AlcalaDataset's picture
new
717576e
import os.path as osp
import torch
import torch.nn.functional as F
from torch.nn import ModuleList, Embedding
from torch.nn import Sequential, ReLU, Linear
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch_geometric.utils import degree
from torch_geometric.datasets import ZINC
from torch_geometric.data import DataLoader
from torch_geometric.nn import PNAConv, BatchNorm, global_add_pool
import sys
import time
import numpy as np
train_pred = []
train_act = []
test_pred = []
test_act = []
fold = int(sys.argv[1])
st = time.process_time()
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'ZINC')
train_dataset = ZINC(path, subset=True, split='train')
val_dataset = ZINC(path, subset=True, split='val')
test_dataset = ZINC(path, subset=True, split='test')
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=128)
test_loader = DataLoader(test_dataset, batch_size=128)
# Compute in-degree histogram over training data.
deg = torch.zeros(5, dtype=torch.long)
for data in train_dataset:
d = degree(data.edge_index[1], num_nodes=data.num_nodes, dtype=torch.long)
deg += torch.bincount(d, minlength=deg.numel())
class UAF(torch.nn.Module):
def __init__(self):
super().__init__()
self.A = torch.nn.Parameter(torch.tensor(1.1, requires_grad=True))
self.B = torch.nn.Parameter(torch.tensor(-0.01, requires_grad=True))
self.C = torch.nn.Parameter(torch.tensor(0.00001, requires_grad=True))
self.D = torch.nn.Parameter(torch.tensor(-0.9, requires_grad=True))
self.E = torch.nn.Parameter(torch.tensor(0.00001, requires_grad=True))
self.Softplus = torch.nn.Softplus()
def forward(self, input):
return self.Softplus((self.A*(input+self.B)) + (self.C * torch.square(input))) - self.Softplus((self.D*(input-self.B))) + self.E
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.node_emb = Embedding(21, 75)
self.edge_emb = Embedding(4, 50)
aggregators = ['mean', 'min', 'max', 'std']
scalers = ['identity', 'amplification', 'attenuation']
self.convs = ModuleList()
self.batch_norms = ModuleList()
for _ in range(4):
conv = PNAConv(in_channels=75, out_channels=75,
aggregators=aggregators, scalers=scalers, deg=deg,
edge_dim=50, towers=5, pre_layers=1, post_layers=1,
divide_input=False)
self.convs.append(conv)
self.batch_norms.append(BatchNorm(75))
self.func = UAF()
self.mlp = Sequential(Linear(75, 50), self.func, Linear(50, 25), self.func,
Linear(25, 1))
def forward(self, x, edge_index, edge_attr, batch):
x = self.node_emb(x.squeeze())
edge_attr = self.edge_emb(edge_attr)
for conv, batch_norm in zip(self.convs, self.batch_norms):
x = self.func(batch_norm(conv(x, edge_index, edge_attr)))
x = global_add_pool(x, batch)
return self.mlp(x)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net().to(device)
#optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
optimizer = torch.optim.Adam([
dict(params=model.convs.parameters()),
dict(params=model.batch_norms.parameters()),
dict(params=model.mlp.parameters())
], lr=0.001)
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=20,
min_lr=0.00001)
optimizer2 = torch.optim.Adam([
dict(params=model.func.parameters())
], lr=0.001)
scheduler2 = torch.optim.lr_scheduler.StepLR(optimizer2, step_size=300, gamma=1e-10)
def train(epoch):
model.train()
train_pred_temp = []
train_act_temp = []
first = True
total_loss = 0
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
optimizer2.zero_grad()
out = model(data.x, data.edge_index, data.edge_attr, data.batch)
loss = (out.squeeze() - data.y).abs().mean()
pred = out.squeeze()
if (first):
train_pred_temp = pred.cpu().detach().numpy()
train_act_temp = data.y.cpu().detach().numpy()
first = False
else:
train_pred_temp = np.append(train_pred_temp, pred.cpu().detach().numpy())
train_act_temp = np.append(train_act_temp, data.y.cpu().detach().numpy())
loss.backward()
total_loss += loss.item() * data.num_graphs
optimizer.step()
optimizer2.step()
train_pred.append(train_pred_temp)
train_act.append(train_act_temp)
return total_loss / len(train_loader.dataset)
@torch.no_grad()
def test(loader):
model.eval()
test_pred_temp = []
test_act_temp = []
first = True
total_error = 0
for data in loader:
data = data.to(device)
out = model(data.x, data.edge_index, data.edge_attr, data.batch)
total_error += (out.squeeze() - data.y).abs().sum().item()
pred = out.squeeze()
if (first):
test_pred_temp = pred.cpu().detach().numpy()
test_act_temp = data.y.cpu().detach().numpy()
first = False
else:
test_pred_temp = np.append(test_pred_temp, pred.cpu().detach().numpy())
test_act_temp = np.append(test_act_temp, data.y.cpu().detach().numpy())
test_pred.append(test_pred_temp)
test_act.append(test_act_temp)
return total_error / len(loader.dataset)
@torch.no_grad()
def test_val(loader):
model.eval()
total_error = 0
for data in loader:
data = data.to(device)
out = model(data.x, data.edge_index, data.edge_attr, data.batch)
total_error += (out.squeeze() - data.y).abs().sum().item()
return total_error / len(loader.dataset)
for epoch in range(1, 601):
loss = train(epoch)
val_mae = test_val(val_loader)
test_mae = test(test_loader)
if (epoch == 302):
scheduler.optimizer.param_groups[0]['lr'] = 0.001
scheduler.step(val_mae)
scheduler2.step()
print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}, Val: {val_mae:.4f}, '
f'Test: {test_mae:.4f}')
elapsed_time = time.process_time() - st
np.save("time_" + str(fold), np.array([elapsed_time]))
np.save("train_pred_" + str(fold), train_pred)
np.save("train_act_" + str(fold), train_act)
np.save("test_pred_" + str(fold), test_pred)
np.save("test_act_" + str(fold), test_act)