+ - type: mrr_at_5
1365
+ value: 45.147
1366
+ - type: ndcg_at_1
1367
+ value: 37.191
1368
+ - type: ndcg_at_10
1369
+ value: 38.437
1370
+ - type: ndcg_at_100
1371
+ value: 44.62
1372
+ - type: ndcg_at_1000
1373
+ value: 47.795
1374
+ - type: ndcg_at_3
1375
+ value: 35.003
1376
+ - type: ndcg_at_5
1377
+ value: 36.006
1378
+ - type: precision_at_1
1379
+ value: 37.191
1380
+ - type: precision_at_10
1381
+ value: 10.586
1382
+ - type: precision_at_100
1383
+ value: 1.688
1384
+ - type: precision_at_1000
1385
+ value: 0.22699999999999998
1386
+ - type: precision_at_3
1387
+ value: 23.302
1388
+ - type: precision_at_5
1389
+ value: 17.006
1390
+ - type: recall_at_1
1391
+ value: 18.667
1392
+ - type: recall_at_10
1393
+ value: 45.367000000000004
1394
+ - type: recall_at_100
1395
+ value: 68.207
1396
+ - type: recall_at_1000
1397
+ value: 87.072
1398
+ - type: recall_at_3
1399
+ value: 32.129000000000005
1400
+ - type: recall_at_5
1401
+ value: 37.719
1402
+ - task:
1403
+ type: Retrieval
1404
+ dataset:
1405
+ type: hotpotqa
1406
+ name: MTEB HotpotQA
1407
+ config: default
1408
+ split: test
1409
+ revision: None
1410
+ metrics:
1411
+ - type: map_at_1
1412
+ value: 39.494
1413
+ - type: map_at_10
1414
+ value: 66.223
1415
+ - type: map_at_100
1416
+ value: 67.062
1417
+ - type: map_at_1000
1418
+ value: 67.11500000000001
1419
+ - type: map_at_3
1420
+ value: 62.867
1421
+ - type: map_at_5
1422
+ value: 64.994
1423
+ - type: mrr_at_1
1424
+ value: 78.987
1425
+ - type: mrr_at_10
1426
+ value: 84.585
1427
+ - type: mrr_at_100
1428
+ value: 84.773
1429
+ - type: mrr_at_1000
1430
+ value: 84.77900000000001
1431
+ - type: mrr_at_3
1432
+ value: 83.592
1433
+ - type: mrr_at_5
1434
+ value: 84.235
1435
+ - type: ndcg_at_1
1436
+ value: 78.987
1437
+ - type: ndcg_at_10
1438
+ value: 73.64
1439
+ - type: ndcg_at_100
1440
+ value: 76.519
1441
+ - type: ndcg_at_1000
1442
+ value: 77.51
1443
+ - type: ndcg_at_3
1444
+ value: 68.893
1445
+ - type: ndcg_at_5
1446
+ value: 71.585
1447
+ - type: precision_at_1
1448
+ value: 78.987
1449
+ - type: precision_at_10
1450
+ value: 15.529000000000002
1451
+ - type: precision_at_100
1452
+ value: 1.7770000000000001
1453
+ - type: precision_at_1000
1454
+ value: 0.191
1455
+ - type: precision_at_3
1456
+ value: 44.808
1457
+ - type: precision_at_5
1458
+ value: 29.006999999999998
1459
+ - type: recall_at_1
1460
+ value: 39.494
1461
+ - type: recall_at_10
1462
+ value: 77.643
1463
+ - type: recall_at_100
1464
+ value: 88.825
1465
+ - type: recall_at_1000
1466
+ value: 95.321
1467
+ - type: recall_at_3
1468
+ value: 67.211
1469
+ - type: recall_at_5
1470
+ value: 72.519
1471
+ - task:
1472
+ type: Classification
1473
+ dataset:
1474
+ type: mteb/imdb
1475
+ name: MTEB ImdbClassification
1476
+ config: default
1477
+ split: test
1478
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1479
+ metrics:
1480
+ - type: accuracy
1481
+ value: 85.55959999999999
1482
+ - type: ap
1483
+ value: 80.7246500384617
1484
+ - type: f1
1485
+ value: 85.52336485065454
1486
+ - task:
1487
+ type: Retrieval
1488
+ dataset:
1489
+ type: msmarco
1490
+ name: MTEB MSMARCO
1491
+ config: default
1492
+ split: dev
1493
+ revision: None
1494
+ metrics:
1495
+ - type: map_at_1
1496
+ value: 23.631
1497
+ - type: map_at_10
1498
+ value: 36.264
1499
+ - type: map_at_100
1500
+ value: 37.428
1501
+ - type: map_at_1000
1502
+ value: 37.472
1503
+ - type: map_at_3
1504
+ value: 32.537
1505
+ - type: map_at_5
1506
+ value: 34.746
1507
+ - type: mrr_at_1
1508
+ value: 24.312
1509
+ - type: mrr_at_10
1510
+ value: 36.858000000000004
1511
+ - type: mrr_at_100
1512
+ value: 37.966
1513
+ - type: mrr_at_1000
1514
+ value: 38.004
1515
+ - type: mrr_at_3
1516
+ value: 33.188
1517
+ - type: mrr_at_5
1518
+ value: 35.367
1519
+ - type: ndcg_at_1
1520
+ value: 24.312
1521
+ - type: ndcg_at_10
1522
+ value: 43.126999999999995
1523
+ - type: ndcg_at_100
1524
+ value: 48.642
1525
+ - type: ndcg_at_1000
1526
+ value: 49.741
1527
+ - type: ndcg_at_3
1528
+ value: 35.589
1529
+ - type: ndcg_at_5
1530
+ value: 39.515
1531
+ - type: precision_at_1
1532
+ value: 24.312
1533
+ - type: precision_at_10
1534
+ value: 6.699
1535
+ - type: precision_at_100
1536
+ value: 0.9450000000000001
1537
+ - type: precision_at_1000
1538
+ value: 0.104
1539
+ - type: precision_at_3
1540
+ value: 15.153
1541
+ - type: precision_at_5
1542
+ value: 11.065999999999999
1543
+ - type: recall_at_1
1544
+ value: 23.631
1545
+ - type: recall_at_10
1546
+ value: 64.145
1547
+ - type: recall_at_100
1548
+ value: 89.41
1549
+ - type: recall_at_1000
1550
+ value: 97.83500000000001
1551
+ - type: recall_at_3
1552
+ value: 43.769000000000005
1553
+ - type: recall_at_5
1554
+ value: 53.169
1555
+ - task:
1556
+ type: Classification
1557
+ dataset:
1558
+ type: mteb/mtop_domain
1559
+ name: MTEB MTOPDomainClassification (en)
1560
+ config: en
1561
+ split: test
1562
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1563
+ metrics:
1564
+ - type: accuracy
1565
+ value: 93.4108527131783
1566
+ - type: f1
1567
+ value: 93.1415880261038
1568
+ - task:
1569
+ type: Classification
1570
+ dataset:
1571
+ type: mteb/mtop_intent
1572
+ name: MTEB MTOPIntentClassification (en)
1573
+ config: en
1574
+ split: test
1575
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1576
+ metrics:
1577
+ - type: accuracy
1578
+ value: 77.24806201550388
1579
+ - type: f1
1580
+ value: 60.531916308197175
1581
+ - task:
1582
+ type: Classification
1583
+ dataset:
1584
+ type: mteb/amazon_massive_intent
1585
+ name: MTEB MassiveIntentClassification (en)
1586
+ config: en
1587
+ split: test
1588
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1589
+ metrics:
1590
+ - type: accuracy
1591
+ value: 73.71553463349024
1592
+ - type: f1
1593
+ value: 71.70753174900791
1594
+ - task:
1595
+ type: Classification
1596
+ dataset:
1597
+ type: mteb/amazon_massive_scenario
1598
+ name: MTEB MassiveScenarioClassification (en)
1599
+ config: en
1600
+ split: test
1601
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1602
+ metrics:
1603
+ - type: accuracy
1604
+ value: 77.79757901815736
1605
+ - type: f1
1606
+ value: 77.83719850433258
1607
+ - task:
1608
+ type: Clustering
1609
+ dataset:
1610
+ type: mteb/medrxiv-clustering-p2p
1611
+ name: MTEB MedrxivClusteringP2P
1612
+ config: default
1613
+ split: test
1614
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1615
+ metrics:
1616
+ - type: v_measure
1617
+ value: 33.74193296622113
1618
+ - task:
1619
+ type: Clustering
1620
+ dataset:
1621
+ type: mteb/medrxiv-clustering-s2s
1622
+ name: MTEB MedrxivClusteringS2S
1623
+ config: default
1624
+ split: test
1625
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1626
+ metrics:
1627
+ - type: v_measure
1628
+ value: 30.64257594108566
1629
+ - task:
1630
+ type: Reranking
1631
+ dataset:
1632
+ type: mteb/mind_small
1633
+ name: MTEB MindSmallReranking
1634
+ config: default
1635
+ split: test
1636
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1637
+ metrics:
1638
+ - type: map
1639
+ value: 30.811018518883625
1640
+ - type: mrr
1641
+ value: 31.910376577445003
1642
+ - task:
1643
+ type: Retrieval
1644
+ dataset:
1645
+ type: nfcorpus
1646
+ name: MTEB NFCorpus
1647
+ config: default
1648
+ split: test
1649
+ revision: None
1650
+ metrics:
1651
+ - type: map_at_1
1652
+ value: 5.409
1653
+ - type: map_at_10
1654
+ value: 13.093
1655
+ - type: map_at_100
1656
+ value: 16.256999999999998
1657
+ - type: map_at_1000
1658
+ value: 17.617
1659
+ - type: map_at_3
1660
+ value: 9.555
1661
+ - type: map_at_5
1662
+ value: 11.428
1663
+ - type: mrr_at_1
1664
+ value: 45.201
1665
+ - type: mrr_at_10
1666
+ value: 54.179
1667
+ - type: mrr_at_100
1668
+ value: 54.812000000000005
1669
+ - type: mrr_at_1000
1670
+ value: 54.840999999999994
1671
+ - type: mrr_at_3
1672
+ value: 51.909000000000006
1673
+ - type: mrr_at_5
1674
+ value: 53.519000000000005
1675
+ - type: ndcg_at_1
1676
+ value: 43.189
1677
+ - type: ndcg_at_10
1678
+ value: 35.028
1679
+ - type: ndcg_at_100
1680
+ value: 31.226
1681
+ - type: ndcg_at_1000
1682
+ value: 39.678000000000004
1683
+ - type: ndcg_at_3
1684
+ value: 40.596
1685
+ - type: ndcg_at_5
1686
+ value: 38.75
1687
+ - type: precision_at_1
1688
+ value: 44.582
1689
+ - type: precision_at_10
1690
+ value: 25.974999999999998
1691
+ - type: precision_at_100
1692
+ value: 7.793
1693
+ - type: precision_at_1000
1694
+ value: 2.036
1695
+ - type: precision_at_3
1696
+ value: 38.493
1697
+ - type: precision_at_5
1698
+ value: 33.994
1699
+ - type: recall_at_1
1700
+ value: 5.409
1701
+ - type: recall_at_10
1702
+ value: 16.875999999999998
1703
+ - type: recall_at_100
1704
+ value: 30.316
1705
+ - type: recall_at_1000
1706
+ value: 60.891
1707
+ - type: recall_at_3
1708
+ value: 10.688
1709
+ - type: recall_at_5
1710
+ value: 13.832
1711
+ - task:
1712
+ type: Retrieval
1713
+ dataset:
1714
+ type: nq
1715
+ name: MTEB NQ
1716
+ config: default
1717
+ split: test
1718
+ revision: None
1719
+ metrics:
1720
+ - type: map_at_1
1721
+ value: 36.375
1722
+ - type: map_at_10
1723
+ value: 51.991
1724
+ - type: map_at_100
1725
+ value: 52.91400000000001
1726
+ - type: map_at_1000
1727
+ value: 52.93600000000001
1728
+ - type: map_at_3
1729
+ value: 48.014
1730
+ - type: map_at_5
1731
+ value: 50.381
1732
+ - type: mrr_at_1
1733
+ value: 40.759
1734
+ - type: mrr_at_10
1735
+ value: 54.617000000000004
1736
+ - type: mrr_at_100
1737
+ value: 55.301
1738
+ - type: mrr_at_1000
1739
+ value: 55.315000000000005
1740
+ - type: mrr_at_3
1741
+ value: 51.516
1742
+ - type: mrr_at_5
1743
+ value: 53.435
1744
+ - type: ndcg_at_1
1745
+ value: 40.759
1746
+ - type: ndcg_at_10
1747
+ value: 59.384
1748
+ - type: ndcg_at_100
1749
+ value: 63.157
1750
+ - type: ndcg_at_1000
1751
+ value: 63.654999999999994
1752
+ - type: ndcg_at_3
1753
+ value: 52.114000000000004
1754
+ - type: ndcg_at_5
1755
+ value: 55.986000000000004
1756
+ - type: precision_at_1
1757
+ value: 40.759
1758
+ - type: precision_at_10
1759
+ value: 9.411999999999999
1760
+ - type: precision_at_100
1761
+ value: 1.153
1762
+ - type: precision_at_1000
1763
+ value: 0.12
1764
+ - type: precision_at_3
1765
+ value: 23.329
1766
+ - type: precision_at_5
1767
+ value: 16.256999999999998
1768
+ - type: recall_at_1
1769
+ value: 36.375
1770
+ - type: recall_at_10
1771
+ value: 79.053
1772
+ - type: recall_at_100
1773
+ value: 95.167
1774
+ - type: recall_at_1000
1775
+ value: 98.82
1776
+ - type: recall_at_3
1777
+ value: 60.475
1778
+ - type: recall_at_5
1779
+ value: 69.327
1780
+ - task:
1781
+ type: Retrieval
1782
+ dataset:
1783
+ type: quora
1784
+ name: MTEB QuoraRetrieval
1785
+ config: default
1786
+ split: test
1787
+ revision: None
1788
+ metrics:
1789
+ - type: map_at_1
1790
+ value: 70.256
1791
+ - type: map_at_10
1792
+ value: 83.8
1793
+ - type: map_at_100
1794
+ value: 84.425
1795
+ - type: map_at_1000
1796
+ value: 84.444
1797
+ - type: map_at_3
1798
+ value: 80.906
1799
+ - type: map_at_5
1800
+ value: 82.717
1801
+ - type: mrr_at_1
1802
+ value: 80.97999999999999
1803
+ - type: mrr_at_10
1804
+ value: 87.161
1805
+ - type: mrr_at_100
1806
+ value: 87.262
1807
+ - type: mrr_at_1000
1808
+ value: 87.263
1809
+ - type: mrr_at_3
1810
+ value: 86.175
1811
+ - type: mrr_at_5
1812
+ value: 86.848
1813
+ - type: ndcg_at_1
1814
+ value: 80.97999999999999
1815
+ - type: ndcg_at_10
1816
+ value: 87.697
1817
+ - type: ndcg_at_100
1818
+ value: 88.959
1819
+ - type: ndcg_at_1000
1820
+ value: 89.09899999999999
1821
+ - type: ndcg_at_3
1822
+ value: 84.83800000000001
1823
+ - type: ndcg_at_5
1824
+ value: 86.401
1825
+ - type: precision_at_1
1826
+ value: 80.97999999999999
1827
+ - type: precision_at_10
1828
+ value: 13.261000000000001
1829
+ - type: precision_at_100
1830
+ value: 1.5150000000000001
1831
+ - type: precision_at_1000
1832
+ value: 0.156
1833
+ - type: precision_at_3
1834
+ value: 37.01
1835
+ - type: precision_at_5
1836
+ value: 24.298000000000002
1837
+ - type: recall_at_1
1838
+ value: 70.256
1839
+ - type: recall_at_10
1840
+ value: 94.935
1841
+ - type: recall_at_100
1842
+ value: 99.274
1843
+ - type: recall_at_1000
1844
+ value: 99.928
1845
+ - type: recall_at_3
1846
+ value: 86.602
1847
+ - type: recall_at_5
1848
+ value: 91.133
1849
+ - task:
1850
+ type: Clustering
1851
+ dataset:
1852
+ type: mteb/reddit-clustering
1853
+ name: MTEB RedditClustering
1854
+ config: default
1855
+ split: test
1856
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1857
+ metrics:
1858
+ - type: v_measure
1859
+ value: 56.322692497613104
1860
+ - task:
1861
+ type: Clustering
1862
+ dataset:
1863
+ type: mteb/reddit-clustering-p2p
1864
+ name: MTEB RedditClusteringP2P
1865
+ config: default
1866
+ split: test
1867
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1868
+ metrics:
1869
+ - type: v_measure
1870
+ value: 61.895813503775074
1871
+ - task:
1872
+ type: Retrieval
1873
+ dataset:
1874
+ type: scidocs
1875
+ name: MTEB SCIDOCS
1876
+ config: default
1877
+ split: test
1878
+ revision: None
1879
+ metrics:
1880
+ - type: map_at_1
1881
+ value: 4.338
1882
+ - type: map_at_10
1883
+ value: 10.767
1884
+ - type: map_at_100
1885
+ value: 12.537999999999998
1886
+ - type: map_at_1000
1887
+ value: 12.803999999999998
1888
+ - type: map_at_3
1889
+ value: 7.788
1890
+ - type: map_at_5
1891
+ value: 9.302000000000001
1892
+ - type: mrr_at_1
1893
+ value: 21.4
1894
+ - type: mrr_at_10
1895
+ value: 31.637999999999998
1896
+ - type: mrr_at_100
1897
+ value: 32.688
1898
+ - type: mrr_at_1000
1899
+ value: 32.756
1900
+ - type: mrr_at_3
1901
+ value: 28.433000000000003
1902
+ - type: mrr_at_5
1903
+ value: 30.178
1904
+ - type: ndcg_at_1
1905
+ value: 21.4
1906
+ - type: ndcg_at_10
1907
+ value: 18.293
1908
+ - type: ndcg_at_100
1909
+ value: 25.274
1910
+ - type: ndcg_at_1000
1911
+ value: 30.284
1912
+ - type: ndcg_at_3
1913
+ value: 17.391000000000002
1914
+ - type: ndcg_at_5
1915
+ value: 15.146999999999998
1916
+ - type: precision_at_1
1917
+ value: 21.4
1918
+ - type: precision_at_10
1919
+ value: 9.48
1920
+ - type: precision_at_100
1921
+ value: 1.949
1922
+ - type: precision_at_1000
1923
+ value: 0.316
1924
+ - type: precision_at_3
1925
+ value: 16.167
1926
+ - type: precision_at_5
1927
+ value: 13.22
1928
+ - type: recall_at_1
1929
+ value: 4.338
1930
+ - type: recall_at_10
1931
+ value: 19.213
1932
+ - type: recall_at_100
1933
+ value: 39.562999999999995
1934
+ - type: recall_at_1000
1935
+ value: 64.08
1936
+ - type: recall_at_3
1937
+ value: 9.828000000000001
1938
+ - type: recall_at_5
1939
+ value: 13.383000000000001
1940
+ - task:
1941
+ type: STS
