Push LunarLanderv2 agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo_lunar.zip +3 -0
- ppo_lunar/_stable_baselines3_version +1 -0
- ppo_lunar/data +99 -0
- ppo_lunar/policy.optimizer.pth +3 -0
- ppo_lunar/policy.pth +3 -0
- ppo_lunar/pytorch_variables.pth +3 -0
- ppo_lunar/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 277.65 +/- 21.94
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2ba2abdb40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2ba2abdbd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2ba2abdc60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2ba2abdcf0>", "_build": "<function ActorCriticPolicy._build at 0x7f2ba2abdd80>", "forward": "<function ActorCriticPolicy.forward at 0x7f2ba2abde10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2ba2abdea0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2ba2abdf30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2ba2abdfc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2ba2abe050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2ba2abe0e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2ba2abe170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2ba2aab180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686103116711071767, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJolkrtSwMu5gkyjujTIibaB9s06dqO+OQAAAAAAAAAAM08yvtnnDT4xcaY+GeDPvqcUGj2eFqE9AAAAAAAAAACa9fm92BDzPSBxfT78i3y+5oaXPtbftD0AAAAAAAAAAA0qlz0sVLg+yNUBvt2Z477PDnC9dyXEvQAAAAAAAAAAk5cnvpxsU7ySlVm7fkiMubEExD1KcpE6AACAPwAAgD8Aq4s9hdu0u7viWr2NtgO+tOtavGzfvb0AAIA/AACAP23IOz5Q7JA/0mGxPrFp6r7j8KQ+LzIMPgAAAAAAAAAA5ikQvlxCFbyhDAS8QZ6Qun4HdT2ISnA7AACAPwAAgD++LpG+GkOLP6Cd0b59bQ6/LkkWvy0EvL0AAAAAAAAAAGa5l7wGqo8+XrmaPcoq2b4G13I7EaVEvQAAAAAAAAAAk7IMPoTonD8WsoE+RYoCv796Nj6O3yk+AAAAAAAAAADKsFa+jJ67PpmWRD7XSwC/NXRVvZTLkT0AAAAAAAAAAE0EUr0jKik9XeP7PX1BLL5CLp88KiuuPAAAAAAAAAAAAAuBvMPRGLqGujo7e9BytSjozbuFE3y0AACAPwAAgD9a8yU+tkVMvNX16bobPAw5FmOtvRO5FzoAAIA/AACAP8Ar8T0STDo+upilvbRrj767r7y6MJAkvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHK+I6r/82uMAWyUS+qMAXSUR0CjwdcaGYa6dX2UKGgGR0ByTJdKNAC5aAdL22gIR0CjwfNjTa0ydX2UKGgGR0Bw5gxesxO+aAdL1mgIR0CjwpkGZ/kOdX2UKGgGR0Buv4F5fMOgaAdLwGgIR0Cjwq3N9ph4dX2UKGgGR0Bw2Pmjj7yhaAdLymgIR0CjwvIyKvV3dX2UKGgGR0Bx4YEwFkhBaAdLtWgIR0Cjww256MR6dX2UKGgGR0Bxw86cRUWEaAdLumgIR0Cjw2XKSxJNdX2UKGgGR0Bw4Z22Xsw+aAdLxmgIR0Cjw6KAz544dX2UKGgGR0BunfRb8m8eaAdLsGgIR0CjxFtEXtSidX2UKGgGR0ByHTxsl9jPaAdL3GgIR0CjxIYrBj4IdX2UKGgGR0BzEcSBbwBpaAdLrWgIR0CjxIfxMFlkdX2UKGgGR0BxpyzNUwSKaAdL2WgIR0CjxQMAmzBzdX2UKGgGR0Bw5hLHuJDWaAdLpGgIR0CjxX+YlY2bdX2UKGgGR0BxDzC/GlyjaAdNlAJoCEdAo8WoYWLxZ3V9lChoBkdAcZeggX/HYGgHS+NoCEdAo8XZK3/gi3V9lChoBkdAcZQIpYs/ZGgHS7xoCEdAo8ZKuQp4KXV9lChoBkdAcr4slsxfwGgHS89oCEdAo8bKKWLP2XV9lChoBkdAcmQVEd/8VGgHS+doCEdAo8bXmPo3aXV9lChoBkdAcoyiS7oStmgHS8BoCEdAo8bfrv9cbHV9lChoBkdAYeUqPwNLDmgHTegDaAhHQKPHNpHI6sB1fZQoaAZHQG9v3kgfU4JoB0vEaAhHQKPH4KGcnVp1fZQoaAZHQHDcq+8Gs3hoB0upaAhHQKPIEq4H5ah1fZQoaAZHQHFPDNyHVPNoB0vfaAhHQKPIk/ag2611fZQoaAZHQHDnHfhuO0doB0viaAhHQKPIoRigCfZ1fZQoaAZHQHKxFOO801toB0u0aAhHQKPI9+FUQ051fZQoaAZHQHCq1GgBcRloB0vFaAhHQKPJIAhje9B1fZQoaAZHQHGuv24/eLxoB0u0aAhHQKPJJvDP4VR1fZQoaAZHQGWb/wiJO35oB03oA2gIR0CjyS+6y0KJdX2UKGgGR0BwRZ9oexOdaAdLomgIR0CjybF5GBnSdX2UKGgGR0ByAsh6jWTYaAdLtmgIR0CjyfhoM8YAdX2UKGgGR0Bx9S1lXiiqaAdL1GgIR0Cjyga0QbuMdX2UKGgGR0BxmEX2ugYhaAdLu2gIR0CjyiLFfiPydX2UKGgGR0BxKdNg0CRwaAdL1GgIR0CjytSU1Q67dX2UKGgGR0BxqlQzk6tDaAdLymgIR0Cjy34ao/A1dX2UKGgGR0Bwy50DEFW5aAdLw2gIR0Cjy9It+TePdX2UKGgGR0BwghpN9H+ZaAdLt2gIR0Cjy/Q5FPSEdX2UKGgGR0BufNGus90SaAdLwmgIR0CjzH+cx0uEdX2UKGgGR0BxEBisny/caAdL4WgIR0CjzTNL+PzWdX2UKGgGR0Bx6RF7Uoa2aAdL8mgIR0CjzbA9vCMxdX2UKGgGR0BysNSvTw2EaAdLumgIR0CjzdqL0jC6dX2UKGgGR0Byo1Wq94/vaAdL3WgIR0CjzgyxZ+x4dX2UKGgGR0BxKdo8IRh+aAdLzWgIR0CjzhYoqkM1dX2UKGgGR0ByPIdIXj2jaAdL3WgIR0CjzpKm0mdBdX2UKGgGR0BxgJAeJYT1aAdLyWgIR0Cjz1cIRh+fdX2UKGgGR0BxRkRsdkrgaAdLr2gIR0Cjz7FvqC6IdX2UKGgGR0BwgjuG9HtnaAdLrGgIR0Cj0CDsdDIBdX2UKGgGR0ButvO0LMLXaAdLw2gIR0Cj0Punl4kedX2UKGgGR0Bww3BRAKOUaAdLv2gIR0Cj0YriuMdcdX2UKGgGR0Bv1QFNcnmaaAdLsmgIR0Cj0rekP+XJdX2UKGgGR0Bux9abF0gbaAdLsGgIR0Cj0vradtl7dX2UKGgGR0By06Y9gWrPaAdL0WgIR0Cj040xmCiAdX2UKGgGR0Bixi7I1cdHaAdN6ANoCEdAo9Ovhhpg1HV9lChoBkdAcfR22G7Bf2gHS7ZoCEdAo9PN2Pkq+nV9lChoBkdAcrQaVUuL8GgHS+9oCEdAo9PgDgZTAHV9lChoBkdAccgFAE+xGGgHS7VoCEdAo9WGzKLbYnV9lChoBkdAcXMj3VTaTWgHTQgBaAhHQKPVkduHerN1fZQoaAZHQHDrnOW0JF9oB0vhaAhHQKPV5zvqkdp1fZQoaAZHQHHQOrQw9JVoB0vTaAhHQKPV56sQumJ1fZQoaAZHQHJN/TLGJepoB0vgaAhHQKPXemKIi1R1fZQoaAZHQHJr6ISDh99oB03gA2gIR0Cj136y8jA0dX2UKGgGR0BwZgZsKsuGaAdLqWgIR0Cj14ntOVPfdX2UKGgGR0BxqqnuRcNZaAdL22gIR0Cj17ffGdZrdX2UKGgGR0Bx9d0NjLB9aAdLxGgIR0Cj2CbvPToddX2UKGgGR0BwPWCqZML4aAdLxWgIR0Cj2LBZpztDdX2UKGgGR0BxfKPNmlImaAdL02gIR0Cj2NwsoUi7dX2UKGgGR0Bx15Pi1iOOaAdL32gIR0Cj2QDzqbBodX2UKGgGR0Bw83vDxb0OaAdL6WgIR0Cj2VBqj8DTdX2UKGgGR0BlV8QK8cuKaAdN6ANoCEdAo9lrB2wFDHV9lChoBkdAb95TJhfBvmgHS6poCEdAo9l/ObAk9nV9lChoBkdAcBiZyuIRAmgHS+NoCEdAo9o1rM1TBXV9lChoBkdAcXiSNOuaF2gHS7JoCEdAo9qat3fQ8nV9lChoBkdAclKzGPxQSGgHS7loCEdAo9r/gNwzcnV9lChoBkdAcP9Rb8m8d2gHS9hoCEdAo9tNU+9rXXV9lChoBkdAcyg2m51/2GgHS7doCEdAo9tkR3/xUnV9lChoBkdAcf5q9oN/fGgHS+hoCEdAo9ukgEEDAHV9lChoBkdAcSj3Y+Sr52gHS71oCEdAo9zDAtWdVnV9lChoBkdAbnBUn5SFXmgHS81oCEdAo9z9tO2y9nV9lChoBkdAcZqhzvJA+2gHS+ZoCEdAo90h3Tuv2XV9lChoBkdAcSjk5ZKWcGgHTQEBaAhHQKPdVtG/etV1fZQoaAZHQGGMxKg7HQ1oB03oA2gIR0Cj3anjyWiUdX2UKGgGR0BuxWK8+RozaAdLsGgIR0Cj3eEzXSSedX2UKGgGR0BxEGnaWX1KaAdNAgFoCEdAo94cLtu1nnV9lChoBkdAZPpKKYRdyGgHTegDaAhHQKPeTXqZ+hJ1fZQoaAZHQHDhX9m6GxloB0u3aAhHQKPeVaIvalF1fZQoaAZHQHN3m9L6DXhoB0u0aAhHQKPeiqPwNLF1fZQoaAZHQHIskz41xbVoB0v4aAhHQKPepdCVryl1fZQoaAZHQHI1E3n6l+FoB0u+aAhHQKPe/Dm8ujB1fZQoaAZHQHKbaUzKs+5oB0vcaAhHQKPfOHWSU1R1fZQoaAZHQHMqe3pfQa9oB0veaAhHQKPgdU70Wdp1fZQoaAZHQG4gH2ZiNKhoB0vPaAhHQKPgtJnxri51fZQoaAZHQHDmV9jPOY9oB0vhaAhHQKPgy1jy4F11fZQoaAZHQHI/LGWD6FdoB0vuaAhHQKPg5vYODrZ1fZQoaAZHQHDZRmK64DtoB0u4aAhHQKPhC4qgAZN1fZQoaAZHQHLSm7OE/SpoB0vIaAhHQKPhGiJwbVB1fZQoaAZHQHGzH3ta6jFoB0vXaAhHQKPhIfGMn7Z1fZQoaAZHQG5j9dE9dNZoB0u3aAhHQKPhPRQaaTh1fZQoaAZHQHGNeOn2qT9oB0uvaAhHQKPhcZZSvTx1fZQoaAZHQHJ9vM8ox59oB0vyaAhHQKPiH50r9VF1fZQoaAZHQHBPdcfNiYtoB0u6aAhHQKPiLxHXmNl1fZQoaAZHQHBY+d9Ujs5oB0vNaAhHQKPiPV6u4gB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 380, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo_lunar.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e71ee809705b409dd5cdeb135e36653928e4b7b64b3187bad883406945d0c4d2
|
3 |
+
size 146638
|
