|
import os.path as osp |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch.nn import ModuleList, Embedding |
|
from torch.nn import Sequential, ReLU, Linear |
|
from torch.optim.lr_scheduler import ReduceLROnPlateau |
|
from torch_geometric.utils import degree |
|
from torch_geometric.datasets import ZINC |
|
from torch_geometric.data import DataLoader |
|
from torch_geometric.nn import PNAConv, BatchNorm, global_add_pool |
|
|
|
|
|
|
|
|
|
|
|
|
|
import sys |
|
import time |
|
|
|
|
|
import numpy as np |
|
|
|
train_pred = [] |
|
train_act = [] |
|
|
|
test_pred = [] |
|
test_act = [] |
|
|
|
fold = int(sys.argv[1]) |
|
|
|
st = time.process_time() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'ZINC') |
|
train_dataset = ZINC(path, subset=True, split='train') |
|
val_dataset = ZINC(path, subset=True, split='val') |
|
test_dataset = ZINC(path, subset=True, split='test') |
|
|
|
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True) |
|
val_loader = DataLoader(val_dataset, batch_size=128) |
|
test_loader = DataLoader(test_dataset, batch_size=128) |
|
|
|
|
|
deg = torch.zeros(5, dtype=torch.long) |
|
for data in train_dataset: |
|
d = degree(data.edge_index[1], num_nodes=data.num_nodes, dtype=torch.long) |
|
deg += torch.bincount(d, minlength=deg.numel()) |
|
|
|
|
|
|
|
|
|
class UAF(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.A = torch.nn.Parameter(torch.tensor(1.1, requires_grad=True)) |
|
self.B = torch.nn.Parameter(torch.tensor(-0.01, requires_grad=True)) |
|
self.C = torch.nn.Parameter(torch.tensor(0.00001, requires_grad=True)) |
|
self.D = torch.nn.Parameter(torch.tensor(-0.9, requires_grad=True)) |
|
self.E = torch.nn.Parameter(torch.tensor(0.00001, requires_grad=True)) |
|
|
|
self.Softplus = torch.nn.Softplus() |
|
def forward(self, input): |
|
|
|
return self.Softplus((self.A*(input+self.B)) + (self.C * torch.square(input))) - self.Softplus((self.D*(input-self.B))) + self.E |
|
|
|
|
|
|
|
class Net(torch.nn.Module): |
|
def __init__(self): |
|
super(Net, self).__init__() |
|
|
|
self.node_emb = Embedding(21, 75) |
|
self.edge_emb = Embedding(4, 50) |
|
|
|
aggregators = ['mean', 'min', 'max', 'std'] |
|
scalers = ['identity', 'amplification', 'attenuation'] |
|
|
|
self.convs = ModuleList() |
|
self.batch_norms = ModuleList() |
|
for _ in range(4): |
|
conv = PNAConv(in_channels=75, out_channels=75, |
|
aggregators=aggregators, scalers=scalers, deg=deg, |
|
edge_dim=50, towers=5, pre_layers=1, post_layers=1, |
|
divide_input=False) |
|
self.convs.append(conv) |
|
self.batch_norms.append(BatchNorm(75)) |
|
|
|
self.func = UAF() |
|
|
|
|
|
self.mlp = Sequential(Linear(75, 50), self.func, Linear(50, 25), self.func, |
|
Linear(25, 1)) |
|
|
|
|
|
|
|
|
|
def forward(self, x, edge_index, edge_attr, batch): |
|
x = self.node_emb(x.squeeze()) |
|
edge_attr = self.edge_emb(edge_attr) |
|
|
|
for conv, batch_norm in zip(self.convs, self.batch_norms): |
|
x = self.func(batch_norm(conv(x, edge_index, edge_attr))) |
|
|
|
x = global_add_pool(x, batch) |
|
return self.mlp(x) |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
model = Net().to(device) |
|
|
|
optimizer = torch.optim.Adam([ |
|
dict(params=model.convs.parameters()), |
|