1942
+ dataset:
1943
+ type: mteb/sickr-sts
1944
+ name: MTEB SICK-R
1945
+ config: default
1946
+ split: test
1947
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1948
+ metrics:
1949
+ - type: cos_sim_pearson
1950
+ value: 82.42568163642142
1951
+ - type: cos_sim_spearman
1952
+ value: 78.5797159641342
1953
+ - type: euclidean_pearson
1954
+ value: 80.22151260811604
1955
+ - type: euclidean_spearman
1956
+ value: 78.5797151953878
1957
+ - type: manhattan_pearson
1958
+ value: 80.21224215864788
1959
+ - type: manhattan_spearman
1960
+ value: 78.55641478381344
1961
+ - task:
1962
+ type: STS
1963
+ dataset:
1964
+ type: mteb/sts12-sts
1965
+ name: MTEB STS12
1966
+ config: default
1967
+ split: test
1968
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1969
+ metrics:
1970
+ - type: cos_sim_pearson
1971
+ value: 85.44020710812569
1972
+ - type: cos_sim_spearman
1973
+ value: 78.91631735081286
1974
+ - type: euclidean_pearson
1975
+ value: 81.64188964182102
1976
+ - type: euclidean_spearman
1977
+ value: 78.91633286881678
1978
+ - type: manhattan_pearson
1979
+ value: 81.69294748512496
1980
+ - type: manhattan_spearman
1981
+ value: 78.93438558002656
1982
+ - task:
1983
+ type: STS
1984
+ dataset:
1985
+ type: mteb/sts13-sts
1986
+ name: MTEB STS13
1987
+ config: default
1988
+ split: test
1989
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1990
+ metrics:
1991
+ - type: cos_sim_pearson
1992
+ value: 84.27165426412311
1993
+ - type: cos_sim_spearman
1994
+ value: 85.40429140249618
1995
+ - type: euclidean_pearson
1996
+ value: 84.7509580724893
1997
+ - type: euclidean_spearman
1998
+ value: 85.40429140249618
1999
+ - type: manhattan_pearson
2000
+ value: 84.76488289321308
2001
+ - type: manhattan_spearman
2002
+ value: 85.4256793698708
2003
+ - task:
2004
+ type: STS
2005
+ dataset:
2006
+ type: mteb/sts14-sts
2007
+ name: MTEB STS14
2008
+ config: default
2009
+ split: test
2010
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2011
+ metrics:
2012
+ - type: cos_sim_pearson
2013
+ value: 83.138851760732
2014
+ - type: cos_sim_spearman
2015
+ value: 81.64101363896586
2016
+ - type: euclidean_pearson
2017
+ value: 82.55165038934942
2018
+ - type: euclidean_spearman
2019
+ value: 81.64105257080502
2020
+ - type: manhattan_pearson
2021
+ value: 82.52802949883335
2022
+ - type: manhattan_spearman
2023
+ value: 81.61255430718158
2024
+ - task:
2025
+ type: STS
2026
+ dataset:
2027
+ type: mteb/sts15-sts
2028
+ name: MTEB STS15
2029
+ config: default
2030
+ split: test
2031
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2032
+ metrics:
2033
+ - type: cos_sim_pearson
2034
+ value: 86.0654695484029
2035
+ - type: cos_sim_spearman
2036
+ value: 87.20408521902229
2037
+ - type: euclidean_pearson
2038
+ value: 86.8110651362115
2039
+ - type: euclidean_spearman
2040
+ value: 87.20408521902229
2041
+ - type: manhattan_pearson
2042
+ value: 86.77984656478691
2043
+ - type: manhattan_spearman
2044
+ value: 87.1719947099227
2045
+ - task:
2046
+ type: STS
2047
+ dataset:
2048
+ type: mteb/sts16-sts
2049
+ name: MTEB STS16
2050
+ config: default
2051
+ split: test
2052
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2053
+ metrics:
2054
+ - type: cos_sim_pearson
2055
+ value: 83.77823915496512
2056
+ - type: cos_sim_spearman
2057
+ value: 85.43566325729779
2058
+ - type: euclidean_pearson
2059
+ value: 84.5396956658821
2060
+ - type: euclidean_spearman
2061
+ value: 85.43566325729779
2062
+ - type: manhattan_pearson
2063
+ value: 84.5665398848169
2064
+ - type: manhattan_spearman
2065
+ value: 85.44375870303232
2066
+ - task:
2067
+ type: STS
2068
+ dataset:
2069
+ type: mteb/sts17-crosslingual-sts
2070
+ name: MTEB STS17 (en-en)
2071
+ config: en-en
2072
+ split: test
2073
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2074
+ metrics:
2075
+ - type: cos_sim_pearson
2076
+ value: 87.20030208471798
2077
+ - type: cos_sim_spearman
2078
+ value: 87.20485505076539
2079
+ - type: euclidean_pearson
2080
+ value: 88.10588324368722
2081
+ - type: euclidean_spearman
2082
+ value: 87.20485505076539
2083
+ - type: manhattan_pearson
2084
+ value: 87.92324770415183
2085
+ - type: manhattan_spearman
2086
+ value: 87.0571314561877
2087
+ - task:
2088
+ type: STS
2089
+ dataset:
2090
+ type: mteb/sts22-crosslingual-sts
2091
+ name: MTEB STS22 (en)
2092
+ config: en
2093
+ split: test
2094
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2095
+ metrics:
2096
+ - type: cos_sim_pearson
2097
+ value: 63.06093161604453
2098
+ - type: cos_sim_spearman
2099
+ value: 64.2163140357722
2100
+ - type: euclidean_pearson
2101
+ value: 65.27589680994006
2102
+ - type: euclidean_spearman
2103
+ value: 64.2163140357722
2104
+ - type: manhattan_pearson
2105
+ value: 65.45904383711101
2106
+ - type: manhattan_spearman
2107
+ value: 64.55404716679305
2108
+ - task:
2109
+ type: STS
2110
+ dataset:
2111
+ type: mteb/stsbenchmark-sts
2112
+ name: MTEB STSBenchmark
2113
+ config: default
2114
+ split: test
2115
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2116
+ metrics:
2117
+ - type: cos_sim_pearson
2118
+ value: 84.32976164578706
2119
+ - type: cos_sim_spearman
2120
+ value: 85.54302197678368
2121
+ - type: euclidean_pearson
2122
+ value: 85.26307149193056
2123
+ - type: euclidean_spearman
2124
+ value: 85.54302197678368
2125
+ - type: manhattan_pearson
2126
+ value: 85.26647282029371
2127
+ - type: manhattan_spearman
2128
+ value: 85.5316135265568
2129
+ - task:
2130
+ type: Reranking
2131
+ dataset:
2132
+ type: mteb/scidocs-reranking
2133
+ name: MTEB SciDocsRR
2134
+ config: default
2135
+ split: test
2136
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2137
+ metrics:
2138
+ - type: map
2139
+ value: 81.44675968318754
2140
+ - type: mrr
2141
+ value: 94.92741826075158
2142
+ - task:
2143
+ type: Retrieval
2144
+ dataset:
2145
+ type: scifact
2146
+ name: MTEB SciFact
2147
+ config: default
2148
+ split: test
2149
+ revision: None
2150
+ metrics:
2151
+ - type: map_at_1
2152
+ value: 56.34400000000001
2153
+ - type: map_at_10
2154
+ value: 65.927
2155
+ - type: map_at_100
2156
+ value: 66.431
2157
+ - type: map_at_1000
2158
+ value: 66.461
2159
+ - type: map_at_3
2160
+ value: 63.529
2161
+ - type: map_at_5
2162
+ value: 64.818
2163
+ - type: mrr_at_1
2164
+ value: 59.333000000000006
2165
+ - type: mrr_at_10
2166
+ value: 67.54599999999999
2167
+ - type: mrr_at_100
2168
+ value: 67.892
2169
+ - type: mrr_at_1000
2170
+ value: 67.917
2171
+ - type: mrr_at_3
2172
+ value: 65.778
2173
+ - type: mrr_at_5
2174
+ value: 66.794
2175
+ - type: ndcg_at_1
2176
+ value: 59.333000000000006
2177
+ - type: ndcg_at_10
2178
+ value: 70.5
2179
+ - type: ndcg_at_100
2180
+ value: 72.688
2181
+ - type: ndcg_at_1000
2182
+ value: 73.483
2183
+ - type: ndcg_at_3
2184
+ value: 66.338
2185
+ - type: ndcg_at_5
2186
+ value: 68.265
2187
+ - type: precision_at_1
2188
+ value: 59.333000000000006
2189
+ - type: precision_at_10
2190
+ value: 9.3
2191
+ - type: precision_at_100
2192
+ value: 1.053
2193
+ - type: precision_at_1000
2194
+ value: 0.11199999999999999
2195
+ - type: precision_at_3
2196
+ value: 25.889
2197
+ - type: precision_at_5
2198
+ value: 16.866999999999997
2199
+ - type: recall_at_1
2200
+ value: 56.34400000000001
2201
+ - type: recall_at_10
2202
+ value: 82.789
2203
+ - type: recall_at_100
2204
+ value: 92.767
2205
+ - type: recall_at_1000
2206
+ value: 99
2207
+ - type: recall_at_3
2208
+ value: 71.64399999999999
2209
+ - type: recall_at_5
2210
+ value: 76.322
2211
+ - task:
2212
+ type: PairClassification
2213
+ dataset:
2214
+ type: mteb/sprintduplicatequestions-pairclassification
2215
+ name: MTEB SprintDuplicateQuestions
2216
+ config: default
2217
+ split: test
2218
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2219
+ metrics:
2220
+ - type: cos_sim_accuracy
2221
+ value: 99.75742574257426
2222
+ - type: cos_sim_ap
2223
+ value: 93.52081548447406
2224
+ - type: cos_sim_f1
2225
+ value: 87.33850129198966
2226
+ - type: cos_sim_precision
2227
+ value: 90.37433155080214
2228
+ - type: cos_sim_recall
2229
+ value: 84.5
2230
+ - type: dot_accuracy
2231
+ value: 99.75742574257426
2232
+ - type: dot_ap
2233
+ value: 93.52081548447406
2234
+ - type: dot_f1
2235
+ value: 87.33850129198966
2236
+ - type: dot_precision
2237
+ value: 90.37433155080214
2238
+ - type: dot_recall
2239
+ value: 84.5
2240
+ - type: euclidean_accuracy
2241
+ value: 99.75742574257426
2242
+ - type: euclidean_ap
2243
+ value: 93.52081548447406
2244
+ - type: euclidean_f1
2245
+ value: 87.33850129198966
2246
+ - type: euclidean_precision
2247
+ value: 90.37433155080214
2248
+ - type: euclidean_recall
2249
+ value: 84.5
2250
+ - type: manhattan_accuracy
2251
+ value: 99.75841584158415
2252
+ - type: manhattan_ap
2253
+ value: 93.4975678585854
2254
+ - type: manhattan_f1
2255
+ value: 87.26708074534162
2256
+ - type: manhattan_precision
2257
+ value: 90.45064377682404
2258
+ - type: manhattan_recall
2259
+ value: 84.3
2260
+ - type: max_accuracy
2261
+ value: 99.75841584158415
2262
+ - type: max_ap
2263
+ value: 93.52081548447406
2264
+ - type: max_f1
2265
+ value: 87.33850129198966
2266
+ - task:
2267
+ type: Clustering
2268
+ dataset:
2269
+ type: mteb/stackexchange-clustering
2270
+ name: MTEB StackExchangeClustering
2271
+ config: default
2272
+ split: test
2273
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2274
+ metrics:
2275
+ - type: v_measure
2276
+ value: 64.31437036686651
2277
+ - task:
2278
+ type: Clustering
2279
+ dataset:
2280
+ type: mteb/stackexchange-clustering-p2p
2281
+ name: MTEB StackExchangeClusteringP2P
2282
+ config: default
2283
+ split: test
2284
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2285
+ metrics:
2286
+ - type: v_measure
2287
+ value: 33.25569319007206
2288
+ - task:
2289
+ type: Reranking
2290
+ dataset:
2291
+ type: mteb/stackoverflowdupquestions-reranking
2292
+ name: MTEB StackOverflowDupQuestions
2293
+ config: default
2294
+ split: test
2295
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2296
+ metrics:
2297
+ - type: map
2298
+ value: 49.90474939720706
2299
+ - type: mrr
2300
+ value: 50.568115503777264
2301
+ - task:
2302
+ type: Summarization
2303
+ dataset:
2304
+ type: mteb/summeval
2305
+ name: MTEB SummEval
2306
+ config: default
2307
+ split: test
2308
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2309
+ metrics:
2310
+ - type: cos_sim_pearson
2311
+ value: 29.866828641244712
2312
+ - type: cos_sim_spearman
2313
+ value: 30.077555055873866
2314
+ - type: dot_pearson
2315
+ value: 29.866832988572266
2316
+ - type: dot_spearman
2317
+ value: 30.077555055873866
2318
+ - task:
2319
+ type: Retrieval
2320
+ dataset:
2321
+ type: trec-covid
2322
+ name: MTEB TRECCOVID
2323
+ config: default
2324
+ split: test
2325
+ revision: None
2326
+ metrics:
2327
+ - type: map_at_1
2328
+ value: 0.232
2329
+ - type: map_at_10
2330
+ value: 2.094
2331
+ - type: map_at_100
2332
+ value: 11.971
2333
+ - type: map_at_1000
2334
+ value: 28.158
2335
+ - type: map_at_3
2336
+ value: 0.688
2337
+ - type: map_at_5
2338
+ value: 1.114
2339
+ - type: mrr_at_1
2340
+ value: 88
2341
+ - type: mrr_at_10
2342
+ value: 93.4
2343
+ - type: mrr_at_100
2344
+ value: 93.4
2345
+ - type: mrr_at_1000
2346
+ value: 93.4
2347
+ - type: mrr_at_3
2348
+ value: 93
2349
+ - type: mrr_at_5
2350
+ value: 93.4
2351
+ - type: ndcg_at_1
2352
+ value: 84
2353
+ - type: ndcg_at_10
2354
+ value: 79.923
2355
+ - type: ndcg_at_100
2356
+ value: 61.17
2357
+ - type: ndcg_at_1000
2358
+ value: 53.03
2359
+ - type: ndcg_at_3
2360
+ value: 84.592
2361
+ - type: ndcg_at_5
2362
+ value: 82.821
2363
+ - type: precision_at_1
2364
+ value: 88
2365
+ - type: precision_at_10
2366
+ value: 85
2367
+ - type: precision_at_100
2368
+ value: 63.019999999999996
2369
+ - type: precision_at_1000
2370
+ value: 23.554
2371
+ - type: precision_at_3
2372
+ value: 89.333
2373
+ - type: precision_at_5
2374
+ value: 87.2
2375
+ - type: recall_at_1
2376
+ value: 0.232
2377
+ - type: recall_at_10
2378
+ value: 2.255
2379
+ - type: recall_at_100
2380
+ value: 14.823
2381
+ - type: recall_at_1000
2382
+ value: 49.456
2383
+ - type: recall_at_3
2384
+ value: 0.718
2385
+ - type: recall_at_5
2386
+ value: 1.175
2387
+ - task:
2388
+ type: Retrieval
2389
+ dataset:
2390
+ type: webis-touche2020
2391
+ name: MTEB Touche2020
2392
+ config: default
2393
+ split: test
2394
+ revision: None
2395
+ metrics:
2396
+ - type: map_at_1
2397
+ value: 2.547
2398
+ - type: map_at_10
2399
+ value: 11.375
2400
+ - type: map_at_100
2401
+ value: 18.194
2402
+ - type: map_at_1000
2403
+ value: 19.749
2404
+ - type: map_at_3
2405
+ value: 5.825
2406
+ - type: map_at_5
2407
+ value: 8.581
2408
+ - type: mrr_at_1
2409
+ value: 32.653
2410
+ - type: mrr_at_10
2411
+ value: 51.32
2412
+ - type: mrr_at_100
2413
+ value: 51.747
2414
+ - type: mrr_at_1000
2415
+ value: 51.747
2416
+ - type: mrr_at_3
2417
+ value: 47.278999999999996
2418
+ - type: mrr_at_5
2419
+ value: 48.605
2420
+ - type: ndcg_at_1
2421
+ value: 29.592000000000002
2422
+ - type: ndcg_at_10
2423
+ value: 28.151
2424
+ - type: ndcg_at_100
2425
+ value: 39.438
2426
+ - type: ndcg_at_1000
2427
+ value: 50.769
2428
+ - type: ndcg_at_3
2429
+ value: 30.758999999999997
2430
+ - type: ndcg_at_5
2431
+ value: 30.366
2432
+ - type: precision_at_1
2433
+ value: 32.653
2434
+ - type: precision_at_10
2435
+ value: 25.714
2436
+ - type: precision_at_100
2437
+ value: 8.041
2438
+ - type: precision_at_1000
2439
+ value: 1.555
2440
+ - type: precision_at_3
2441
+ value: 33.333
2442
+ - type: precision_at_5
2443
+ value: 31.837
2444
+ - type: recall_at_1
2445
+ value: 2.547
2446
+ - type: recall_at_10
2447
+ value: 18.19
2448
+ - type: recall_at_100
2449
+ value: 49.538
2450
+ - type: recall_at_1000
2451
+ value: 83.86
2452
+ - type: recall_at_3
2453
+ value: 7.329
2454
+ - type: recall_at_5
2455
+ value: 11.532
2456
+ - task:
2457
+ type: Classification
2458
+ dataset:
2459
+ type: mteb/toxic_conversations_50k
2460
+ name: MTEB ToxicConversationsClassification
2461
+ config: default
2462
+ split: test
2463
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2464
+ metrics:
2465
+ - type: accuracy
2466
+ value: 71.4952
2467
+ - type: ap
2468
+ value: 14.793362635531409
2469
+ - type: f1
2470
+ value: 55.204635551516915
2471
+ - task:
2472
+ type: Classification
2473
+ dataset:
2474
+ type: mteb/tweet_sentiment_extraction
2475
+ name: MTEB TweetSentimentExtractionClassification
2476
+ config: default
2477
+ split: test
2478
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2479
+ metrics:
2480
+ - type: accuracy
2481
+ value: 61.5365025466893
2482
