Brizape commited on
Commit
b1388d4
·
1 Parent(s): df53317

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: tmvar_0.0001_0404_ES6_strict_tok1
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # tmvar_0.0001_0404_ES6_strict_tok1
19
+
20
+ This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1472
23
+ - Precision: 0.0
24
+ - Recall: 0.0
25
+ - F1: 0.0
26
+ - Accuracy: 0.9561
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 0.0001
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - training_steps: 2000
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
57
+ | 0.3183 | 0.49 | 25 | 0.2344 | 0.0 | 0.0 | 0.0 | 0.9555 |
58
+ | 0.232 | 0.98 | 50 | 0.2467 | 0.0 | 0.0 | 0.0 | 0.9555 |
59
+ | 0.2357 | 1.47 | 75 | 0.2341 | 0.0 | 0.0 | 0.0 | 0.9555 |
60
+ | 0.2245 | 1.96 | 100 | 0.2373 | 0.0 | 0.0 | 0.0 | 0.9555 |
61
+ | 0.1778 | 2.45 | 125 | 0.1339 | 0.0 | 0.0 | 0.0 | 0.9555 |
62
+ | 0.137 | 2.94 | 150 | 0.1222 | 0.0 | 0.0 | 0.0 | 0.9582 |
63
+ | 0.1146 | 3.43 | 175 | 0.1339 | 0.0 | 0.0 | 0.0 | 0.9625 |
64
+ | 0.1215 | 3.92 | 200 | 0.1472 | 0.0 | 0.0 | 0.0 | 0.9561 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.27.4
70
+ - Pytorch 2.0.0+cu118
71
+ - Datasets 2.11.0
72
+ - Tokenizers 0.13.3