Question Answering
Transformers
Safetensors
French
roberta
Inference Endpoints
bourdoiscatie commited on
Commit
00762c8
·
verified ·
1 Parent(s): cd37af8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -11
README.md CHANGED
@@ -38,13 +38,17 @@ Our methodology is described in a blog post available in [English](https://blog.
38
 
39
 
40
  ## Results (french QA test split)
41
- | Model | Exact_match | F1-score | Answer_f1 | NoAnswer_f1 |
42
  | ----------- | ----------- | ----------- | ----------- | ----------- |
43
- | [QAmembert](https://huggingface.co/CATIE-AQ/QAmembert) (110M, 512 tokens) | 77.14 | 86.88 | 75.66 | 98.11
44
- | [QAmembert2](https://huggingface.co/CATIE-AQ/QAmembert2) (112M, 1024 tokens) | 76.47 | 88.25 | 78.66 | 97.84
45
- | [QAmembert-large](https://huggingface.co/CATIE-AQ/QAmembert-large) (336M, 512 tokens) | 77.14 | 88.74 | 78.83 | **98.65**
46
- | QAmemberta (111M, 1024 tokens) (this version) | **78.18** | **89.53** | **81.40** | 97.64
 
47
 
 
 
 
48
 
49
  ### Usage
50
 
@@ -84,14 +88,14 @@ A Space has been created to test the model. It is available [here](https://huggi
84
 
85
  ### QAmemBERT2 & QAmemBERTa
86
  ```
87
- @misc {qamembert2023,
88
  author = { {BOURDOIS, Loïck} },
89
  organization = { {Centre Aquitain des Technologies de l'Information et Electroniques} },
90
- title = { QAmemberta },
91
- year = 2024,
92
- url = { https://huggingface.co/CATIE-AQ/QAmemberta},
93
- doi = { 10.57967/hf/0821 },
94
- publisher = { Hugging Face }
95
  }
96
  ```
97
 
 
38
 
39
 
40
  ## Results (french QA test split)
41
+ | Model | Parameters | Context | Exact_match | F1-score | Answer_f1 | NoAnswer_f1 |
42
  | ----------- | ----------- | ----------- | ----------- | ----------- |
43
+ | [etalab/camembert-base-squadFR-fquad-piaf](https://huggingface.co/AgentPublic/camembert-base-squadFR-fquad-piaf) | 110M | 512 tokens | 39.30 | 51.55 | 79.54 | 23.58
44
+ | [QAmembert](https://huggingface.co/CATIE-AQ/QAmembert)| 110M | 512 tokens | 77.14 | 86.88 | 75.66 | 98.11
45
+ | [QAmembert2](https://huggingface.co/CATIE-AQ/QAmembert2) (this version) | 112M | 1024 tokens | 76.47 | 88.25 | 78.66 | 97.84
46
+ | [QAmembert-large](https://huggingface.co/CATIE-AQ/QAmembert-large)| 336M | 512 tokens | 77.14 | 88.74 | 78.83 | **98.65**
47
+ | [QAmemberta](https://huggingface.co/CATIE-AQ/QAmemberta) | 111M | 1024 tokens | **78.18** | **89.53** | **81.40** | 97.64
48
 
49
+ Looking at the “Answer_f1” column, Etalab's model appears to be competitive on texts where the answer to the question is indeed in the text provided (it does better than QAmemBERT-large, for example). However, the fact that it doesn't handle texts where the answer to the question is not in the text provided is a drawback.
50
+ In all cases, whether in terms of metrics, number of parameters or context size, QAmemBERTa achieves the best results.
51
+ We therefore invite the reader to choose this model.
52
 
53
  ### Usage
54
 
 
88
 
89
  ### QAmemBERT2 & QAmemBERTa
90
  ```
91
+ @misc {qamemberta2024,
92
  author = { {BOURDOIS, Loïck} },
93
  organization = { {Centre Aquitain des Technologies de l'Information et Electroniques} },
94
+ title = { QAmemberta (Revision 976a70b) },
95
+ year = 2024,
96
+ url = { https://huggingface.co/CATIE-AQ/QAmemberta },
97
+ doi = { 10.57967/hf/3639 },
98
+ publisher = { Hugging Face }
99
  }
100
  ```
101