+ - type: f1
2483
+ value: 61.81742556334845
2484
+ - task:
2485
+ type: Clustering
2486
+ dataset:
2487
+ type: mteb/twentynewsgroups-clustering
2488
+ name: MTEB TwentyNewsgroupsClustering
2489
+ config: default
2490
+ split: test
2491
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2492
+ metrics:
2493
+ - type: v_measure
2494
+ value: 49.05531070301185
2495
+ - task:
2496
+ type: PairClassification
2497
+ dataset:
2498
+ type: mteb/twittersemeval2015-pairclassification
2499
+ name: MTEB TwitterSemEval2015
2500
+ config: default
2501
+ split: test
2502
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2503
+ metrics:
2504
+ - type: cos_sim_accuracy
2505
+ value: 86.51725576682364
2506
+ - type: cos_sim_ap
2507
+ value: 75.2292304265163
2508
+ - type: cos_sim_f1
2509
+ value: 69.54022988505749
2510
+ - type: cos_sim_precision
2511
+ value: 63.65629110039457
2512
+ - type: cos_sim_recall
2513
+ value: 76.62269129287598
2514
+ - type: dot_accuracy
2515
+ value: 86.51725576682364
2516
+ - type: dot_ap
2517
+ value: 75.22922386081054
2518
+ - type: dot_f1
2519
+ value: 69.54022988505749
2520
+ - type: dot_precision
2521
+ value: 63.65629110039457
2522
+ - type: dot_recall
2523
+ value: 76.62269129287598
2524
+ - type: euclidean_accuracy
2525
+ value: 86.51725576682364
2526
+ - type: euclidean_ap
2527
+ value: 75.22925730473472
2528
+ - type: euclidean_f1
2529
+ value: 69.54022988505749
2530
+ - type: euclidean_precision
2531
+ value: 63.65629110039457
2532
+ - type: euclidean_recall
2533
+ value: 76.62269129287598
2534
+ - type: manhattan_accuracy
2535
+ value: 86.52321630804077
2536
+ - type: manhattan_ap
2537
+ value: 75.20608115037336
2538
+ - type: manhattan_f1
2539
+ value: 69.60000000000001
2540
+ - type: manhattan_precision
2541
+ value: 64.37219730941705
2542
+ - type: manhattan_recall
2543
+ value: 75.75197889182058
2544
+ - type: max_accuracy
2545
+ value: 86.52321630804077
2546
+ - type: max_ap
2547
+ value: 75.22925730473472
2548
+ - type: max_f1
2549
+ value: 69.60000000000001
2550
+ - task:
2551
+ type: PairClassification
2552
+ dataset:
2553
+ type: mteb/twitterurlcorpus-pairclassification
2554
+ name: MTEB TwitterURLCorpus
2555
+ config: default
2556
+ split: test
2557
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2558
+ metrics:
2559
+ - type: cos_sim_accuracy
2560
+ value: 89.34877944657896
2561
+ - type: cos_sim_ap
2562
+ value: 86.71257569277373
2563
+ - type: cos_sim_f1
2564
+ value: 79.10386355986088
2565
+ - type: cos_sim_precision
2566
+ value: 76.91468470434214
2567
+ - type: cos_sim_recall
2568
+ value: 81.4213119802895
2569
+ - type: dot_accuracy
2570
+ value: 89.34877944657896
2571
+ - type: dot_ap
2572
+ value: 86.71257133133368
2573
+ - type: dot_f1
2574
+ value: 79.10386355986088
2575
+ - type: dot_precision
2576
+ value: 76.91468470434214
2577
+ - type: dot_recall
2578
+ value: 81.4213119802895
2579
+ - type: euclidean_accuracy
2580
+ value: 89.34877944657896
2581
+ - type: euclidean_ap
2582
+ value: 86.71257651501476
2583
+ - type: euclidean_f1
2584
+ value: 79.10386355986088
2585
+ - type: euclidean_precision
2586
+ value: 76.91468470434214
2587
+ - type: euclidean_recall
2588
+ value: 81.4213119802895
2589
+ - type: manhattan_accuracy
2590
+ value: 89.35848177901967
2591
+ - type: manhattan_ap
2592
+ value: 86.69330615469126
2593
+ - type: manhattan_f1
2594
+ value: 79.13867741453949
2595
+ - type: manhattan_precision
2596
+ value: 76.78881807647741
2597
+ - type: manhattan_recall
2598
+ value: 81.63689559593472
2599
+ - type: max_accuracy
2600
+ value: 89.35848177901967
2601
+ - type: max_ap
2602
+ value: 86.71257651501476
2603
+ - type: max_f1
2604
+ value: 79.13867741453949
2605
+ license: apache-2.0
2606
+ language:
2607
+ - en
2608
+ ---
2609
+
2610
+
2611
+ # nomic-embed-text-v1: A Reproducible Long Context (8192) Text Embedder
2612
+
2613
+ `nomic-embed-text-v1` is 8192 context length text encoder that surpasses OpenAI text-embedding-ada-002 and text-embedding-3-small performance on short and long context tasks.
2614
+
2615
+
2616
+
2617
+ | Name | SeqLen | MTEB | LoCo | Jina Long Context | Open Weights | Open Training Code | Open Data |
2618
+ | :-------------------------------:| :----- | :-------- | :------: | :---------------: | :-----------: | :----------------: | :---------- |
2619
+ | nomic-embed-text-v1 | 8192 | **62.39** |**85.53** | 54.16 | ✅ | ✅ | ✅ |
2620
+ | jina-embeddings-v2-base-en | 8192 | 60.39 | 85.45 | 51.90 | ✅ | ❌ | ❌ |
2621
+ | text-embedding-3-small | 8191 | 62.26 | 82.40 | **58.20** | ❌ | ❌ | ❌ |
2622
+ | text-embedding-ada-002 | 8191 | 60.99 | 52.7 | 55.25 | ❌ | ❌ | ❌ |
2623
+
2624
+
2625
+ ## Hosted Inference API
2626
+
2627
+ The easiest way to get started with Nomic Embed is through the Nomic Embedding API.
2628
+
2629
+ Generating embeddings with the `nomic` Python client is as easy as
2630
+
2631
+ ```python
2632
+ from nomic import embed
2633
+
2634
+ output = embed.text(
2635
+ texts=['Nomic Embedding API', '#keepAIOpen'],
2636
+ model='nomic-embed-text-v1',
2637
+ task_type='search_document'
2638
+ )
2639
+
2640
+ print(output)
2641
+ ```
2642
+
2643
+ For more information, see the [API reference](https://docs.nomic.ai/reference/endpoints/nomic-embed-text)
2644
+
2645
+ ## Data Visualization
2646
+ Click the Nomic Atlas map below to visualize a 5M sample of our contrastive pretraining data!
2647
+
2648
+
2649
+ [![image/webp](https://cdn-uploads.huggingface.co/production/uploads/607997c83a565c15675055b3/pjhJhuNyRfPagRd_c_iUz.webp)](https://atlas.nomic.ai/map/nomic-text-embed-v1-5m-sample)
2650
+
2651
+ ## Training Details
2652
+
2653
+ We train our embedder using a multi-stage training pipeline. Starting from a long-context [BERT model](https://huggingface.co/nomic-ai/nomic-bert-2048),
2654
+ the first unsupervised contrastive stage trains on a dataset generated from weakly related text pairs, such as question-answer pairs from forums like StackExchange and Quora, title-body pairs from Amazon reviews, and summarizations from news articles.
2655
+
2656
+ In the second finetuning stage, higher quality labeled datasets such as search queries and answers from web searches are leveraged. Data curation and hard-example mining is crucial in this stage.
2657
+
2658
+ For more details, see the Nomic Embed [Technical Report](https://static.nomic.ai/reports/2024_Nomic_Embed_Text_Technical_Report.pdf) and corresponding [blog post](https://blog.nomic.ai/posts/nomic-embed-text-v1).
2659
+
2660
+ Training data to train the models is released in its entirety. For more details, see the `contrastors` [repository](https://github.com/nomic-ai/contrastors)
2661
+
2662
+ ## Usage
2663
+
2664
+ Note `nomic-embed-text` *requires* prefixes! We support the prefixes `[search_query, search_document, classification, clustering]`.
2665
+ For retrieval applications, you should prepend `search_document` for all your documents and `search_query` for your queries.
2666
+
2667
+ For example, you are building a RAG application over the top of Wikipedia. You would embed all Wikipedia articles with the prefix `search_document`
2668
+ and any questions you ask with `search_query`. For example:
2669
+ ```python
2670
+ queries = ["search_query: who is the first president of the united states?", "search_query: when was babe ruth born?"]
2671
+ documents = ["search_document: <article about US Presidents>", "search_document: <article about Babe Ruth>"]
2672
+ ```
2673
+
2674
+ ### Sentence Transformers
2675
+ ```python
2676
+ from sentence_transformers import SentenceTransformer
2677
+
2678
+ model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
2679
+ sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']
2680
+ embeddings = model.encode(sentences)
2681
+ print(embeddings)
2682
+ ```
2683
+
2684
+ ### Transformers
2685
+
2686
+ ```python
2687
+ import torch
2688
+ import torch.nn.functional as F
2689
+ from transformers import AutoTokenizer, AutoModel
2690
+
2691
+ def mean_pooling(model_output, attention_mask):
2692
+ token_embeddings = model_output[0]
2693
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
2694
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
2695
+
2696
+ sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']
2697
+
2698
+ tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
2699
+ model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True)
2700
+ model.eval()
2701
+
2702
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
2703
+
2704
+ with torch.no_grad():
2705
+ model_output = model(**encoded_input)
2706
+
2707
+ embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
2708
+ embeddings = F.normalize(embeddings, p=2, dim=1)
2709
+ print(embeddings)
2710
+ ```
2711
+
2712
+ The model natively supports scaling of the sequence length past 2048 tokens. To do so,
2713
+
2714
+ ```diff
2715
+ - tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
2716
+ + tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased', model_max_length=8192)
2717
+
2718
+
2719
+ - model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True)
2720
+ + model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True, rotary_scaling_factor=2)
2721
+ ```
2722
+
2723
+ ### Transformers.js
2724
+
2725
+ ```js
2726
+ import { pipeline } from '@xenova/transformers';
2727
+
2728
+ // Create a feature extraction pipeline
2729
+ const extractor = await pipeline('feature-extraction', 'nomic-ai/nomic-embed-text-v1', {
2730
+ quantized: false, // Comment out this line to use the quantized version
2731
+ });
2732
+
2733
+ // Compute sentence embeddings
2734
+ const texts = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?'];
2735
+ const embeddings = await extractor(texts, { pooling: 'mean', normalize: true });
2736
+ console.log(embeddings);
2737
+ ```
2738
+
2739
+ # Join the Nomic Community
2740
+
2741
+ - Nomic: [https://nomic.ai](https://nomic.ai)
2742
+ - Discord: [https://discord.gg/myY5YDR8z8](https://discord.gg/myY5YDR8z8)
2743
+ - Twitter: [https://twitter.com/nomic_ai](https://twitter.com/nomic_ai)
2744
+
2745
+
2746
+ # Citation
2747
+
2748
+ If you find the model, dataset, or training code useful, please cite our work
2749
+
2750
+ ```bibtex
2751
+ @misc{nussbaum2024nomic,
2752
+ title={Nomic Embed: Training a Reproducible Long Context Text Embedder},
2753
+ author={Zach Nussbaum and John X. Morris and Brandon Duderstadt and Andriy Mulyar},
2754
+ year={2024},
2755
+ eprint={2402.01613},
2756
+ archivePrefix={arXiv},
2757
+ primaryClass={cs.CL}
2758
+ }
2759
+ ```
config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/share/value-embedding/checkpoints/nomic-embed-text-v1-len8192-3ep-bs64-4gpu-[1,80]QA-per-view-0507",
3
+ "activation_function": "swiglu",
4
+ "architectures": [
5
+ "NomicBertModel"
6
+ ],
7
+ "attn_pdrop": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_hf_nomic_bert.NomicBertConfig",
10
+ "AutoModel": "modeling_hf_nomic_bert.NomicBertModel",
11
+ "AutoModelForMaskedLM": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForPreTraining"
12
+ },
13
+ "bos_token_id": null,
14
+ "causal": false,
15
+ "dense_seq_output": true,
16
+ "embd_pdrop": 0.0,
17
+ "eos_token_id": null,
18
+ "fused_bias_fc": true,
19
+ "fused_dropout_add_ln": true,
20
+ "initializer_range": 0.02,
21
+ "layer_norm_epsilon": 1e-12,
22
+ "max_trained_positions": 2048,
23
+ "mlp_fc1_bias": false,
24
+ "mlp_fc2_bias": false,
25
+ "model_type": "nomic_bert",
26
+ "n_embd": 768,
27
+ "n_head": 12,
28
+ "n_inner": 3072,
29
+ "n_layer": 12,
30
+ "n_positions": 8192,
31
+ "pad_vocab_size_multiple": 64,
32
+ "parallel_block": false,
33
+ "parallel_block_tied_norm": false,
34
+ "prenorm": false,
35
+ "qkv_proj_bias": false,
36
+ "reorder_and_upcast_attn": false,
37
+ "resid_pdrop": 0.0,
38
+ "rotary_emb_base": 1000,
39
+ "rotary_emb_fraction": 1.0,
40
+ "rotary_emb_interleaved": false,
41
+ "rotary_emb_scale_base": null,
42
+ "rotary_scaling_factor": 2,
43
+ "scale_attn_by_inverse_layer_idx": false,
44
+ "scale_attn_weights": true,
45
+ "summary_activation": null,
46
+ "summary_first_dropout": 0.1,
47
+ "summary_proj_to_labels": true,
48
+ "summary_type": "cls_index",
49
+ "summary_use_proj": true,
50
+ "torch_dtype": "float32",
51
+ "transformers_version": "4.41.2",
52
+ "type_vocab_size": 2,
53
+ "use_cache": true,
54
+ "use_flash_attn": true,
55
+ "use_rms_norm": false,
56
+ "use_xentropy": true,
57
+ "vocab_size": 30528
58
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
configuration_hf_nomic_bert.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import GPT2Config
2
+
3
+
4
+ class NomicBertConfig(GPT2Config):
5
+ model_type = "nomic_bert"
6
+
7
+ def __init__(
8
+ self,
9
+ prenorm=False,
10
+ parallel_block=False,
11
+ parallel_block_tied_norm=False,
12
+ rotary_emb_fraction=0.0,
13
+ fused_dropout_add_ln=False,
14
+ fused_bias_fc=False,
15
+ use_flash_attn=False,
16
+ use_xentropy=False,
17
+ qkv_proj_bias=True,
18
+ rotary_emb_base=10_000,
19
+ rotary_emb_scale_base=None,
20
+ rotary_emb_interleaved=False,
21
+ mlp_fc1_bias=True,
22
+ mlp_fc2_bias=True,
23
+ use_rms_norm=False,
24
+ causal=False,
25
+ type_vocab_size=2,
26
+ dense_seq_output=True,
27
+ pad_vocab_size_multiple=1,
28
+ tie_word_embeddings=True,
29
+ rotary_scaling_factor=None,
30
+ max_trained_positions=2048,
31
+ **kwargs,
32
+ ):
33
+ self.prenorm = prenorm
34
+ self.parallel_block = parallel_block
35
+ self.parallel_block_tied_norm = parallel_block_tied_norm
36
+ self.rotary_emb_fraction = rotary_emb_fraction
37
+ self.tie_word_embeddings = tie_word_embeddings
38
+ self.fused_dropout_add_ln = fused_dropout_add_ln
39
+ self.fused_bias_fc = fused_bias_fc
40
+ self.use_flash_attn = use_flash_attn
41
+ self.use_xentropy = use_xentropy
42
+ self.qkv_proj_bias = qkv_proj_bias
43
+ self.rotary_emb_base = rotary_emb_base
44
+ self.rotary_emb_scale_base = rotary_emb_scale_base
45
+ self.rotary_emb_interleaved = rotary_emb_interleaved
46
+ self.mlp_fc1_bias = mlp_fc1_bias
47
+ self.mlp_fc2_bias = mlp_fc2_bias
48
+ self.use_rms_norm = use_rms_norm
49
+ self.causal = causal
50
+ self.type_vocab_size = type_vocab_size
51
+ self.dense_seq_output = dense_seq_output
52
+ self.pad_vocab_size_multiple = pad_vocab_size_multiple
53
+ self.rotary_scaling_factor = rotary_scaling_factor
54
+ self.max_trained_positions = max_trained_positions
55
+
56
+ super().__init__(**kwargs)
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0612802f780ec4f34c93242e2a959e13f78fd4923828f8be469cb4755ac7855
3
+ size 546938168
modeling_hf_nomic_bert.py ADDED
@@ -0,0 +1,2071 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2022, Tri Dao.
