English
ByteEdAdmin's picture
Update handler.py
1211806 verified
from typing import Dict, List, Any
from PIL import Image
import torch
from torch import autocast
from tqdm.auto import tqdm
from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
from point_e.diffusion.sampler import PointCloudSampler
from point_e.models.download import load_checkpoint
from point_e.models.configs import MODEL_CONFIGS, model_from_config
from point_e.util.plotting import plot_point_cloud
from point_e.util.pc_to_mesh import marching_cubes_mesh
from point_e.util.point_cloud import PointCloud
import json
import base64
import numpy as np
from io import BytesIO
import os
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
class EndpointHandler():
def __init__(self, path=""):
self.active = True
# load the optimized model
print('creating base model...')
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
print('creating base model...')
self.base_name = 'base40M-textvec'
self.base_model = model_from_config(MODEL_CONFIGS[self.base_name], device)
self.base_model.eval()
self.base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[self.base_name])
print('creating image model...')
# default - base40M. use base300M or base1B for better results
self.base_image_name = 'base40M'
self.base_image_model = model_from_config(MODEL_CONFIGS[self.base_image_name], device)
self.base_image_model.eval()
self.base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[self.base_image_name])
print('creating upsample model...')
self.upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
self.upsampler_model.eval()
self.upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
print('downloading base checkpoint...')
self.base_model.load_state_dict(load_checkpoint(self.base_name, device))
self.base_image_model.load_state_dict(load_checkpoint(self.base_image_name, device))
print('downloading upsampler checkpoint...')
self.upsampler_model.load_state_dict(load_checkpoint('upsample', device))
print('creating SDF model...')
self.sdf_name = 'sdf'
self.sdf_model = model_from_config(MODEL_CONFIGS[self.sdf_name], device)
self.sdf_model.eval()
print('loading SDF model...')
self.sdf_model.load_state_dict(load_checkpoint(self.sdf_name, device))
def __call__(self, input_data: Any) -> Any:
# Check if input_data is a string and deserialize if necessary
if isinstance(input_data, str):
print("input_data is a string, attempting to deserialize...")
try:
input_data = json.loads(input_data) # Convert JSON string to dictionary
except json.JSONDecodeError as e:
print(f"Failed to parse JSON: {e}")
return None # Handle the error as appropriate
command = "null"
if "command" in input_data:
command = input_data["command"]
print(f"the command is: {command}")
#Assume the user app is still running the old version, and send the data back as it is being expected
#Currently, the App expects a .ply Mesh to be sent back, and will not have a command input sent with it
if command == "null":
temp_pc = self.generate_point_cloud(input_data)
return self.generate_mesh_from_pc(temp_pc)
elif command == "generate_pc":
return self.generate_point_cloud(input_data)
elif command == "generate_mesh":
print("generate_mesh command received...")
raw_pc = input_data.get("raw_pc")
if raw_pc is None:
print("raw_pc not found in input_data!")
return None
# Check if raw_pc is a string and deserialize if necessary
if isinstance(raw_pc, str):
print("raw_pc is a string, attempting to deserialize...")
raw_pc = json.loads(raw_pc)
print("Calling generate_mesh_from_pc...")
return self.generate_mesh_from_pc(raw_pc)
elif command == "status":
return self.check_status()
def check_status(self) -> bool:
return self.active
def generate_point_cloud(self, data: Any) -> Dict[str, Dict[str, float]]:
print("generate pc called...")
use_image = False
#Checks if an image key has been provided, and if so, uses the image data instead of text input
if "image" in data:
image_data_encoded = data.pop("image")
use_image = True
print('image data found')
else:
print('no image data found')
inputs = data.pop("inputs", data)
if use_image:
sampler = PointCloudSampler(
device=device,
models=[self.base_image_model, self.upsampler_model],
diffusions=[self.base_diffusion, self.upsampler_diffusion],
num_points=[1024, 4096 - 1024],
aux_channels=['R', 'G', 'B'],
guidance_scale=[3.0, 3.0],
)
# Load an image to condition on.
image_data = base64.b64decode(image_data_encoded)
# Convert bytes to PIL Image
img = Image.open(BytesIO(image_data))
else:
sampler = PointCloudSampler(
device=device,
models=[self.base_model,self.upsampler_model],
diffusions=[self.base_diffusion, self.upsampler_diffusion],
num_points=[1024, 4096 - 1024],
aux_channels=['R', 'G', 'B'],
guidance_scale=[3.0, 0.0],
model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
)
# run inference pipeline
with autocast(device.type):
samples = None
if use_image:
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(images=[img]))):
samples = x
else:
for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[inputs]))):
samples = x
#image = self.pipe(inputs, guidance_scale=7.5)["sample"][0]
pc = sampler.output_to_point_clouds(samples)[0]
pc_dict = {}
data_list = pc.coords.tolist()
json_string = json.dumps(data_list)
pc_dict['data'] = json_string
# Convert NumPy arrays to Python lists for serializing
serializable_channels = {key: value.tolist() for key, value in pc.channels.items()}
# Serialize the dictionary to a JSON-formatted string
channel_data = json.dumps(serializable_channels)
pc_dict['channels'] = channel_data
return pc_dict
def generate_mesh_from_pc(self, pc_data: Any) -> Any:
# Produce a mesh (with vertex colors)
print("generate mesh called...")
#De-serialize both the coords and channel data
coords_list = json.loads(pc_data['data'])
channels_dict = json.loads(pc_data['channels'])
# Reconstruct the PointCloud object
# Make sure to use .items() for the dictionary to output the key-value pairs together
point_cloud = PointCloud(
coords=np.array(coords_list, dtype=np.float32),
channels={name: np.array(array, dtype=np.float32) for name, array in channels_dict.items()}
)
mesh = marching_cubes_mesh(
pc=point_cloud,
model=self.sdf_model,
batch_size=4096,
grid_size=32, # increase to 128 for resolution used in evals
progress=True,
)
# Write the mesh to a PLY file to import into some other program.
with open('mesh.ply', 'wb') as f:
mesh.write_ply(f)
print('Mesh saved to ply file, returning mesh data...')
#print(mesh)
return mesh