Brizape commited on
Commit
964840c
1 Parent(s): d092b27

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: tmvar_2e-05_0404_ES6
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # tmvar_2e-05_0404_ES6
19
+
20
+ This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0115
23
+ - Precision: 0.8592
24
+ - Recall: 0.9289
25
+ - F1: 0.8927
26
+ - Accuracy: 0.9973
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - training_steps: 2000
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.5303 | 0.49 | 25 | 0.1134 | 0.0 | 0.0 | 0.0 | 0.9822 |
58
+ | 0.0792 | 0.98 | 50 | 0.0566 | 0.0 | 0.0 | 0.0 | 0.9822 |
59
+ | 0.0408 | 1.47 | 75 | 0.0472 | 0.2798 | 0.4772 | 0.3527 | 0.9853 |
60
+ | 0.0329 | 1.96 | 100 | 0.0298 | 0.468 | 0.5939 | 0.5235 | 0.9907 |
61
+ | 0.021 | 2.45 | 125 | 0.0242 | 0.4561 | 0.6853 | 0.5477 | 0.9906 |
62
+ | 0.0172 | 2.94 | 150 | 0.0184 | 0.6955 | 0.8579 | 0.7682 | 0.9948 |
63
+ | 0.0098 | 3.43 | 175 | 0.0133 | 0.7962 | 0.8528 | 0.8235 | 0.9962 |
64
+ | 0.0115 | 3.92 | 200 | 0.0117 | 0.8178 | 0.8883 | 0.8516 | 0.9968 |
65
+ | 0.0052 | 4.41 | 225 | 0.0121 | 0.8278 | 0.8782 | 0.8522 | 0.9968 |
66
+ | 0.0043 | 4.9 | 250 | 0.0112 | 0.8122 | 0.8782 | 0.8439 | 0.9966 |
67
+ | 0.0032 | 5.39 | 275 | 0.0108 | 0.8364 | 0.9340 | 0.8825 | 0.9970 |
68
+ | 0.0031 | 5.88 | 300 | 0.0117 | 0.8684 | 0.8376 | 0.8527 | 0.9968 |
69
+ | 0.0018 | 6.37 | 325 | 0.0103 | 0.8515 | 0.8731 | 0.8622 | 0.9971 |
70
+ | 0.0018 | 6.86 | 350 | 0.0095 | 0.8545 | 0.9239 | 0.8878 | 0.9976 |
71
+ | 0.0019 | 7.35 | 375 | 0.0097 | 0.8702 | 0.9188 | 0.8938 | 0.9976 |
72
+ | 0.0015 | 7.84 | 400 | 0.0117 | 0.8371 | 0.9391 | 0.8852 | 0.9968 |
73
+ | 0.0013 | 8.33 | 425 | 0.0117 | 0.8326 | 0.9086 | 0.8689 | 0.9971 |
74
+ | 0.0018 | 8.82 | 450 | 0.0098 | 0.8599 | 0.9036 | 0.8812 | 0.9973 |
75
+ | 0.0009 | 9.31 | 475 | 0.0089 | 0.8762 | 0.9340 | 0.9042 | 0.9977 |
76
+ | 0.0011 | 9.8 | 500 | 0.0105 | 0.8651 | 0.9442 | 0.9029 | 0.9975 |
77
+ | 0.0008 | 10.29 | 525 | 0.0098 | 0.875 | 0.9239 | 0.8988 | 0.9975 |
78
+ | 0.0008 | 10.78 | 550 | 0.0097 | 0.8685 | 0.9391 | 0.9024 | 0.9975 |
79
+ | 0.0009 | 11.27 | 575 | 0.0117 | 0.8780 | 0.9137 | 0.8955 | 0.9973 |
80
+ | 0.0007 | 11.76 | 600 | 0.0114 | 0.8538 | 0.9188 | 0.8851 | 0.9973 |
81
+ | 0.0007 | 12.25 | 625 | 0.0115 | 0.8592 | 0.9289 | 0.8927 | 0.9973 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.27.4
87
+ - Pytorch 2.0.0+cu118
88
+ - Datasets 2.11.0
89
+ - Tokenizers 0.13.2