2
+ # This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
3
+ # https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
4
+ # https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
5
+
6
+ import logging
7
+
8
+ # Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
9
+ import math
10
+ import numpy as np
11
+ import collections
12
+ import os
13
+ import re
14
+ from collections import OrderedDict
15
+ from functools import partial
16
+ from typing import List, Optional, Tuple, Union
17
+
18
+ import torch
19
+ import torch.nn as nn
20
+ import torch.nn.functional as F
21
+ from einops import rearrange, repeat
22
+ from safetensors.torch import load_file as safe_load_file
23
+ from transformers import GPT2Config, PreTrainedModel, ViTModel, ViTConfig
24
+ from transformers.models.bert.modeling_bert import (
25
+ BaseModelOutputWithPoolingAndCrossAttentions,
26
+ MaskedLMOutput,
27
+ SequenceClassifierOutput,
28
+ )
29
+ from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
30
+ from transformers.utils.hub import cached_file, get_checkpoint_shard_files
31
+ from transformers.modeling_outputs import BaseModelOutputWithPast
32
+ from torch.nn.modules.utils import _pair
33
+
34
+ from .configuration_hf_nomic_bert import NomicBertConfig
35
+
36
+ logger = logging.getLogger(__name__)
37
+
38
+
39
+ # adapted from flash attention, added safe serialization option for hf models
40
+ def state_dict_from_pretrained(model_name, safe_serialization=False, device=None, dtype=None):
41
+ # If not fp32, then we don't want to load directly to the GPU
42
+ mapped_device = "cpu" if dtype not in [torch.float32, None] else device
43
+ is_sharded = False
44
+ load_safe = False
45
+ resolved_archive_file = None
46
+
47
+ weights_path = os.path.join(model_name, WEIGHTS_NAME)
48
+ weights_index_path = os.path.join(model_name, WEIGHTS_INDEX_NAME)
49
+ safe_weights_path = os.path.join(model_name, SAFE_WEIGHTS_NAME)
50
+ safe_weights_index_path = os.path.join(model_name, SAFE_WEIGHTS_INDEX_NAME)
51
+
52
+ if os.path.isfile(weights_path):
53
+ resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
54
+ elif os.path.isfile(weights_index_path):
55
+ resolved_archive_file = cached_file(model_name, WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False)
56
+ is_sharded = True
57
+ elif os.path.isfile(safe_weights_path):
58
+ resolved_archive_file = cached_file(model_name, SAFE_WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
59
+ load_safe = True
60
+ elif os.path.isfile(safe_weights_index_path):
61
+ resolved_archive_file = cached_file(
62
+ model_name, SAFE_WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False
63
+ )
64
+ is_sharded = True
65
+ load_safe = True
66
+ else: # Try loading from HF hub instead of from local files
67
+ resolved_archive_file = None
68
+ for weight_name in [WEIGHTS_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME]:
69
+ resolved_archive_file = cached_file(
70
+ model_name, weight_name, _raise_exceptions_for_missing_entries=False
71
+ )
72
+ if resolved_archive_file is not None:
73
+ if weight_name in [SAFE_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME]:
74
+ load_safe = True
75
+ if weight_name in [WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME]:
76
+ is_sharded = True
77
+ break
78
+
79
+ if resolved_archive_file is None:
80
+ raise EnvironmentError(f"Model name {model_name} was not found.")
81
+
82
+ if load_safe:
83
+ loader = partial(safe_load_file, device=mapped_device)
84
+ else:
85
+ loader = partial(torch.load, map_location=mapped_device)
86
+
87
+ if is_sharded:
88
+ # resolved_archive_file becomes a list of files that point to the different
89
+ # checkpoint shards in this case.
90
+ resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(model_name, resolved_archive_file)
91
+ state_dict = {}
92
+ for sharded_file in resolved_archive_file:
93
+ state_dict.update(loader(sharded_file))
94
+ else:
95
+ state_dict = loader(resolved_archive_file)
96
+ # Convert dtype before moving to GPU to save memory
97
+ if dtype is not None:
98
+ state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
99
+ state_dict = {k: v.to(device=device) for k, v in state_dict.items()}
100
+ return state_dict
101
+
102
+
103
+ def filter_shapes(state_dict, model):
104
+ """
105
+ Filters the state dict to match the current model shape.
106
+ """
107
+ filtered_state_dict = {}
108
+ for key, value in state_dict.items():
109
+ if key in model.state_dict():
110
+ if value.shape == model.state_dict()[key].shape:
111
+ filtered_state_dict[key] = value
112
+ return filtered_state_dict
113
+
114
+
115
+ def remap_bert_state_dict(
116
+ state_dict,
117
+ config,
118
+ remove_bert=False,
119
+ remove_cls_weights=False,
120
+ add_pooling_layer=False,
121
+ ):
122
+ """
123
+ Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
124
+ """
125
+
126
+ def add_bert_prefix(key):
127
+ # prepend bert. to the key
128
+ if key.startswith("bert.") or key.startswith("cls."):
129
+ return key
130
+ return f"bert.{key}"
131
+
132
+ state_dict = OrderedDict((add_bert_prefix(k), v) for k, v in state_dict.items())
133
+
134
+ # LayerNorm
135
+ def key_mapping_ln_gamma_beta(key):
136
+ key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
137
+ key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
138
+ return key
139
+
140
+ state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())
141
+
142
+ # Layers
143
+ def key_mapping_layers(key):
144
+ return re.sub(r"^bert.encoder.layer\.", "bert.encoder.layers.", key)
145
+
146
+ state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
147
+
148
+ # LayerNorm
149
+ def key_mapping_ln(key):
150
+ key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
151
+ key = re.sub(
152
+ r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
153
+ r"bert.encoder.layers.\1.norm1.\2",
154
+ key,
155
+ )
156
+ key = re.sub(
157
+ r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
158
+ r"bert.encoder.layers.\1.norm2.\2",
159
+ key,
160
+ )
161
+ key = re.sub(
162
+ r"^cls.predictions.transform.LayerNorm.(weight|bias)",
163
+ r"cls.predictions.transform.layer_norm.\1",
164
+ key,
165
+ )
166
+ return key
167
+
168
+ state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
169
+
170
+ # MLP
171
+ def key_mapping_mlp(key):
172
+ key = re.sub(
173
+ r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
174
+ r"bert.encoder.layers.\1.mlp.fc1.\2",
175
+ key,
176
+ )
177
+ key = re.sub(
178
+ r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
179
+ r"bert.encoder.layers.\1.mlp.fc2.\2",
180
+ key,
181
+ )
182
+ return key
183
+
184
+ state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
185
+
186
+ # Attention
187
+ last_layer_subset = getattr(config, "last_layer_subset", False)
188
+ for d in range(config.num_hidden_layers):
189
+ if f"bert.encoder.layers.{d}.attention.self.query.weight" not in state_dict:
190
+ continue
191
+ Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
192
+ Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
193
+ Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
194
+ bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
195
+ bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
196
+ bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
197
+ if not (last_layer_subset and d == config.num_hidden_layers - 1):
198
+ state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
199
+ state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
200
+ else:
201
+ state_dict[f"bert.encoder.layers.{d}.attn.Wq.weight"] = Wq
202
+ state_dict[f"bert.encoder.layers.{d}.attn.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
203
+ state_dict[f"bert.encoder.layers.{d}.attn.Wq.bias"] = bq
204
+ state_dict[f"bert.encoder.layers.{d}.attn.Wkv.bias"] = torch.cat([bk, bv], dim=0)
205
+
206
+ def key_mapping_attn(key):
207
+ return re.sub(
208
+ r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
209
+ r"bert.encoder.layers.\1.attn.out_proj.\2",
210
+ key,
211
+ )
212
+
213
+ state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
214
+
215
+ def key_mapping_decoder_bias(key):
216
+ return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
217
+
218
+ # remove nsp weights, we don't use
219
+ state_dict.pop("cls.seq_relationship.weight", None)
220
+ state_dict.pop("cls.seq_relationship.bias", None)
221
+ state_dict.pop("bert.embeddings.position_ids", None)
222
+
223
+ state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())
224
+
225
+ if remove_cls_weights:
226
+ cls_weights = [
227
+ "cls.predictions.decoder.bias",
228
+ "cls.predictions.transform.dense.weight",
229
+ "cls.predictions.transform.dense.bias",
230
+ "cls.predictions.transform.layer_norm.weight",
231
+ "cls.predictions.transform.layer_norm.bias",
232
+ "cls.predictions.decoder.weight",
233
+ ]
234
+ for weight in cls_weights:
235
+ state_dict.pop(weight, None)
236
+
237
+ # Word embedding
238
+ pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
239
+ if pad_vocab_size_multiple > 1:
240
+ word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
241
+ state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
242
+ word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
243
+ )
244
+ if not remove_cls_weights:
245
+ decoder_weight = state_dict["cls.predictions.decoder.weight"]
246
+ state_dict["cls.predictions.decoder.weight"] = F.pad(
247
+ decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
248
+ )
249
+ # If the vocab was padded, we want to set the decoder bias for those padded indices to be
250
+ # strongly negative (i.e. the decoder shouldn't predict those indices).
251
+ # TD [2022-05-09]: I don't think it affects the MLPerf training.
252
+ if "cls.predictions.decoder.bias" in state_dict:
253
+ decoder_bias = state_dict["cls.predictions.decoder.bias"]
254
+ state_dict["cls.predictions.decoder.bias"] = F.pad(
255
+ decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
256
+ )
257
+
258
+ if add_pooling_layer is False:
259
+ pooler_weights = [
260
+ "bert.pooler.dense.weight",
261
+ "bert.pooler.dense.bias",
262
+ ]
263
+ for key in pooler_weights:
264
+ state_dict.pop(key, None)
265
+
266
+ if remove_bert:
267
+
268
+ def remove_bert_prefix(key):
269
+ key = re.sub(r"^bert.", "", key)
270
+ return key
271
+
272
+ state_dict = OrderedDict((remove_bert_prefix(k), v) for k, v in state_dict.items())
273
+
274
+ return state_dict
275
+
276
+
277
+ def _trunc_normal_(tensor, mean, std, a, b):
278
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
279
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
280
+ def norm_cdf(x):
281
+ # Computes standard normal cumulative distribution function
282
+ return (1. + math.erf(x / math.sqrt(2.))) / 2.
283
+
284
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
285
+ print("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
286
+ "The distribution of values may be incorrect.",
287
+ stacklevel=2)
288
+
289
+ # Values are generated by using a truncated uniform distribution and
290
+ # then using the inverse CDF for the normal distribution.
291
+ # Get upper and lower cdf values
292
+ l = norm_cdf((a - mean) / std)
293
+ u = norm_cdf((b - mean) / std)
294
+
295
+ # Uniformly fill tensor with values from [l, u], then translate to
296
+ # [2l-1, 2u-1].
297
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
298
+
299
+ # Use inverse cdf transform for normal distribution to get truncated
300
+ # standard normal
301
+ tensor.erfinv_()
302
+
303
+ # Transform to proper mean, std
304
+ tensor.mul_(std * math.sqrt(2.))
305
+ tensor.add_(mean)
306
+
307
+ # Clamp to ensure it's in the proper range
308
+ tensor.clamp_(min=a, max=b)
309
+ return tensor
310
+
311
+ def trunc_normal_tf_(tensor, mean=0., std=1., a=-2., b=2.):
312
+ r"""Fills the input Tensor with values drawn from a truncated
313
+ normal distribution. The values are effectively drawn from the
314
+ normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
315
+ with values outside :math:`[a, b]` redrawn until they are within
316
+ the bounds. The method used for generating the random values works
317
+ best when :math:`a \leq \text{mean} \leq b`.
318
+
319
+ NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
320
+ bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
321
+ and the result is subsquently scaled and shifted by the mean and std args.
322
+
323
+ Args:
324
+ tensor: an n-dimensional `torch.Tensor`
325
+ mean: the mean of the normal distribution
326
+ std: the standard deviation of the normal distribution
327
+ a: the minimum cutoff value
328
+ b: the maximum cutoff value
329
+ Examples:
330
+ >>> w = torch.empty(3, 5)
331
+ >>> nn.init.trunc_normal_(w)
332
+ """
333
+ with torch.no_grad():
334
+ _trunc_normal_(tensor, 0, 1.0, a, b)
335
+ tensor.mul_(std).add_(mean)
336
+ return tensor
337
+
338
+
339
+ class NomicBertPreTrainedModel(PreTrainedModel):
340
+ """An abstract class to handle weights initialization and
341
+ a simple interface for dowloading and loading pretrained models.
342
+ """
343
+
344
+ config_class = NomicBertConfig
345
+ base_model_prefix = "model"
346
+ supports_gradient_checkpointing = True
347
+ _no_split_modules = ["Block"]
348
+ _skip_keys_device_placement = "past_key_values"
349
+
350
+ def __init__(self, config, *inputs, **kwargs):
351
+ super().__init__(config)
352
+ if not isinstance(config, GPT2Config):
353
+ raise ValueError(
354
+ "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
355
+ "To create a model from a Google pretrained model use "
356
+ "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
357
+ self.__class__.__name__, self.__class__.__name__
358
+ )
359
+ )
360
+ self.config = config
361
+
362
+ @classmethod
363
+ def from_pretrained(cls, model_name, config=None, *inputs, **kwargs):
364
+ """
365
+ Instantiate a NomicBertPreTrainedModel from a pre-trained model file or a pytorch state dict.
366
+ Download and cache the pre-trained model file if needed.
367
+
368
+ Params:
369
+ pretrained_model_name_or_path: either:
370
+ - a path or url to a pretrained model archive containing:
371
+ . `bert_config.json` a configuration file for the model
372
+ . `pytorch_model.bin` a PyTorch dump of a NomicBertForPretraining instance
373
+ - a path or url to a pretrained model archive containing:
374
+ . `bert_config.json` a configuration file for the model
375
+ . `model.chkpt` a TensorFlow checkpoint
376
+ *inputs, **kwargs: additional input for the specific NomicBert class
377
+ (ex: num_labels for NomicBertForSequenceClassification)
378
+ """
379
+ # Instantiate model.
