Brizape commited on
Commit
f93ec41
1 Parent(s): d500d44

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: tmvar_5e-05_0404_ES6_strict_tok
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # tmvar_5e-05_0404_ES6_strict_tok
19
+
20
+ This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0372
23
+ - Precision: 0.7742
24
+ - Recall: 0.8528
25
+ - F1: 0.8116
26
+ - Accuracy: 0.9906
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - training_steps: 2000
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.3642 | 0.49 | 25 | 0.0757 | 0.0 | 0.0 | 0.0 | 0.9727 |
58
+ | 0.0672 | 0.98 | 50 | 0.0660 | 0.6397 | 0.4416 | 0.5225 | 0.9841 |
59
+ | 0.0347 | 1.47 | 75 | 0.0357 | 0.7129 | 0.7310 | 0.7218 | 0.9888 |
60
+ | 0.0292 | 1.96 | 100 | 0.0255 | 0.7630 | 0.8173 | 0.7892 | 0.9903 |
61
+ | 0.012 | 2.45 | 125 | 0.0325 | 0.6923 | 0.8223 | 0.7517 | 0.9903 |
62
+ | 0.0087 | 2.94 | 150 | 0.0372 | 0.7742 | 0.8528 | 0.8116 | 0.9906 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.27.4
68
+ - Pytorch 2.0.0+cu118
69
+ - Datasets 2.11.0
70
+ - Tokenizers 0.13.3