|
from abc import abstractmethod |
|
from typing import Dict, Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from .perceiver import SimplePerceiver |
|
from .transformer import Transformer |
|
|
|
|
|
class PointCloudSDFModel(nn.Module): |
|
@property |
|
@abstractmethod |
|
def device(self) -> torch.device: |
|
""" |
|
Get the device that should be used for input tensors. |
|
""" |
|
|
|
@property |
|
@abstractmethod |
|
def default_batch_size(self) -> int: |
|
""" |
|
Get a reasonable default number of query points for the model. |
|
In some cases, this might be the only supported size. |
|
""" |
|
|
|
@abstractmethod |
|
def encode_point_clouds(self, point_clouds: torch.Tensor) -> Dict[str, torch.Tensor]: |
|
""" |
|
Encode a batch of point clouds to cache part of the SDF calculation |
|
done by forward(). |
|
|
|
:param point_clouds: a batch of [batch x 3 x N] points. |
|
:return: a state representing the encoded point cloud batch. |
|
""" |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
point_clouds: Optional[torch.Tensor] = None, |
|
encoded: Optional[Dict[str, torch.Tensor]] = None, |
|
) -> torch.Tensor: |
|
""" |
|
Predict the SDF at the coordinates x, given a batch of point clouds. |
|
|
|
Either point_clouds or encoded should be passed. Only exactly one of |
|
these arguments should be None. |
|
|
|
:param x: a [batch x 3 x N'] tensor of query points. |
|
:param point_clouds: a [batch x 3 x N] batch of point clouds. |
|
:param encoded: the result of calling encode_point_clouds(). |
|
:return: a [batch x N'] tensor of SDF predictions. |
|
""" |
|
assert point_clouds is not None or encoded is not None |
|
assert point_clouds is None or encoded is None |
|
if point_clouds is not None: |
|
encoded = self.encode_point_clouds(point_clouds) |
|
return self.predict_sdf(x, encoded) |
|
|
|
@abstractmethod |
|
def predict_sdf( |
|
self, x: torch.Tensor, encoded: Optional[Dict[str, torch.Tensor]] |
|
) -> torch.Tensor: |
|
""" |
|
Predict the SDF at the query points given the encoded point clouds. |
|
|
|
Each query point should be treated independently, only conditioning on |
|
the point clouds themselves. |
|
""" |
|
|
|
|
|
class CrossAttentionPointCloudSDFModel(PointCloudSDFModel): |
|
""" |
|
Encode point clouds using a transformer, and query points using cross |
|
attention to the encoded latents. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
device: torch.device, |
|
dtype: torch.dtype, |
|
n_ctx: int = 4096, |
|
width: int = 512, |
|
encoder_layers: int = 12, |
|
encoder_heads: int = 8, |
|
decoder_layers: int = 4, |
|
decoder_heads: int = 8, |
|
init_scale: float = 0.25, |
|
): |
|
super().__init__() |
|
self._device = device |
|
self.n_ctx = n_ctx |
|
|
|
self.encoder_input_proj = nn.Linear(3, width, device=device, dtype=dtype) |
|
self.encoder = Transformer( |
|
device=device, |
|
dtype=dtype, |
|
n_ctx=n_ctx, |
|
width=width, |
|
layers=encoder_layers, |
|
heads=encoder_heads, |
|
init_scale=init_scale, |
|
) |
|
self.decoder_input_proj = nn.Linear(3, width, device=device, dtype=dtype) |
|
self.decoder = SimplePerceiver( |
|
device=device, |
|
dtype=dtype, |
|
n_data=n_ctx, |
|
width=width, |
|
layers=decoder_layers, |
|
heads=decoder_heads, |
|
init_scale=init_scale, |
|
) |
|
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype) |
|
self.output_proj = nn.Linear(width, 1, device=device, dtype=dtype) |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
return self._device |
|
|
|
@property |
|
def default_batch_size(self) -> int: |
|
return self.n_query |
|
|
|
def encode_point_clouds(self, point_clouds: torch.Tensor) -> Dict[str, torch.Tensor]: |
|
h = self.encoder_input_proj(point_clouds.permute(0, 2, 1)) |
|
h = self.encoder(h) |
|
return dict(latents=h) |
|
|
|
def predict_sdf( |
|
self, x: torch.Tensor, encoded: Optional[Dict[str, torch.Tensor]] |
|
) -> torch.Tensor: |
|
data = encoded["latents"] |
|
x = self.decoder_input_proj(x.permute(0, 2, 1)) |
|
x = self.decoder(x, data) |
|
x = self.ln_post(x) |
|
x = self.output_proj(x) |
|
return x[..., 0] |
|
|