380
+ if config is None:
381
+ config = cls.config_class.from_pretrained(model_name)
382
+ remove_cls = cls != NomicBertForPreTraining
383
+ remove_bert_prefix = cls != NomicBertForPreTraining and cls != NomicBertForSequenceClassification
384
+ ignore_mismatched_shapes = kwargs.pop("ignore_mismatched_sizes", False)
385
+ num_labels = kwargs.pop("num_labels", None)
386
+ rotary_scaling_factor = kwargs.pop("rotary_scaling_factor", None)
387
+ strict = kwargs.pop("strict", True)
388
+ if rotary_scaling_factor:
389
+ config.rotary_scaling_factor = rotary_scaling_factor
390
+
391
+ if config.n_positions <= 0 and config.rotary_emb_fraction > 0:
392
+ config.n_positions = 2048
393
+ if num_labels:
394
+ config.num_labels = num_labels
395
+
396
+ if "add_pooling_layer" in kwargs:
397
+ model = cls(config, *inputs, add_pooling_layer=kwargs.pop("add_pooling_layer"))
398
+ else:
399
+ if cls == NomicBertModel:
400
+ model = cls(config, *inputs, add_pooling_layer=False)
401
+ else:
402
+ model = cls(config, *inputs)
403
+ # TODO: fix this
404
+ # Assuming we know what we're doing when loading from disk
405
+ # Prob a bad assumption but i'm tired and want to train this asap
406
+ if os.path.exists(model_name):
407
+ model_path = f"{model_name}/pytorch_model.bin"
408
+ if os.path.exists(model_path):
409
+ state_dict = torch.load(f"{model_name}/pytorch_model.bin")
410
+ else:
411
+ model_path = f"{model_name}/model.safetensors"
412
+ if not os.path.exists(model_path):
413
+ raise ValueError(f"Model path {model_path} not found")
414
+ state_dict = safe_load_file(model_path)
415
+
416
+ if ignore_mismatched_shapes:
417
+ state_dict = filter_shapes(state_dict, model)
418
+ load_return = model.load_state_dict(state_dict, strict=False)
419
+ else:
420
+ # TODO: can probably check config class and see if we need to remap from a bert model
421
+ state_dict = state_dict_from_pretrained(model_name)
422
+ state_dict = remap_bert_state_dict(
423
+ state_dict,
424
+ config,
425
+ remove_bert=remove_bert_prefix,
426
+ remove_cls_weights=remove_cls,
427
+ add_pooling_layer=getattr(config, "add_pooling_layer", False),
428
+ )
429
+ if ignore_mismatched_shapes:
430
+ state_dict = filter_shapes(state_dict, model)
431
+
432
+ load_return = model.load_state_dict(state_dict, strict=strict)
433
+ logger.warning(load_return)
434
+ return model
435
+
436
+ def _set_gradient_checkpointing(self, module, value=False):
437
+ if isinstance(module, NomicBertEncoder):
438
+ module.gradient_checkpointing = value
439
+
440
+
441
+ # https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
442
+ def _init_weights(module, initializer_range=0.02):
443
+ if isinstance(module, nn.Linear):
444
+ nn.init.normal_(module.weight, std=initializer_range)
445
+ if module.bias is not None:
446
+ nn.init.zeros_(module.bias)
447
+ elif isinstance(module, nn.Embedding):
448
+ nn.init.normal_(module.weight, std=initializer_range)
449
+ if module.padding_idx is not None:
450
+ nn.init.zeros_(module.weight[module.padding_idx])
451
+
452
+ def _ntuple(n):
453
+ def parse(x):
454
+ if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
455
+ return tuple(x)
456
+ return tuple(repeat(x, n))
457
+ return parse
458
+
459
+
460
+ to_1tuple = _ntuple(1)
461
+ to_2tuple = _ntuple(2)
462
+ to_3tuple = _ntuple(3)
463
+ to_4tuple = _ntuple(4)
464
+ to_ntuple = _ntuple
465
+
466
+
467
+ def get_2d_sincos_pos_embed(embed_dim, grid_size, add_cls_token=False):
468
+ """
469
+ Create 2D sin/cos positional embeddings.
470
+
471
+ Args:
472
+ embed_dim (`int`):
473
+ Embedding dimension.
474
+ grid_size (`int`):
475
+ The grid height and width.
476
+ add_cls_token (`bool`, *optional*, defaults to `False`):
477
+ Whether or not to add a classification (CLS) token.
478
+
479
+ Returns:
480
+ (`torch.FloatTensor` of shape (grid_size*grid_size, embed_dim) or (1+grid_size*grid_size, embed_dim): the
481
+ position embeddings (with or without classification token)
482
+ """
483
+ grid_h = np.arange(grid_size, dtype=np.float32)
484
+
485
+ grid_w = np.arange(grid_size, dtype=np.float32)
486
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
487
+ grid = np.stack(grid, axis=0)
488
+
489
+ grid = grid.reshape([2, 1, grid_size, grid_size])
490
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
491
+ if add_cls_token:
492
+ pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
493
+ return pos_embed
494
+
495
+
496
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
497
+ if embed_dim % 2 != 0:
498
+ raise ValueError("embed_dim must be even")
499
+
500
+ # use half of dimensions to encode grid_h
501
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
502
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
503
+
504
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
505
+ return emb
506
+
507
+
508
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
509
+ """
510
+ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
511
+ """
512
+ if embed_dim % 2 != 0:
513
+ raise ValueError("embed_dim must be even")
514
+
515
+ omega = np.arange(embed_dim // 2, dtype=float)
516
+ omega /= embed_dim / 2.0
517
+ omega = 1.0 / 10000**omega # (D/2,)
518
+
519
+ pos = pos.reshape(-1) # (M,)
520
+ out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
521
+
522
+ emb_sin = np.sin(out) # (M, D/2)
523
+ emb_cos = np.cos(out) # (M, D/2)
524
+
525
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
526
+ return emb
527
+
528
+ def ndgrid(*tensors) -> Tuple[torch.Tensor, ...]:
529
+ """generate N-D grid in dimension order.
530
+
531
+ The ndgrid function is like meshgrid except that the order of the first two input arguments are switched.
532
+
533
+ That is, the statement
534
+ [X1,X2,X3] = ndgrid(x1,x2,x3)
535
+
536
+ produces the same result as
537
+
538
+ [X2,X1,X3] = meshgrid(x2,x1,x3)
539
+
540
+ This naming is based on MATLAB, the purpose is to avoid confusion due to torch's change to make
541
+ torch.meshgrid behaviour move from matching ndgrid ('ij') indexing to numpy meshgrid defaults of ('xy').
542
+
543
+ """
544
+ try:
545
+ return torch.meshgrid(*tensors, indexing='ij')
546
+ except TypeError:
547
+ # old PyTorch < 1.10 will follow this path as it does not have indexing arg,
548
+ # the old behaviour of meshgrid was 'ij'
549
+ return torch.meshgrid(*tensors)
550
+
551
+ def build_fourier_pos_embed(
552
+ feat_shape: List[int],
553
+ bands: Optional[torch.Tensor] = None,
554
+ num_bands: int = 64,
555
+ max_res: int = 224,
556
+ temperature: float = 10000.,
557
+ linear_bands: bool = False,
558
+ include_grid: bool = False,
559
+ in_pixels: bool = True,
560
+ ref_feat_shape: Optional[List[int]] = None,
561
+ dtype: torch.dtype = torch.float32,
562
+ device: Optional[torch.device] = None,
563
+ ) -> List[torch.Tensor]:
564
+ """
565
+
566
+ Args:
567
+ feat_shape: Feature shape for embedding.
568
+ bands: Pre-calculated frequency bands.
569
+ num_bands: Number of frequency bands (determines output dim).
570
+ max_res: Maximum resolution for pixel based freq.
571
+ temperature: Temperature for non-pixel freq.
572
+ linear_bands: Linear band spacing for pixel based freq.
573
+ include_grid: Include the spatial grid in output.
574
+ in_pixels: Output in pixel freq.
575
+ ref_feat_shape: Reference feature shape for resize / fine-tune.
576
+ dtype: Output dtype.
577
+ device: Output device.
578
+
579
+ Returns:
580
+
581
+ """
582
+ if bands is None:
583
+ if in_pixels:
584
+ bands = pixel_freq_bands(
585
+ num_bands,
586
+ float(max_res),
587
+ linear_bands=linear_bands,
588
+ device=device,
589
+ )
590
+ else:
591
+ bands = freq_bands(
592
+ num_bands,
593
+ temperature=temperature,
594
+ step=1,
595
+ device=device,
596
+ )
597
+ else:
598
+ if device is None:
599
+ device = bands.device
600
+ if dtype is None:
601
+ dtype = bands.dtype
602
+
603
+ if in_pixels:
604
+ t = [torch.linspace(-1., 1., steps=s, device=device, dtype=torch.float32) for s in feat_shape]
605
+ else:
606
+ t = [torch.arange(s, device=device, dtype=torch.int64).to(torch.float32) for s in feat_shape]
607
+
608
+ if ref_feat_shape is not None:
609
+ # eva's scheme for resizing rope embeddings (ref shape = pretrain)
610
+ t = [x / f * r for x, f, r in zip(t, feat_shape, ref_feat_shape)]
611
+
612
+ grid = torch.stack(ndgrid(t), dim=-1)
613
+ grid = grid.unsqueeze(-1)
614
+ pos = grid * bands
615
+
616
+ pos_sin, pos_cos = pos.sin().to(dtype=dtype), pos.cos().to(dtype)
617
+ out = [grid, pos_sin, pos_cos] if include_grid else [pos_sin, pos_cos]
618
+ return out
619
+
620
+
621
+ def build_rotary_pos_embed(
622
+ feat_shape: List[int],
623
+ bands: Optional[torch.Tensor] = None,
624
+ dim: int = 64,
625
+ max_res: int = 224,
626
+ temperature: float = 10000.,
627
+ linear_bands: bool = False,
628
+ in_pixels: bool = True,
629
+ ref_feat_shape: Optional[List[int]] = None,
630
+ dtype: torch.dtype = torch.float32,
631
+ device: Optional[torch.device] = None,
632
+ ):
633
+ """
634
+
635
+ Args:
636
+ feat_shape: Spatial shape of the target tensor for embedding.
637
+ bands: Optional pre-generated frequency bands
638
+ dim: Output dimension of embedding tensor.
639
+ max_res: Maximum resolution for pixel mode.
640
+ temperature: Temperature (inv freq) for non-pixel mode
641
+ linear_bands: Linearly (instead of log) spaced bands for pixel mode
642
+ in_pixels: Pixel vs language (inv freq) mode.
643
+ dtype: Output dtype.
644
+ device: Output device.
645
+
646
+ Returns:
647
+
648
+ """
649
+ sin_emb, cos_emb = build_fourier_pos_embed(
650
+ feat_shape,
651
+ bands=bands,
652
+ num_bands=dim // 4,
653
+ max_res=max_res,
654
+ temperature=temperature,
655
+ linear_bands=linear_bands,
656
+ in_pixels=in_pixels,
657
+ ref_feat_shape=ref_feat_shape,
658
+ device=device,
659
+ dtype=dtype,
660
+ )
661
+ num_spatial_dim = 1
662
+ # this would be much nicer as a .numel() call to torch.Size(), but torchscript sucks
663
+ for x in feat_shape:
664
+ num_spatial_dim *= x
665
+ sin_emb = sin_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1)
666
+ cos_emb = cos_emb.reshape(num_spatial_dim, -1).repeat_interleave(2, -1)
667
+ return sin_emb, cos_emb
668
+
669
+ def freq_bands(
670
+ num_bands: int,
671
+ temperature: float = 10000.,
672
+ step: int = 2,
673
+ device: Optional[torch.device] = None,
674
+ ) -> torch.Tensor:
675
+ exp = torch.arange(0, num_bands, step, dtype=torch.int64, device=device).to(torch.float32) / num_bands
676
+ bands = 1. / (temperature ** exp)
677
+ return bands
678
+
679
+
680
+ def pixel_freq_bands(
681
+ num_bands: int,
682
+ max_freq: float = 224.,
683
+ linear_bands: bool = True,
684
+ device: Optional[torch.device] = None,
685
+ ):
686
+ if linear_bands:
687
+ bands = torch.linspace(1.0, max_freq / 2, num_bands, dtype=torch.float32, device=device)
688
+ else:
689
+ bands = 2 ** torch.linspace(0, math.log(max_freq, 2) - 1, num_bands, dtype=torch.float32, device=device)
690
+ return bands * torch.pi
691
+
692
+ def rot(x):
693
+ return torch.stack([-x[..., 1::2], x[..., ::2]], -1).reshape(x.shape)
694
+
695
+ def apply_rot_embed_cat(x: torch.Tensor, emb):
696
+ sin_emb, cos_emb = emb.tensor_split(2, -1)
697
+ if sin_emb.ndim == 3:
698
+ return x * cos_emb.unsqueeze(1).expand_as(x) + rot(x) * sin_emb.unsqueeze(1).expand_as(x)
699
+ return x * cos_emb + rot(x) * sin_emb
700
+
701
+ # taken from https://github.com/huggingface/pytorch-image-models/blob/cb0e4391beedcc5ac3ae4bce16561b95c326f32c/timm/layers/pos_embed_sincos.py#L363
702
+ class NomicVisionRotaryEmbeddingCat(nn.Module):
703
+ """ Rotary position embedding w/ concatenatd sin & cos
704
+
705
+ The following impl/resources were referenced for this impl:
706
+ * https://github.com/lucidrains/vit-pytorch/blob/6f3a5fcf0bca1c5ec33a35ef48d97213709df4ba/vit_pytorch/rvt.py
707
+ * https://blog.eleuther.ai/rotary-embeddings/
708
+ """
709
+
710
+ def __init__(
711
+ self,
712
+ dim,
713
+ max_res=224,
714
+ temperature=10000,
715
+ in_pixels=True,
716
+ linear_bands: bool = False,
717
+ feat_shape: Optional[List[int]] = None,
718
+ ref_feat_shape: Optional[List[int]] = None,
719
+ ):
720
+ super().__init__()
721
+ self.dim = dim
722
+ self.max_res = max_res
723
+ self.temperature = temperature
724
+ self.in_pixels = in_pixels
725
+ self.feat_shape = feat_shape
726
+ self.ref_feat_shape = ref_feat_shape
727
+
728
+ if feat_shape is None:
729
+ # only cache bands
730
+ if in_pixels:
731
+ bands = pixel_freq_bands(
732
+ dim // 4,
733
+ float(max_res),
734
+ linear_bands=linear_bands,
735
+ )
736
+ else:
737
+ bands = freq_bands(
738
+ dim // 4,
739
+ temperature=temperature,
740
+ step=1,
741
+ )
742
+ self.register_buffer(
743
+ 'bands',
744
+ bands,
745
+ persistent=False,
746
+ )
747
+ self.pos_embed = None
748
+ else:
749
+ # cache full sin/cos embeddings if shape provided up front
750
+ embeds = build_rotary_pos_embed(
751
+ feat_shape=feat_shape,
752
+ dim=dim,
753
+ max_res=max_res,
754
+ linear_bands=linear_bands,
755
+ in_pixels=in_pixels,
756
+ ref_feat_shape=self.ref_feat_shape,
757
+ )
758
+ self.bands = None
759
+ self.register_buffer(
760
+ 'pos_embed',
761
+ torch.cat(embeds, -1),
762
+ persistent=False,
763
+ )
764
+
765
+ def get_embed(self, shape: Optional[List[int]] = None):
766
+ if self.bands is not None and shape is not None:
767
+ # rebuild embeddings every call, use if target shape changes
768
+ embeds = build_rotary_pos_embed(
769
+ shape,
770
+ self.bands,
771
+ in_pixels=self.in_pixels,
772
+ ref_feat_shape=self.ref_feat_shape,
773
+ )
774
+ return torch.cat(embeds, -1)
775
+ elif self.pos_embed is not None:
776
+ return self.pos_embed
777
+ else:
778
+ assert False, "get_embed() requires pre-computed pos_embed or valid shape w/ pre-computed bands"
779
+
780
+ def forward(self, x):
781
+ # assuming channel-first tensor where spatial dim are >= 2
782
+ pos_embed = self.get_embed(x.shape[2:])
783
+ return apply_rot_embed_cat(x, pos_embed)
784
+
785
+ class NomicVisionPatchEmbeddings(nn.Module):
786
+ def __init__(
787
+ self,
788
+ config,
789
+ ):
790
+ super().__init__()
791
+ img_size = _pair(config.img_size)
792
+ patch_size = _pair(config.patch_size)
793
+ self.img_size = img_size
794
+ self.patch_size = patch_size
795
+ self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
796
+ self.num_patches = self.grid_size[0] * self.grid_size[1]
797
+
798
+ self.proj = nn.Linear(
799
+ config.num_channels * patch_size[0] * patch_size[1], config.n_embd, bias=config.patch_embed_bias
800
+ )
801
+
802
+ self.learned_pos_embedding = False
803
+ self.sinusoidal_pos_embedding = False
804
+ self.no_embed_class = getattr(config, "no_embed_class", False)
805
+
806
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, config.n_embd)) if not getattr(config, "no_cls_token", False) else None
807
+ if config.learned_pos_embedding:
808
+ # this is the default in DINO
809
+ self.learned_pos_embedding = True
810
+ # hack for timm dinov2 with registers
811
+ num_patches = self.num_patches if getattr(config, "register_tokens", 0) > 0 else self.num_patches + 1
812
+ self.pos_embed = nn.Parameter(torch.randn(1, num_patches, config.n_embd) * 0.02) if getattr(config, "use_pos_embed", True) else None
813
+ elif getattr(config, "sinusoidal_pos_embedding", False):
814
+ self.sinusoidal_pos_embedding = True
815
+ if getattr(config, "use_pos_embed", True):
816
+ self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + 1, config.n_embd), requires_grad=False)
817
+ pos_embed = get_2d_sincos_pos_embed(config.n_embd, self.grid_size[0], add_cls_token=True)
818
+ self.pos_embed.data.copy_(torch.from_numpy(pos_embed).to(self.pos_embed))
819
+ else:
820
+ self.pos_embed = None
821
+ else:
822
+ self.pos_embed = nn.Parameter(torch.randn(1, self.num_patches + 1, config.n_embd) * 0.02) if getattr(config, "use_pos_embed", True) else None
823
+
824
+ if getattr(config, "register_tokens", 0) > 0:
825
+ self.reg_token = nn.Parameter(torch.randn(1, config.register_tokens, config.n_embd) * 0.02)
826
+ else:
827
+ self.reg_token = None
828
+
829
+ if config.mask_token:
830
+ self.mask_token = nn.Parameter(torch.zeros(1, config.n_embd))
831
+
832
+ self.patch_dropout = nn.Identity()
833
+
834
+ if getattr(config, "use_rotary_pos_emb", False):
835
+ ref_feat_shape = getattr(config, "ref_feat_shape", None)
836
+ ref_feat_shape = to_2tuple(ref_feat_shape) if ref_feat_shape is not None else None
837
+ self.rope = NomicVisionRotaryEmbeddingCat(
838
+ config.n_embd // config.n_head,
839
+ in_pixels=False,
840
+ feat_shape=self.grid_size,
841
+ ref_feat_shape=ref_feat_shape,
842
+ )
843
+ else:
844
+ self.rope = None
845
+
846
+
847
+ def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
848
+ """
849
+ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
850
+ resolution images.