ppo_lunar/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo_lunar/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2ba2abdb40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2ba2abdbd0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2ba2abdc60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2ba2abdcf0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2ba2abdd80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2ba2abde10>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2ba2abdea0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2ba2abdf30>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2ba2abdfc0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2ba2abe050>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2ba2abe0e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2ba2abe170>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f2ba2aab180>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1686103116711071767,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJolkrtSwMu5gkyjujTIibaB9s06dqO+OQAAAAAAAAAAM08yvtnnDT4xcaY+GeDPvqcUGj2eFqE9AAAAAAAAAACa9fm92BDzPSBxfT78i3y+5oaXPtbftD0AAAAAAAAAAA0qlz0sVLg+yNUBvt2Z477PDnC9dyXEvQAAAAAAAAAAk5cnvpxsU7ySlVm7fkiMubEExD1KcpE6AACAPwAAgD8Aq4s9hdu0u7viWr2NtgO+tOtavGzfvb0AAIA/AACAP23IOz5Q7JA/0mGxPrFp6r7j8KQ+LzIMPgAAAAAAAAAA5ikQvlxCFbyhDAS8QZ6Qun4HdT2ISnA7AACAPwAAgD++LpG+GkOLP6Cd0b59bQ6/LkkWvy0EvL0AAAAAAAAAAGa5l7wGqo8+XrmaPcoq2b4G13I7EaVEvQAAAAAAAAAAk7IMPoTonD8WsoE+RYoCv796Nj6O3yk+AAAAAAAAAADKsFa+jJ67PpmWRD7XSwC/NXRVvZTLkT0AAAAAAAAAAE0EUr0jKik9XeP7PX1BLL5CLp88KiuuPAAAAAAAAAAAAAuBvMPRGLqGujo7e9BytSjozbuFE3y0AACAPwAAgD9a8yU+tkVMvNX16bobPAw5FmOtvRO5FzoAAIA/AACAP8Ar8T0STDo+upilvbRrj767r7y6MJAkvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV6wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHK+I6r/82uMAWyUS+qMAXSUR0CjwdcaGYa6dX2UKGgGR0ByTJdKNAC5aAdL22gIR0CjwfNjTa0ydX2UKGgGR0Bw5gxesxO+aAdL1mgIR0CjwpkGZ/kOdX2UKGgGR0Buv4F5fMOgaAdLwGgIR0Cjwq3N9ph4dX2UKGgGR0Bw2Pmjj7yhaAdLymgIR0CjwvIyKvV3dX2UKGgGR0Bx4YEwFkhBaAdLtWgIR0Cjww256MR6dX2UKGgGR0Bxw86cRUWEaAdLumgIR0Cjw2XKSxJNdX2UKGgGR0Bw4Z22Xsw+aAdLxmgIR0Cjw6KAz544dX2UKGgGR0BunfRb8m8eaAdLsGgIR0CjxFtEXtSidX2UKGgGR0ByHTxsl9jPaAdL3GgIR0CjxIYrBj4IdX2UKGgGR0BzEcSBbwBpaAdLrWgIR0CjxIfxMFlkdX2UKGgGR0BxpyzNUwSKaAdL2WgIR0CjxQMAmzBzdX2UKGgGR0Bw5hLHuJDWaAdLpGgIR0CjxX+YlY2bdX2UKGgGR0BxDzC/GlyjaAdNlAJoCEdAo8WoYWLxZ3V9lChoBkdAcZeggX/HYGgHS+NoCEdAo8XZK3/gi3V9lChoBkdAcZQIpYs/ZGgHS7xoCEdAo8ZKuQp4KXV9lChoBkdAcr4slsxfwGgHS89oCEdAo8bKKWLP2XV9lChoBkdAcmQVEd/8VGgHS+doCEdAo8bXmPo3aXV9lChoBkdAcoyiS7oStmgHS8BoCEdAo8bfrv9cbHV9lChoBkdAYeUqPwNLDmgHTegDaAhHQKPHNpHI6sB1fZQoaAZHQG9v3kgfU4JoB0vEaAhHQKPH4KGcnVp1fZQoaAZHQHDcq+8Gs3hoB0upaAhHQKPIEq4H5ah1fZQoaAZHQHFPDNyHVPNoB0vfaAhHQKPIk/ag2611fZQoaAZHQHDnHfhuO0doB0viaAhHQKPIoRigCfZ1fZQoaAZHQHKxFOO801toB0u0aAhHQKPI9+FUQ051fZQoaAZHQHCq1GgBcRloB0vFaAhHQKPJIAhje9B1fZQoaAZHQHGuv24/eLxoB0u0aAhHQKPJJvDP4VR1fZQoaAZHQGWb/wiJO35oB03oA2gIR0CjyS+6y0KJdX2UKGgGR0BwRZ9oexOdaAdLomgIR0CjybF5GBnSdX2UKGgGR0ByAsh6jWTYaAdLtmgIR0CjyfhoM8YAdX2UKGgGR0Bx9S1lXiiqaAdL1GgIR0Cjyga0QbuMdX2UKGgGR0BxmEX2ugYhaAdLu2gIR0CjyiLFfiPydX2UKGgGR0BxKdNg0CRwaAdL1GgIR0CjytSU1Q67dX2UKGgGR0BxqlQzk6tDaAdLymgIR0Cjy34ao/A1dX2UKGgGR0Bwy50DEFW5aAdLw2gIR0Cjy9It+TePdX2UKGgGR0BwghpN9H+ZaAdLt2gIR0Cjy/Q5FPSEdX2UKGgGR0BufNGus90SaAdLwmgIR0CjzH+cx0uEdX2UKGgGR0BxEBisny/caAdL4WgIR0CjzTNL+PzWdX2UKGgGR0Bx6RF7Uoa2aAdL8mgIR0CjzbA9vCMxdX2UKGgGR0BysNSvTw2EaAdLumgIR0CjzdqL0jC6dX2UKGgGR0Byo1Wq94/vaAdL3WgIR0CjzgyxZ+x4dX2UKGgGR0BxKdo8IRh+aAdLzWgIR0CjzhYoqkM1dX2UKGgGR0ByPIdIXj2jaAdL3WgIR0CjzpKm0mdBdX2UKGgGR0BxgJAeJYT1aAdLyWgIR0Cjz1cIRh+fdX2UKGgGR0BxRkRsdkrgaAdLr2gIR0Cjz7FvqC6IdX2UKGgGR0BwgjuG9HtnaAdLrGgIR0Cj0CDsdDIBdX2UKGgGR0ButvO0LMLXaAdLw2gIR0Cj0Punl4kedX2UKGgGR0Bww3BRAKOUaAdLv2gIR0Cj0YriuMdcdX2UKGgGR0Bv1QFNcnmaaAdLsmgIR0Cj0rekP+XJdX2UKGgGR0Bux9abF0gbaAdLsGgIR0Cj0vradtl7dX2UKGgGR0By06Y9gWrPaAdL0WgIR0Cj040xmCiAdX2UKGgGR0Bixi7I1cdHaAdN6ANoCEdAo9Ovhhpg1HV9lChoBkdAcfR22G7Bf2gHS7ZoCEdAo9PN2Pkq+nV9lChoBkdAcrQaVUuL8GgHS+9oCEdAo9PgDgZTAHV9lChoBkdAccgFAE+xGGgHS7VoCEdAo9WGzKLbYnV9lChoBkdAcXMj3VTaTWgHTQgBaAhHQKPVkduHerN1fZQoaAZHQHDrnOW0JF9oB0vhaAhHQKPV5zvqkdp1fZQoaAZHQHHQOrQw9JVoB0vTaAhHQKPV56sQumJ1fZQoaAZHQHJN/TLGJepoB0vgaAhHQKPXemKIi1R1fZQoaAZHQHJr6ISDh99oB03gA2gIR0Cj136y8jA0dX2UKGgGR0BwZgZsKsuGaAdLqWgIR0Cj14ntOVPfdX2UKGgGR0BxqqnuRcNZaAdL22gIR0Cj17ffGdZrdX2UKGgGR0Bx9d0NjLB9aAdLxGgIR0Cj2CbvPToddX2UKGgGR0BwPWCqZML4aAdLxWgIR0Cj2LBZpztDdX2UKGgGR0BxfKPNmlImaAdL02gIR0Cj2NwsoUi7dX2UKGgGR0Bx15Pi1iOOaAdL32gIR0Cj2QDzqbBodX2UKGgGR0Bw83vDxb0OaAdL6WgIR0Cj2VBqj8DTdX2UKGgGR0BlV8QK8cuKaAdN6ANoCEdAo9lrB2wFDHV9lChoBkdAb95TJhfBvmgHS6poCEdAo9l/ObAk9nV9lChoBkdAcBiZyuIRAmgHS+NoCEdAo9o1rM1TBXV9lChoBkdAcXiSNOuaF2gHS7JoCEdAo9qat3fQ8nV9lChoBkdAclKzGPxQSGgHS7loCEdAo9r/gNwzcnV9lChoBkdAcP9Rb8m8d2gHS9hoCEdAo9tNU+9rXXV9lChoBkdAcyg2m51/2GgHS7doCEdAo9tkR3/xUnV9lChoBkdAcf5q9oN/fGgHS+hoCEdAo9ukgEEDAHV9lChoBkdAcSj3Y+Sr52gHS71oCEdAo9zDAtWdVnV9lChoBkdAbnBUn5SFXmgHS81oCEdAo9z9tO2y9nV9lChoBkdAcZqhzvJA+2gHS+ZoCEdAo90h3Tuv2XV9lChoBkdAcSjk5ZKWcGgHTQEBaAhHQKPdVtG/etV1fZQoaAZHQGGMxKg7HQ1oB03oA2gIR0Cj3anjyWiUdX2UKGgGR0BuxWK8+RozaAdLsGgIR0Cj3eEzXSSedX2UKGgGR0BxEGnaWX1KaAdNAgFoCEdAo94cLtu1nnV9lChoBkdAZPpKKYRdyGgHTegDaAhHQKPeTXqZ+hJ1fZQoaAZHQHDhX9m6GxloB0u3aAhHQKPeVaIvalF1fZQoaAZHQHN3m9L6DXhoB0u0aAhHQKPeiqPwNLF1fZQoaAZHQHIskz41xbVoB0v4aAhHQKPepdCVryl1fZQoaAZHQHI1E3n6l+FoB0u+aAhHQKPe/Dm8ujB1fZQoaAZHQHKbaUzKs+5oB0vcaAhHQKPfOHWSU1R1fZQoaAZHQHMqe3pfQa9oB0veaAhHQKPgdU70Wdp1fZQoaAZHQG4gH2ZiNKhoB0vPaAhHQKPgtJnxri51fZQoaAZHQHDmV9jPOY9oB0vhaAhHQKPgy1jy4F11fZQoaAZHQHI/LGWD6FdoB0vuaAhHQKPg5vYODrZ1fZQoaAZHQHDZRmK64DtoB0u4aAhHQKPhC4qgAZN1fZQoaAZHQHLSm7OE/SpoB0vIaAhHQKPhGiJwbVB1fZQoaAZHQHGzH3ta6jFoB0vXaAhHQKPhIfGMn7Z1fZQoaAZHQG5j9dE9dNZoB0u3aAhHQKPhPRQaaTh1fZQoaAZHQHGNeOn2qT9oB0uvaAhHQKPhcZZSvTx1fZQoaAZHQHJ9vM8ox59oB0vyaAhHQKPiH50r9VF1fZQoaAZHQHBPdcfNiYtoB0u6aAhHQKPiLxHXmNl1fZQoaAZHQHBY+d9Ujs5oB0vNaAhHQKPiPV6u4gB1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 380,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo_lunar/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:417374a806438fb486767b19bdc137ebf33bcab1472f15d83673208da992f160
|
3 |
+
size 87929
|
ppo_lunar/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11e3c2c7381303287085c46e264ad80c986686f83c50a00ab2e0303bb57daad4
|
3 |
+
size 43329
|
ppo_lunar/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_lunar/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (180 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 277.65138559999997, "std_reward": 21.93987228735358, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-07T02:35:22.450363"}
|