dict(params=model.batch_norms.parameters()), |
|
dict(params=model.mlp.parameters()) |
|
], lr=0.001) |
|
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=20, |
|
min_lr=0.00001) |
|
|
|
|
|
|
|
optimizer2 = torch.optim.Adam([ |
|
dict(params=model.func.parameters()) |
|
], lr=0.001) |
|
scheduler2 = torch.optim.lr_scheduler.StepLR(optimizer2, step_size=300, gamma=1e-10) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def train(epoch): |
|
model.train() |
|
|
|
|
|
train_pred_temp = [] |
|
train_act_temp = [] |
|
first = True |
|
|
|
|
|
|
|
total_loss = 0 |
|
for data in train_loader: |
|
data = data.to(device) |
|
optimizer.zero_grad() |
|
optimizer2.zero_grad() |
|
out = model(data.x, data.edge_index, data.edge_attr, data.batch) |
|
loss = (out.squeeze() - data.y).abs().mean() |
|
|
|
|
|
pred = out.squeeze() |
|
if (first): |
|
train_pred_temp = pred.cpu().detach().numpy() |
|
train_act_temp = data.y.cpu().detach().numpy() |
|
first = False |
|
else: |
|
train_pred_temp = np.append(train_pred_temp, pred.cpu().detach().numpy()) |
|
train_act_temp = np.append(train_act_temp, data.y.cpu().detach().numpy()) |
|
|
|
|
|
|
|
loss.backward() |
|
total_loss += loss.item() * data.num_graphs |
|
optimizer.step() |
|
optimizer2.step() |
|
|
|
|
|
train_pred.append(train_pred_temp) |
|
train_act.append(train_act_temp) |
|
return total_loss / len(train_loader.dataset) |
|
|
|
|
|
@torch.no_grad() |
|
def test(loader): |
|
model.eval() |
|
|
|
|
|
test_pred_temp = [] |
|
test_act_temp = [] |
|
first = True |
|
|
|
total_error = 0 |
|
for data in loader: |
|
data = data.to(device) |
|
out = model(data.x, data.edge_index, data.edge_attr, data.batch) |
|
total_error += (out.squeeze() - data.y).abs().sum().item() |
|
|
|
|
|
pred = out.squeeze() |
|
if (first): |
|
test_pred_temp = pred.cpu().detach().numpy() |
|
test_act_temp = data.y.cpu().detach().numpy() |
|
first = False |
|
else: |
|
test_pred_temp = np.append(test_pred_temp, pred.cpu().detach().numpy()) |
|
test_act_temp = np.append(test_act_temp, data.y.cpu().detach().numpy()) |
|
|
|
|
|
test_pred.append(test_pred_temp) |
|
test_act.append(test_act_temp) |
|
return total_error / len(loader.dataset) |
|
|
|
|
|
|
|
@torch.no_grad() |
|
def test_val(loader): |
|
model.eval() |
|
|
|
total_error = 0 |
|
for data in loader: |
|
data = data.to(device) |
|
out = model(data.x, data.edge_index, data.edge_attr, data.batch) |
|
total_error += (out.squeeze() - data.y).abs().sum().item() |
|
return total_error / len(loader.dataset) |
|
|
|
|
|
|
|
|
|
for epoch in range(1, 601): |
|
loss = train(epoch) |
|
val_mae = test_val(val_loader) |
|
test_mae = test(test_loader) |
|
if (epoch == 302): |
|
scheduler.optimizer.param_groups[0]['lr'] = 0.001 |
|
scheduler.step(val_mae) |
|
scheduler2.step() |
|
print(f'Epoch: {epoch:02d}, Loss: {loss:.4f}, Val: {val_mae:.4f}, ' |
|
f'Test: {test_mae:.4f}') |
|
|
|
|
|
|
|
|
|
elapsed_time = time.process_time() - st |
|
|
|
np.save("time_" + str(fold), np.array([elapsed_time])) |
|
|
|
|
|
np.save("train_pred_" + str(fold), train_pred) |
|
np.save("train_act_" + str(fold), train_act) |
|
|
|
|
|
np.save("test_pred_" + str(fold), test_pred) |
|
np.save("test_act_" + str(fold), test_act) |
|
|