851
+
852
+ Source:
853
+ https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
854
+ """
855
+ num_patches = embeddings.shape[1] - 1
856
+ num_positions = self.pos_embed.shape[1] - 1
857
+ if num_patches == num_positions and height == width:
858
+ return self.pos_embed
859
+ class_pos_embed = self.pos_embed[:, 0]
860
+ patch_pos_embed = self.pos_embed[:, 1:]
861
+ dim = embeddings.shape[-1]
862
+ height = height // self.patch_size[0]
863
+ width = width // self.patch_size[1]
864
+ # we add a small number to avoid floating point error in the interpolation
865
+ # see discussion at https://github.com/facebookresearch/dino/issues/8
866
+ height, width = height + 0.1, width + 0.1
867
+ patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
868
+ patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
869
+ patch_pos_embed = nn.functional.interpolate(
870
+ patch_pos_embed,
871
+ scale_factor=(height / math.sqrt(num_positions), width / math.sqrt(num_positions)),
872
+ mode="bicubic",
873
+ align_corners=False,
874
+ )
875
+ if int(height) != patch_pos_embed.shape[-2] or int(width) != patch_pos_embed.shape[-1]:
876
+ raise ValueError("Width or height does not match with the interpolated position embeddings")
877
+ patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
878
+ return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
879
+
880
+ def forward(self, x):
881
+ # deepspeed case where the input is in fp32
882
+ if x.dtype != self.proj.weight.dtype:
883
+ x = x.to(dtype=self.proj.weight.dtype)
884
+
885
+ _, _, height, width = x.shape
886
+ x = self.proj(
887
+ rearrange(
888
+ x,
889
+ "b c (h p1) (w p2) -> b h w (c p1 p2)",
890
+ p1=self.patch_size[0],
891
+ p2=self.patch_size[1],
892
+ )
893
+ )
894
+ embeddings = rearrange(x, "b h w c -> b (h w) c")
895
+
896
+ to_cat = []
897
+ if self.cls_token is not None:
898
+ if self.sinusoidal_pos_embedding:
899
+ cls_token = self.cls_token + self.pos_embed[:, 0]
900
+ cls_token = cls_token.expand(embeddings.shape[0], -1, -1)
901
+ to_cat += [cls_token]
902
+ else:
903
+ cls_token = self.cls_token.expand(embeddings.shape[0], 1, -1)
904
+ to_cat += [cls_token]
905
+
906
+ if self.reg_token is not None:
907
+ to_cat += [self.reg_token.expand(embeddings.shape[0], -1, -1)]
908
+
909
+ rot_pos_embed = self.rope.get_embed() if self.rope is not None else None
910
+
911
+ if self.no_embed_class:
912
+ if self.learned_pos_embedding:
913
+ embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
914
+ else:
915
+ if self.pos_embed is not None:
916
+ embeddings = embeddings + self.pos_embed
917
+ if to_cat:
918
+ embeddings = torch.cat(to_cat + [embeddings], dim=1)
919
+ else:
920
+ if to_cat:
921
+ embeddings = torch.cat(to_cat + [embeddings], dim=1)
922
+ if self.learned_pos_embedding:
923
+ if self.pos_embed is not None:
924
+ embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
925
+ else:
926
+ if self.pos_embed is not None:
927
+ embeddings = embeddings + self.pos_embed
928
+
929
+ embeddings = self.patch_dropout(embeddings)
930
+
931
+ return embeddings, rot_pos_embed
932
+
933
+
934
+ class NomicBertEmbeddings(nn.Module):
935
+ def __init__(self, config):
936
+ """
937
+ If max_position_embeddings <= 0, there's no position embeddings
938
+ If type_vocab_size <= 0, there's no token type embeddings
939
+ """
940
+ super().__init__()
941
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
942
+ self.max_position_embeddings = config.max_position_embeddings if config.rotary_emb_fraction <= 0 else 0
943
+ self.type_vocab_size = config.type_vocab_size
944
+ if self.max_position_embeddings > 0 and config.rotary_emb_fraction <= 0:
945
+ self.position_embeddings = nn.Embedding(
946
+ config.max_position_embeddings,
947
+ config.hidden_size,
948
+ )
949
+ if self.type_vocab_size > 0:
950
+ self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
951
+
952
+ def forward(self, input_ids, position_ids=None, token_type_ids=None):
953
+ """
954
+ input_ids: (batch, seqlen)
955
+ position_ids: (batch, seqlen)
956
+ token_type_ids: (batch, seqlen)
957
+ """
958
+ batch_size, seqlen = input_ids.shape
959
+ embeddings = self.word_embeddings(input_ids)
960
+
961
+ if self.type_vocab_size > 0:
962
+ if token_type_ids is None:
963
+ token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
964
+ token_type_embeddings = self.token_type_embeddings(token_type_ids)
965
+ embeddings = embeddings + token_type_embeddings
966
+
967
+ if self.max_position_embeddings > 0:
968
+ if position_ids is None:
969
+ position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
970
+ position_embeddings = self.position_embeddings(position_ids)
971
+ embeddings = embeddings + position_embeddings
972
+ return embeddings
973
+
974
+
975
+ class NomicBertMLP(nn.Module):
976
+ def __init__(
977
+ self,
978
+ in_features,
979
+ hidden_features=None,
980
+ out_features=None,
981
+ activation=F.gelu,
982
+ bias1=True,
983
+ bias2=True,
984
+ return_residual=False,
985
+ fused_bias_fc=False,
986
+ ):
987
+ super().__init__()
988
+ out_features = out_features if out_features is not None else in_features
989
+ hidden_features = hidden_features if hidden_features is not None else in_features * 4
990
+ self.return_residual = return_residual
991
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1)
992
+ approximate = "tanh" if activation in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
993
+ self.activation = nn.GELU(approximate=approximate) if activation == "gelu" else activation
994
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
995
+
996
+ def forward(self, x):
997
+ y = self.fc1(x)
998
+ y = self.activation(y)
999
+ y = self.fc2(y)
1000
+ return y if not self.return_residual else (y, x)
1001
+
1002
+
1003
+ class NomciBertGatedMLP(nn.Module):
1004
+ def __init__(
1005
+ self,
1006
+ in_features,
1007
+ hidden_features=None,
1008
+ out_features=None,
1009
+ activation=F.sigmoid,
1010
+ bias1=True,
1011
+ bias2=True,
1012
+ multiple_of=256,
1013
+ return_residual=False,
1014
+ fused_bias_fc=True,
1015
+ device=None,
1016
+ dtype=None,
1017
+ norm_layer=False,
1018
+ ):
1019
+ super().__init__()
1020
+ out_features = out_features if out_features is not None else in_features
1021
+ hidden_features = hidden_features if hidden_features is not None else int(8 * in_features / 3)
1022
+ hidden_features = int((hidden_features + multiple_of - 1) // multiple_of * multiple_of)
1023
+ self.return_residual = return_residual
1024
+
1025
+ self.fc11 = nn.Linear(in_features, hidden_features, bias=bias1)
1026
+ self.fc12 = nn.Linear(in_features, hidden_features, bias=bias1)
1027
+ self.activation = activation
1028
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
1029
+ self.norm = nn.LayerNorm(hidden_features) if norm_layer else nn.Identity()
1030
+
1031
+ def forward(self, x):
1032
+ y = self.fc11(x)
1033
+ gate = self.fc12(x)
1034
+ if self.activation == F.sigmoid: # Special case for GLU
1035
+ y = F.glu(torch.cat([y, gate], dim=-1), dim=-1)
1036
+ else:
1037
+ y = y * self.activation(gate)
1038
+
1039
+ # eva uses layer norm after the activation
1040
+ y = self.norm(y)
1041
+
1042
+ y = self.fc2(y)
1043
+ return y if not self.return_residual else (y, x)
1044
+
1045
+
1046
+ def rotate_half(x, interleaved=False):
1047
+ if not interleaved:
1048
+ x1, x2 = x.chunk(2, dim=-1)
1049
+ return torch.cat((-x2, x1), dim=-1)
1050
+ else:
1051
+ x1, x2 = x[..., ::2], x[..., 1::2]
1052
+ return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2)
1053
+
1054
+
1055
+ def apply_rotary_emb(x, cos, sin, offset=0, interleaved=False):
1056
+ """
1057
+ x: (batch_size, seqlen, nheads, headdim)
1058
+ cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
1059
+ """
1060
+ ro_dim = cos.shape[-1] * 2
1061
+ assert ro_dim <= x.shape[-1]
1062
+ cos, sin = (
1063
+ cos[offset : offset + x.shape[1]],
1064
+ sin[offset : offset + x.shape[1]],
1065
+ )
1066
+ cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
1067
+ sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
1068
+ return torch.cat(
1069
+ [x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]],
1070
+ dim=-1,
1071
+ )
1072
+
1073
+
1074
+ class NomicBertRotaryEmbedding(nn.Module):
1075
+ def __init__(
1076
+ self,
1077
+ dim: int,
1078
+ base=10000.0,
1079
+ interleaved=False,
1080
+ scale_base=None,
1081
+ pos_idx_in_fp32=True,
1082
+ device=None,
1083
+ ):
1084
+ """
1085
+ interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
1086
+ of 1st half and 2nd half (GPT-NeoX style).
1087
+ pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
1088
+ otherwise they might be in lower precision.
1089
+ This option was added because previously (before 2023-07-02), when we construct
1090
+ the position indices, we use the dtype of self.inv_freq. In most cases this would
1091
+ be fp32, but if the model is trained in pure bf16 (not mixed precision), then
1092
+ self.inv_freq would be bf16, and the position indices are also in bf16.
1093
+ Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
1094
+ embeddings for some positions will coincide.
1095
+ To maintain compatibility with models previously trained in pure bf16,
1096
+ we add this option.
1097
+ """
1098
+ super().__init__()
1099
+ self.dim = dim
1100
+ self.base = float(base)
1101
+ self.pos_idx_in_fp32 = pos_idx_in_fp32
1102
+ # Generate and save the inverse frequency buffer (non trainable)
1103
+ inv_freq = self._compute_inv_freq(device)
1104
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
1105
+ self.interleaved = interleaved
1106
+ self.scale_base = scale_base
1107
+ scale = (
1108
+ (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
1109
+ if scale_base is not None
1110
+ else None
1111
+ )
1112
+ self.register_buffer("scale", scale, persistent=False)
1113
+
1114
+ self._seq_len_cached = 0
1115
+ self._cos_cached = None
1116
+ self._sin_cached = None
1117
+ self._cos_k_cached = None
1118
+ self._sin_k_cached = None
1119
+
1120
+ def _compute_inv_freq(self, device=None):
1121
+ return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
1122
+
1123
+ def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
1124
+ # Reset the tables if the sequence length has changed,
1125
+ # if we're on a new device (possibly due to tracing for instance),
1126
+ # or if we're switching from inference mode to training
1127
+ if (
1128
+ seqlen > self._seq_len_cached
1129
+ or self._cos_cached is None
1130
+ or self._cos_cached.device != device
1131
+ or self._cos_cached.dtype != dtype
1132
+ or (self.training and self._cos_cached.is_inference())
1133
+ ):
1134
+ self._seq_len_cached = seqlen
1135
+ # We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
1136
+ # And the output of arange can be quite large, so bf16 would lose a lot of precision.
1137
+ # However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
1138
+ if self.pos_idx_in_fp32:
1139
+ t = torch.arange(seqlen, device=device, dtype=torch.float32)
1140
+ # We want fp32 here as well since inv_freq will be multiplied with t, and the output
1141
+ # will be large. Having it in bf16 will lose a lot of precision and cause the
1142
+ # cos & sin output to change significantly.
1143
+ # We want to recompute self.inv_freq if it was not loaded in fp32
1144
+ if self.inv_freq.dtype != torch.float32:
1145
+ inv_freq = self._compute_inv_freq(device=device)
1146
+ else:
1147
+ inv_freq = self.inv_freq
1148
+ else:
1149
+ t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
1150
+ inv_freq = self.inv_freq
1151
+ # Don't do einsum, it converts fp32 to fp16 under AMP
1152
+ # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
1153
+ freqs = torch.outer(t, inv_freq)
1154
+ self._cos_cached = torch.cos(freqs).to(dtype)
1155
+ self._sin_cached = torch.sin(freqs).to(dtype)
1156
+
1157
+ def forward(
1158
+ self,
1159
+ qkv: torch.Tensor,
1160
+ kv: Optional[torch.Tensor] = None,
1161
+ seqlen_offset: Union[int, torch.Tensor] = 0,
1162
+ max_seqlen: Optional[int] = None,
1163
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
1164
+ """
1165
+ qkv: (batch, seqlen, 3, nheads, headdim) if kv is none,
1166
+ else it's just q of shape (batch, seqlen, nheads, headdim)
1167
+ kv: (batch, seqlen, 2, nheads, headdim)
1168
+ seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
1169
+ Most commonly used in inference when we have KV cache.
1170
+ If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
1171
+ should pass in max_seqlen, which will update the cos / sin cache up to that length.
1172
+ Apply rotary embedding *inplace* to qkv and / or kv.
1173
+ """
1174
+ seqlen = qkv.shape[1]
1175
+ if seqlen > self._seq_len_cached:
1176
+ self._update_cos_sin_cache(seqlen, device=qkv.device, dtype=qkv.dtype)
1177
+ elif max_seqlen is not None:
1178
+ self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
1179
+ elif isinstance(seqlen_offset, int):
1180
+ self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
1181
+
1182
+ q_rot = apply_rotary_emb(qkv[:, :, 0], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
1183
+ k_rot = apply_rotary_emb(qkv[:, :, 1], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
1184
+ return torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
1185
+
1186
+
1187
+ class NomicBertDynamicNTKRotaryEmbedding(NomicBertRotaryEmbedding):
1188
+ def __init__(self, rotary_scaling_factor, max_position_embeddings, **kwargs):
1189
+ super().__init__(**kwargs)
1190
+ self.rotary_scaling_factor = rotary_scaling_factor
1191
+ self.max_position_embeddings = max_position_embeddings
1192
+
1193
+ def _compute_inv_freq(self, base=None, device=None):
1194
+ if base is None:
1195
+ base = self.base
1196
+ return 1.0 / (base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
1197
+
1198
+ def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
1199
+ # Reset the tables if the sequence length has changed,
1200
+ # if we're on a new device (possibly due to tracing for instance),
1201
+ # or if we're switching from inference mode to training
1202
+ if seqlen > self.max_position_embeddings:
1203
+ base = self.base * (
1204
+ (self.rotary_scaling_factor * seqlen / self.max_position_embeddings) - (self.rotary_scaling_factor - 1)
1205
+ ) ** (self.dim / (self.dim - 2))
1206
+ inv_freq = self._compute_inv_freq(base=base, device=device)
1207
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
1208
+
1209
+ if (
1210
+ seqlen > self._seq_len_cached
1211
+ or self._cos_cached is None
1212
+ or self._cos_cached.device != device
1213
+ or self._cos_cached.dtype != dtype
1214
+ or (self.training and self._cos_cached.is_inference())
1215
+ ):
1216
+ self._seq_len_cached = seqlen
1217
+ # We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
1218
+ # And the output of arange can be quite large, so bf16 would lose a lot of precision.
1219
+ # However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
1220
+ if self.pos_idx_in_fp32:
1221
+ t = torch.arange(seqlen, device=device, dtype=torch.float32)
1222
+ # We want fp32 here as well since inv_freq will be multiplied with t, and the output
1223
+ # will be large. Having it in bf16 will lose a lot of precision and cause the
1224
+ # cos & sin output to change significantly.
1225
+ # We want to recompute self.inv_freq if it was not loaded in fp32
1226
+ if self.inv_freq.dtype != torch.float32:
1227
+ if seqlen > self.max_position_embeddings:
1228
+ base = self.base * (
1229
+ (self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1)
1230
+ ) ** (self.dim / (self.dim - 2))
1231
+ else:
1232
+ base = self.base
1233
+ inv_freq = self._compute_inv_freq(device=device, base=base)
1234
+ else:
1235
+ inv_freq = self.inv_freq
1236
+ else:
1237
+ t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
1238
+ inv_freq = self.inv_freq
1239
+ # Don't do einsum, it converts fp32 to fp16 under AMP
1240
+ # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
1241
+ freqs = torch.outer(t, inv_freq)
1242
+ if self.scale is None:
1243
+ self._cos_cached = torch.cos(freqs).to(dtype)
1244
+ self._sin_cached = torch.sin(freqs).to(dtype)
1245
+ else:
1246
+ power = (
1247
+ torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
1248
+ ) / self.scale_base
1249
+ scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
1250
+ # We want the multiplication by scale to happen in fp32
1251
+ self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
1252
+ self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
1253
+ self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
1254
+ self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
1255
+
1256
+
1257
+ class NomicBertAttention(nn.Module):
1258
+ """Multi-head self-attention and cross-attention"""
1259
+
1260
+ def __init__(
1261
+ self,
1262
+ config,
1263
+ ) -> None:
1264
+ """
1265
+ num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
1266
+ return_residual: whether to return the input x along with the output. This is for
1267
+ performance reason: for post-norm architecture, returning the input allows us
1268
+ to fuse the backward of nn.Linear with the residual connection.
1269
+ """
1270
+ super().__init__()
1271
+ self.embed_dim = config.n_embd
1272
+ self.use_flash_attn = config.use_flash_attn
1273
+ self.fused_bias_fc = config.fused_bias_fc
1274
+
1275
+ self.num_heads = config.n_head
1276
+ self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads
1277
+ assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
1278
+ self.head_dim = self.embed_dim // self.num_heads
1279
+ # we don't really support mqa / gqa for now
1280
+ qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
1281
+
1282
+ self.register_buffer(
1283
+ "norm_factor",
1284
+ torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
1285
+ persistent=False,
1286
+ )
1287
+
1288
+ self.rotary_emb_dim = self.head_dim * config.rotary_emb_fraction
1289
+ if self.rotary_emb_dim > 0:
1290
+ if getattr(config, "rotary_scaling_factor", None):
1291
+ self.rotary_emb = NomicBertDynamicNTKRotaryEmbedding(
1292
+ dim=self.rotary_emb_dim,
1293
+ base=config.rotary_emb_base,
1294
+ scale_base=config.rotary_emb_scale_base,
1295
+ interleaved=config.rotary_emb_interleaved,
1296
+ rotary_scaling_factor=config.rotary_scaling_factor,
1297
+ max_position_embeddings=config.max_trained_positions,
1298
+ )
1299
+ else:
1300
+ self.rotary_emb = NomicBertRotaryEmbedding(
1301
+ dim=self.rotary_emb_dim,
1302
+ base=config.rotary_emb_base,
1303
+ scale_base=config.rotary_emb_scale_base,
1304
+ interleaved=config.rotary_emb_interleaved,
1305
+ )
1306
+ # bug in xformers: https://github.com/facebookresearch/xformers/issues/841
1307
+ # uses the head dimension instead of the sequence dimension
1308
+ self.rotary_head_dim = getattr(config, "rotary_head_dim", False)
1309
+
1310
+ self.Wqkv = nn.Linear(self.embed_dim, qkv_dim, bias=config.qkv_proj_bias)
1311
+
1312
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
1313
+ self.causal = config.causal
1314
+ self.drop = nn.Dropout(config.attn_pdrop)
1315
+ self.num_prefix_tokens = max(getattr(config, "register_tokens", 1), 1)
1316
+
1317
+ def forward(
1318
+ self,
1319
+ hidden_states: torch.Tensor,
1320
+ attention_mask: Optional[torch.Tensor] = None,
1321
+ position_ids: Optional[torch.LongTensor] = None,
1322
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1323
+ output_attentions: bool = False,
1324
+ use_cache: bool = False,
1325
+ is_padded_inputs: Optional[bool] = True,
1326
+ cu_seqlens: Optional[torch.Tensor] = None,
1327
+ max_seq_len: Optional[int] = None,
1328
+ rope: Optional[torch.Tensor] = None,
1329
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
1330
+
1331
+ has_layer_past = past_key_value is not None
1332
+
1333
+ if has_layer_past:
1334
+ past_key_value = past_key_value[0]
1335
+ past_len = past_key_value[1]
1336
+ else:
1337
+ past_len = 0
1338
+
1339
+ qkv = self.Wqkv(hidden_states)
1340
+ qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
1341
+
1342
+ past_key_value = (past_key_value, past_len + qkv.size(1)) if use_cache else None
1343
+
1344
+ if self.rotary_emb_dim > 0:
1345
+ if self.rotary_head_dim:
1346
+ qkv = rearrange(qkv, "b s three h d -> b h three s d")
1347
+ qkv = self.rotary_emb(qkv, seqlen_offset=past_len)
1348
+
1349
+ if self.rotary_head_dim:
1350
+ qkv = rearrange(qkv, "b h three s d -> b s three h d")
1351
+ elif rope is not None:
1352
+ q, k, v = qkv.permute(0, 3, 1, 2, 4).unbind(dim=-2)
1353
+ q = torch.cat([q[:, :, :self.num_prefix_tokens], apply_rot_embed_cat(q[:, :, self.num_prefix_tokens:], rope)], dim=2).type_as(q)
1354
+ k = torch.cat([k[:, :, :self.num_prefix_tokens], apply_rot_embed_cat(k[:, :, self.num_prefix_tokens:], rope)], dim=2).type_as(q)
1355
+
1356
+ qkv = torch.stack([q, k, v], dim=-2)
1357
+ qkv = rearrange(qkv, "b h s three d -> b s three h d")
1358
+
1359
+ query, key, value = qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2]
1360
+
1361
+ query = query.permute(0, 2, 1, 3)
1362
+ key = key.permute(0, 2, 1, 3)
1363
+ value = value.permute(0, 2, 1, 3)
1364
+
1365
+ attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor
1366
+ if attention_mask is not None:
1367
+ attention_scores = attention_scores + attention_mask
1368
+
1369
+ attentions_probs = F.softmax(attention_scores, dim=-1)
1370
+ attentions_probs = self.drop(attentions_probs)
1371
+
1372
+ attn_output = torch.matmul(attentions_probs, value)
1373
+ attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)")
1374
+
1375
+ attn_output = self.out_proj(attn_output)
1376
+
1377
+ return attn_output
1378
+
1379
+
1380
+ class NomicBertBlock(NomicBertPreTrainedModel):
1381
+ def __init__(
1382
+ self,
1383
+ config,
1384
+ ):
1385
+ super().__init__(config=config)
1386
+ self.prenorm = config.prenorm
1387
+ self.fused_dropout_add_ln = config.fused_dropout_add_ln
1388
+
1389
+ self.attn = NomicBertAttention(config)
1390
+ activation = (
1391
+ F.sigmoid
1392
+ if config.activation_function == "glu"
1393
+ else (F.silu if config.activation_function == "swiglu" else F.gelu)
1394
+ )
1395
+ if config.activation_function in ["glu", "swiglu", "geglu"]:
1396
+ self.mlp = NomciBertGatedMLP(
1397
+ config.n_embd,
1398
+ hidden_features=config.n_inner,
1399
+ bias1=config.mlp_fc1_bias,
1400
+ bias2=config.mlp_fc2_bias,
1401
+ activation=activation,
1402
+ fused_bias_fc=config.fused_bias_fc,
1403
+ norm_layer=getattr(config, "norm_mlp", False),
1404
+ )
1405
+ else:
1406
+ self.mlp = NomicBertMLP(
1407
+ config.n_embd,
1408
+ hidden_features=config.n_inner,
1409
+ bias1=config.mlp_fc1_bias,
1410
+ bias2=config.mlp_fc2_bias,
1411
+ activation=activation,
1412
+ fused_bias_fc=config.fused_bias_fc,
1413
+ )
1414
+
1415
+ self.dropout1 = nn.Dropout(config.resid_pdrop)
1416
+ self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
1417
+ self.norm2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
1418
+ self.dropout2 = nn.Dropout(config.resid_pdrop)
1419
+
1420
+ def forward(
1421
+ self,
1422
+ hidden_states: torch.Tensor,
1423
+ hidden_states2: torch.Tensor,
1424
+ residual: Optional[torch.Tensor] = None,
1425
+ attention_mask: Optional[torch.Tensor] = None,
1426
+ position_ids: Optional[torch.LongTensor] = None,
1427
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1428
+ is_padded_inputs: Optional[bool] = True,
1429
+ output_attentions: Optional[bool] = False,
1430
+ use_cache: Optional[bool] = False,
1431
+ cu_seqlens: Optional[torch.Tensor] = None,
1432
+ max_seq_len: Optional[int] = None,
1433
+ rope: Optional[torch.Tensor] = None,
1434
+ ):
1435
+ r"""Pass the input through the encoder layer.
1436
+
1437
+ Args:
1438
+ hidden_states: the sequence to the encoder layer (required).
1439
+ residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
1440
+ mixer_subset: for cross-attention only. If not None, will take a subset of x
1441
+ before applying the query projection. Useful for e.g., ViT where we only care
1442
+ about the CLS token in the last layer.
1443
+ """
1444
+ if self.prenorm:
1445
+ dropped = self.dropout1(hidden_states)
1446
+ residual = (dropped + residual) if residual is not None else dropped
1447
+ hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
1448
+ hidden_states = self.attn(
1449
+ hidden_states,
1450
+ attention_mask=attention_mask,
1451
+ is_padded_inputs=is_padded_inputs,
1452
+ cu_seqlens=cu_seqlens,
1453
+ max_seq_len=max_seq_len,
1454
+ rope=rope,
1455
+ )
1456
+
1457
+ dropped = self.dropout2(hidden_states)
1458
+ residual = (dropped + residual) if residual is not None else dropped
1459
+ hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype))
1460
+ hidden_states = self.mlp(hidden_states)
1461
+
1462
+ return hidden_states, None, residual
1463
+ else:
1464
+ assert residual is None
1465
+ attn_outputs = self.attn(
1466
+ hidden_states,
1467
+ attention_mask=attention_mask,
1468
+ is_padded_inputs=is_padded_inputs,
1469
+ cu_seqlens=cu_seqlens,
1470
+ max_seq_len=max_seq_len,
1471
+ rope=rope,
1472
+ )
1473
+ hidden_states = self.norm1((self.dropout1(attn_outputs) + hidden_states).to(dtype=self.norm1.weight.dtype))
1474
+ mlp_out = self.mlp(hidden_states)
1475
+
1476
+ hidden_states = self.norm2((self.dropout2(mlp_out) + hidden_states).to(dtype=self.norm2.weight.dtype))
1477
+ return hidden_states, None, None
1478
+
1479
+
1480
+ class NomicBertEncoder(nn.Module):
1481
+ def __init__(self, config: GPT2Config):
1482
+ super().__init__()
1483
+ self.layers = nn.ModuleList([NomicBertBlock(config) for _ in range(config.n_layer)])
1484
+ self.gradient_checkpointing = False
1485
+ self.config = config
1486
+
1487
+ def forward(
1488
+ self,
1489
+ hidden_states: torch.LongTensor = None,
1490
+ attention_mask: Optional[torch.Tensor] = None,
1491
+ position_ids: Optional[torch.LongTensor] = None,
1492
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1493
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1494
+ use_cache: Optional[bool] = None,
1495
+ output_attentions: Optional[bool] = None,
1496
+ output_hidden_states: Optional[bool] = None,
1497
+ return_dict: Optional[bool] = None,
1498
+ is_padded_inputs: Optional[bool] = True,
1499
+ rope: Optional[torch.Tensor] = None,
1500
+ ):
1501
+ """If subset_mask is not None, we only want output for the subset of the sequence.
1502
+ This means that we only compute the last layer output for these tokens.
1503
+ subset_mask: (batch, seqlen), dtype=torch.bool
1504
+ """
1505
+ hidden_states2 = None
1506
+ residual = None
1507
+
1508
+ for _, layer in enumerate(self.layers):
1509
+ if self.gradient_checkpointing and self.training:
1510
+
1511
+ def create_custom_forward(module):
1512
+ def custom_forward(*inputs):
1513
+ # None for past_key_value
1514
+ return module(*inputs)
1515
+
1516
+ return custom_forward
1517
+
1518
+ hidden_states, hidden_states2, residual = torch.utils.checkpoint.checkpoint(
1519
+ create_custom_forward(layer),
1520
+ hidden_states,
1521
+ hidden_states2,
1522
+ residual,
1523
+ attention_mask,
1524
+ position_ids,
1525
+ past_key_values,
1526
+ is_padded_inputs,
1527
+ output_attentions,
1528
+ use_cache,
1529
+ None,
1530
+ None,
1531
+ rope,
1532
+ # if you freeze ANY layers, you need `use_reentrant=False`
1533
+ # https://github.com/huggingface/transformers/issues/21381
1534
+ # https://discuss.pytorch.org/t/checkpoint-with-no-grad-requiring-inputs-problem/19117/7
1535
+ use_reentrant=False,
1536
+ )
1537
+
1538
+ else:
1539
+ hidden_states, hidden_states2, residual = layer(
1540
+ hidden_states,
1541
+ hidden_states2,
1542
+ residual,
1543
+ attention_mask,
1544
+ position_ids,
1545
+ None,
1546
+ is_padded_inputs,
1547
+ output_attentions,
1548
+ use_cache,
1549
+ rope=rope,
1550
+ )
1551
+ return hidden_states
1552
+
1553
+
1554
+ class NomicBertPooler(nn.Module):
1555
+ def __init__(self, config):
1556
+ super().__init__()
1557
+ self.dense = nn.Linear(config.n_embd, config.n_embd)
1558
+ self.activation = nn.Tanh()
1559
+
1560
+ def forward(self, hidden_states, pool=True):
1561
+ # We "pool" the model by simply taking the hidden state corresponding
1562
+ # to the first token.
1563
+ first_token_tensor = hidden_states[:, 0] if pool else hidden_states
1564
+ pooled_output = self.dense(first_token_tensor)
1565
+ pooled_output = self.activation(pooled_output)
1566
+ return pooled_output
1567
+
1568
+
1569
+ class NomicBertPredictionHeadTransform(nn.Module):
1570
+ def __init__(self, config):
1571
+ super().__init__()
1572
+ self.dense = nn.Linear(config.n_embd, config.n_embd, bias=config.mlp_fc1_bias)
1573
+ approximate = "tanh" if config.activation_function in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
1574
+ if config.activation_function == "swiglu":
1575
+ self.transform_act_fn = F.silu
1576
+ else:
1577
+ self.transform_act_fn = nn.GELU(approximate=approximate)
1578
+
1579
+ self.layer_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
1580
+
1581
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
1582
+ hidden_states = self.dense(hidden_states)
1583
+ hidden_states = self.transform_act_fn(hidden_states)
1584
+ hidden_states = self.layer_norm(hidden_states)
1585
+
1586
+ return hidden_states
1587
+
1588
+
1589
+ class NomicBertLMPredictionHead(nn.Module):
1590
+ def __init__(self, config):
1591
+ super().__init__()
1592
+
1593
+ self.transform = NomicBertPredictionHeadTransform(config)
1594
+
1595
+ self.decoder = nn.Linear(config.n_embd, config.vocab_size, bias=config.mlp_fc1_bias)
1596
+
1597
+ def forward(self, hidden_states):
1598
+ hidden_states = self.transform(hidden_states)
1599
+ hidden_states = self.decoder(hidden_states)
1600
+ return hidden_states
1601
+
1602
+
1603
+ class NomicBertPreTrainingHeads(nn.Module):
1604
+ def __init__(self, config):
1605
+ super().__init__()
1606
+ self.predictions = NomicBertLMPredictionHead(config)
1607
+
1608
+ def forward(self, sequence_output):
1609
+ prediction_scores = self.predictions(sequence_output)
1610
+ return prediction_scores
1611
+
1612
+
1613
+ class NomicBertModel(NomicBertPreTrainedModel):
1614
+ def __init__(self, config: GPT2Config, add_pooling_layer=True):
1615
+ super().__init__(config)
1616
+ self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
1617
+ if config.vocab_size % self.pad_vocab_size_multiple != 0:
1618
+ config.vocab_size += self.pad_vocab_size_multiple - (config.vocab_size % self.pad_vocab_size_multiple)
1619
+
1620
+ assert config.activation_function in [
1621
+ "gelu",
1622
+ "gelu_new",
1623
+ "gelu_fast",
1624
+ "gelu_pytorch_tanh",
1625
+ "swiglu",
1626
+ "geglu",
1627
+ "glu",
1628
+ ]
1629
+
1630
+ self.embeddings = NomicBertEmbeddings(config)
1631
+ self.emb_drop = nn.Dropout(config.resid_pdrop)
1632
+ self.emb_ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
1633
+ self.encoder = NomicBertEncoder(config)
1634
+ self.pooler = NomicBertPooler(config) if add_pooling_layer else None
1635
+
1636
+ self.apply(partial(_init_weights, initializer_range=config.initializer_range))
1637
+
1638
+ def forward(
1639
+ self,
1640
+ input_ids,
1641
+ attention_mask=None,
1642
+ position_ids=None,
1643
+ token_type_ids=None,
1644
+ return_dict=None,
1645
+ matryoshka_dim=None,
1646
+ ):
1647
+ if token_type_ids is None:
1648
+ token_type_ids = torch.zeros_like(input_ids)
1649
+ hidden_states = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
1650
+ hidden_states = self.emb_ln(hidden_states)
1651
+ hidden_states = self.emb_drop(hidden_states)
1652
+
1653
+ attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.shape)
1654
+ sequence_output = self.encoder(hidden_states, attention_mask=attention_mask, return_dict=return_dict)
1655
+
1656
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
1657
+
1658
+ if matryoshka_dim:
1659
+ sequence_output = sequence_output[:, :matryoshka_dim]
1660
+
1661
+ return BaseModelOutputWithPoolingAndCrossAttentions(
1662
+ last_hidden_state=sequence_output,
1663
+ pooler_output=pooled_output,
1664
+ )
1665
+
1666
+
1667
+ class NomicBertForPreTraining(NomicBertPreTrainedModel):
1668
+ _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
1669
+
1670
+ def __init__(self, config: GPT2Config):
1671
+ super().__init__(config)
1672
+
1673
+ self.bert = NomicBertModel(config, add_pooling_layer=getattr(config, "add_pooling_layer", False))
1674
+ self.cls = NomicBertPreTrainingHeads(config)
1675
+ self.mlm_loss = nn.CrossEntropyLoss()
1676
+
1677
+ # Initialize weights and apply final processing
1678
+ self.apply(partial(_init_weights, initializer_range=config.initializer_range))
1679
+ self.tie_weights()
1680
+
1681
+ def tie_weights(self):
1682
+ self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight
1683
+
1684
+ def forward(
1685
+ self,
1686
+ input_ids,
1687
+ position_ids=None,
1688
+ token_type_ids=None,
1689
+ attention_mask=None,
1690
+ labels=None,
1691
+ ):
1692
+ """
1693
+ If labels are provided, they must be -100 for masked out tokens (as specified in the attention
1694
+ mask).
1695
+ Outputs:
1696
+ if `labels` and `next_sentence_label` are not `None`:
1697
+ Outputs the total_loss which is the sum of the masked language modeling loss and the next
1698
+ sentence classification loss.
1699
+ if `labels` or `next_sentence_label` is `None`:
1700
+ Outputs a tuple comprising
1701
+ - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
1702
+ - the next sentence classification logits of shape [batch_size, 2].
1703
+
1704
+ """
1705
+ outputs = self.bert(
1706
+ input_ids,
1707
+ position_ids=position_ids,
1708
+ token_type_ids=token_type_ids,
1709
+ attention_mask=attention_mask.bool() if attention_mask is not None else None,
1710
+ )
1711
+ sequence_output, _ = outputs.last_hidden_state, outputs.pooler_output
1712
+
1713
+ prediction_scores = self.cls(sequence_output)
1714
+
1715
+ total_loss = None
1716
+ if labels is not None:
1717
+ masked_lm_loss = self.mlm_loss(
1718
+ rearrange(prediction_scores, "... v -> (...) v"),
1719
+ rearrange(labels, "... -> (...)"),
1720
+ )
1721
+ total_loss = masked_lm_loss.float()
1722
+
1723
+ return MaskedLMOutput(
1724
+ loss=total_loss,
1725
+ logits=prediction_scores,
1726
+ hidden_states=outputs.hidden_states,
1727
+ attentions=None,
1728
+ )
1729
+
1730
+
1731
+ class NomicBertForSequenceClassification(NomicBertPreTrainedModel):
1732
+ def __init__(self, config):
1733
+ super().__init__(config)
1734
+ self.num_labels = config.num_labels
1735
+ self.config = config
1736
+
1737
+ self.bert = NomicBertModel(config)
1738
+ classifier_dropout = getattr(config, "classifier_dropout", config.embd_pdrop)
1739
+ self.dropout = nn.Dropout(classifier_dropout)
1740
+ self.classifier = nn.Linear(config.n_embd, config.num_labels)
1741
+
1742
+ # Initialize weights and apply final processing
1743
+ self.post_init()
1744
+
1745
+ def forward(
1746
+ self,
1747
+ input_ids: Optional[torch.Tensor] = None,
1748
+ attention_mask: Optional[torch.Tensor] = None,
1749
+ token_type_ids: Optional[torch.Tensor] = None,
1750
+ position_ids: Optional[torch.Tensor] = None,
1751
+ head_mask: Optional[torch.Tensor] = None,
1752
+ inputs_embeds: Optional[torch.Tensor] = None,
1753
+ labels: Optional[torch.Tensor] = None,
1754
+ output_attentions: Optional[bool] = None,
1755
+ output_hidden_states: Optional[bool] = None,
1756
+ return_dict: Optional[bool] = None,
1757
+ ):
1758
+ r"""
1759
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1760
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1761
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1762
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1763
+ """
1764
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1765
+ outputs = self.bert(
1766
+ input_ids,
1767
+ position_ids=position_ids,
1768
+ token_type_ids=token_type_ids,
1769
+ attention_mask=attention_mask.bool() if attention_mask is not None else None,
1770
+ )
1771
+
1772
+ pooled_output = outputs[1]
1773
+
1774
+ pooled_output = self.dropout(pooled_output)
1775
+ logits = self.classifier(pooled_output)
1776
+
1777
+ loss = None
1778
+ if labels is not None:
1779
+ if self.config.problem_type is None:
1780
+ if self.num_labels == 1:
1781
+ self.config.problem_type = "regression"
1782
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1783
+ self.config.problem_type = "single_label_classification"
1784
+ else:
1785
+ self.config.problem_type = "multi_label_classification"
1786
+
1787
+ if self.config.problem_type == "regression":
1788
+ loss_fct = nn.MSELoss()
1789
+ if self.num_labels == 1:
1790
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
1791
+ else:
1792
+ loss = loss_fct(logits, labels)
1793
+ elif self.config.problem_type == "single_label_classification":
1794
+ loss_fct = nn.CrossEntropyLoss()
1795
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1796
+ elif self.config.problem_type == "multi_label_classification":
1797
+ loss_fct = nn.BCEWithLogitsLoss()
1798
+ loss = loss_fct(logits, labels)
1799
+ if not return_dict:
1800
+ output = (logits,) + outputs[2:]
1801
+ return ((loss,) + output) if loss is not None else output
1802
+
1803
+ return SequenceClassifierOutput(
1804
+ loss=loss,
1805
+ logits=logits,
1806
+ hidden_states=outputs.hidden_states,
1807
+ attentions=outputs.attentions,
1808
+ )
1809
+
1810
+ def hf_vit_config_to_vit_config(vit_config: ViTConfig) -> GPT2Config:
1811
+ return GPT2Config(
1812
+ n_embd=vit_config.hidden_size,
1813
+ n_layer=vit_config.num_hidden_layers,
1814
+ n_head=vit_config.num_attention_heads,
1815
+ n_inner=vit_config.intermediate_size,
1816
+ activation_function=vit_config.hidden_act,
1817
+ vocab_size=0, # no vocab since using patches
1818
+ n_positions=0, # No absolute position embedding
1819
+ resid_pdrop=0.0, # No dropout
1820
+ embd_pdrop=getattr(vit_config, "dropout", 0.0),
1821
+ attn_pdrop=vit_config.attention_probs_dropout_prob,
1822
+ layer_norm_epsilon=vit_config.layer_norm_eps,
1823
+ initializer_range=vit_config.initializer_range,
1824
+ bos_token_id=None,
1825
+ eos_token_id=None,
1826
+ # These are new arguments not in the original GPT2Config
1827
+ drop_path_rate=0.0,
1828
+ # Why is there double layer norm??
1829
+ prepre_layernom=False,
1830
+ layer_scale=False,
1831
+ layer_scale_init=None,
1832
+ img_size=vit_config.image_size,
1833
+ patch_size=vit_config.patch_size,
1834
+ num_channels=vit_config.num_channels,
1835
+ prenorm=True,
1836
+ parallel_block=False,
1837
+ parallel_block_tied_norm=False,
1838
+ rotary_emb_fraction=0,
1839
+ tie_word_embeddings=False,
1840
+ fused_dropout_add_ln=True,
1841
+ fused_bias_fc=True,
1842
+ patch_embed_bias=True,
1843
+ use_flash_attn=True,
1844
+ qkv_proj_bias=True,
1845
+ mlp_fc1_bias=getattr(vit_config, "mlp_fc1_bias", True),
1846
+ mlp_fc2_bias=getattr(vit_config, "mlp_fc2_bias", True),
1847
+ use_rms_norm=False,
1848
+ causal=False,
1849
+ hidden_features_scaling_factor=1.0,
1850
+ mask_token=False,
1851
+ learned_pos_embedding=False,
1852
+ patch_dropout=0,
1853
+ sinusoidal_pos_embedding=vit_config.model_type == "vit_mae"
1854
+ )
1855
+
1856
+
1857
+ class NomicAttentionPooling(nn.Module):
1858
+ def __init__(
1859
+ self,
1860
+ config
1861
+ ):
1862
+ super().__init__()
1863
+ self.embed_dim = config.n_embd
1864
+ self.use_flash_attn = config.use_flash_attn
1865
+ self.fused_bias_fc = config.fused_bias_fc
1866
+
1867
+ self.num_heads = config.n_head
1868
+ self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads
1869
+ assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
1870
+ self.head_dim = self.embed_dim // self.num_heads
1871
+ # we don't really support mqa / gqa for now
1872
+ kv_dim = 2 * self.head_dim * self.num_heads_kv
1873
+
1874
+ self.register_buffer(
1875
+ "norm_factor",
1876
+ torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
1877
+ persistent=False,
1878
+ )
1879
+
1880
+ self.Wq = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
1881
+ self.Wkv = nn.Linear(self.embed_dim, kv_dim, bias=config.qkv_proj_bias)
1882
+
1883
+ self.latent = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
1884
+
1885
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
1886
+ self.causal = config.causal
1887
+ self.drop = nn.Dropout(config.attn_pdrop)
1888
+
1889
+ def init_weights(self):
1890
+ trunc_normal_tf_(self.latent, std=self.embed_dim ** -0.5)
1891
+
1892
+ def forward(
1893
+ self,
1894
+ kv,
1895
+ attention_mask=None,
1896
+ cu_seqlens_k=None,
1897
+ max_seqlen_k=None,
1898
+ is_padded_inputs: Optional[bool] = True,
1899
+ output_attentions: bool = False,
1900
+ ):
1901
+ """Implements the multihead softmax attention.
1902
+ Arguments
1903
+ ---------
1904
+ q: The tensor containing the query. (B, Sq, H, D)
1905
+ kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
1906
+ causal: if passed, will override self.causal
1907
+ cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
1908
+ of the sequences in the batch, used to index into q.
1909
+ max_seqlen: int. Maximum sequence length in the batch of q.
1910
+ cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
1911
+ of the sequences in the batch, used to index into kv.
1912
+ max_seqlen_k: int. Maximum sequence length in the batch of k and v.
1913
+ """
1914
+ q_latent = self.latent.expand(kv.size(0), -1, -1)
1915
+ q = self.Wq(q_latent)
1916
+ bsz, q_len, h_size = q.shape
1917
+ kv = self.Wkv(kv)
1918
+ query = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
1919
+ kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
1920
+
1921
+ key, value = kv[:, :, 0], kv[:, :, 1]
1922
+
1923
+ query = query.permute(0, 2, 1, 3)
1924
+ key = key.permute(0, 2, 1, 3)
1925
+ value = value.permute(0, 2, 1, 3)
1926
+
1927
+ attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor
1928
+ if attention_mask is not None:
1929
+ attention_scores = attention_scores + attention_mask
1930
+
1931
+ attentions_probs = F.softmax(attention_scores, dim=-1)
1932
+ attentions_probs = self.drop(attentions_probs)
1933
+
1934
+ attn_output = torch.matmul(attentions_probs, value)
1935
+ attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)")
1936
+
1937
+ attn_output = self.out_proj(attn_output)
1938
+
1939
+ return attn_output
1940
+
1941
+
1942
+ class NomicMultiHeadAttentionPooling(nn.Module):
1943
+ def __init__(
1944
+ self,
1945
+ config,
1946
+ ):
1947
+ super().__init__()
1948
+ self.prenorm = config.prenorm
1949
+ self.fused_dropout_add_ln = config.fused_dropout_add_ln
1950
+
1951
+ self.attn = NomicAttentionPooling(config)
1952
+ activation = (
1953
+ F.sigmoid
1954
+ if config.activation_function == "glu"
1955
+ else (F.silu if config.activation_function == "swiglu" else F.gelu)
1956
+ )
1957
+ if config.activation_function in ["glu", "swiglu", "geglu"]:
1958
+ self.mlp = NomciBertGatedMLP(
1959
+ config.n_embd,
1960
+ hidden_features=config.n_inner,
1961
+ bias1=config.mlp_fc1_bias,
1962
+ bias2=config.mlp_fc2_bias,
1963
+ activation=activation,
1964
+ fused_bias_fc=config.fused_bias_fc,
1965
+ )
1966
+ else:
1967
+ self.mlp = NomicBertMLP(
1968
+ config.n_embd,
1969
+ hidden_features=config.n_inner,
1970
+ bias1=config.mlp_fc1_bias,
1971
+ bias2=config.mlp_fc2_bias,
1972
+ activation=activation,
1973
+ fused_bias_fc=config.fused_bias_fc,
1974
+ )
1975
+
1976
+ self.dropout1 = nn.Dropout(config.resid_pdrop)
1977
+ self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
1978
+ self.dropout2 = nn.Dropout(config.resid_pdrop)
1979
+
1980
+ def forward(
1981
+ self,
1982
+ hidden_states: torch.Tensor,
1983
+ attention_mask: Optional[torch.Tensor] = None,
1984
+ ):
1985
+ r"""Pass the input through the encoder layer.
1986
+
1987
+ Args:
1988
+ hidden_states: the sequence to the encoder layer (required).
1989
+ residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
1990
+ mixer_subset: for cross-attention only. If not None, will take a subset of x
1991
+ before applying the query projection. Useful for e.g., ViT where we only care
1992
+ about the CLS token in the last layer.
1993
+ """
1994
+
1995
+ attn_outputs = self.attn(
1996
+ hidden_states,
1997
+ attention_mask=attention_mask,
1998
+ )
1999
+
2000
+ normed = self.norm1(attn_outputs)
2001
+ hidden_states = hidden_states + self.mlp(normed)
2002
+
2003
+ return hidden_states
2004
+
2005
+ class NomicVisionPreTrainedModel(PreTrainedModel):
2006
+ """An abstract class to handle weights initialization and
2007
+ a simple interface for dowloading and loading pretrained models.
2008
+ """
2009
+
2010
+ config_class = NomicBertConfig
2011
+ base_model_prefix = "model"
2012
+ supports_gradient_checkpointing = True
2013
+ _no_split_modules = ["Block"]
2014
+ _skip_keys_device_placement = "past_key_values"
2015
+
2016
+ def __init__(self, config, *inputs, **kwargs):
2017
+ super().__init__(config)
2018
+ if not isinstance(config, GPT2Config):
2019
+ raise ValueError(
2020
+ "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
2021
+ "To create a model from a Google pretrained model use "
2022
+ "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
2023
+ self.__class__.__name__, self.__class__.__name__
2024
+ )
2025
+ )
2026
+ self.config = config
2027
+
2028
+ class NomicVisionModel(NomicVisionPreTrainedModel):
2029
+ def __init__(self, config):
2030
+ super().__init__(config)
2031
+
2032
+ self.embeddings = NomicVisionPatchEmbeddings(config)
2033
+ self.layers = nn.ModuleList([NomicBertBlock(config) for _ in range(config.n_layer)])
2034
+
2035
+ self.selector = NomicMultiHeadAttentionPooling(config)
2036
+
2037
+ self.global_pool = getattr(config, "global_pool", None)
2038
+ self.num_prefix_tokens = (1 if not getattr(config, "no_cls_token", False) else 0) + getattr(config, "register_tokens", 0)
2039
+
2040
+ self.apply(partial(_init_weights, initializer_range=config.initializer_range))
2041
+
2042
+ def forward(
2043
+ self,
2044
+ pixel_values,
2045
+ attention_mask=None,
2046
+ position_ids=None,
2047
+ token_type_ids=None,
2048
+ return_dict=None,
2049
+ matryoshka_dim=None,
2050
+ ):
2051
+ embeddings, rope = self.embeddings(pixel_values)
2052
+
2053
+ original_dtype = embeddings.dtype
2054
+
2055
+ hidden_states = embeddings
2056
+ # unused but easier to pass to gradient checkpointing as words
2057
+ residual = None
2058
+ for layer in self.layers:
2059
+ # need to pass none for backwards compatability
2060
+ hidden_states, _, residual = layer(hidden_states, None, residual=residual, is_padded_inputs=False, rope=rope)
2061
+
2062
+ hidden_states = hidden_states + residual
2063
+ if self.global_pool == "avg":
2064
+ hidden_states = hidden_states[:, self.num_prefix_tokens:].mean(dim=1)
2065
+
2066
+ pooled_output = self.selector(hidden_states)
2067
+
2068
+ return BaseModelOutputWithPast(
2069
+ last_hidden_state=pooled_output,
2070
+ hidden_states=hidden_states,
2071
+ )
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 8192,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "BertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff