Update README.md
Browse files
README.md
CHANGED
@@ -25,6 +25,90 @@ It achieves the following results on the evaluation set:
|
|
25 |
- epoch: 3.41
|
26 |
- step: 1100
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
## Model description
|
29 |
|
30 |
More information needed
|
|
|
25 |
- epoch: 3.41
|
26 |
- step: 1100
|
27 |
|
28 |
+
|
29 |
+
Multi Corp Training,
|
30 |
+
|
31 |
+
model = AutoModelForTokenClassification.from_pretrained(
|
32 |
+
"microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext", num_labels=41, id2label=id2label, label2id=label2id
|
33 |
+
)
|
34 |
+
|
35 |
+
training_args = TrainingArguments(
|
36 |
+
report_to = 'wandb', # enable logging to W&B
|
37 |
+
output_dir = runname, # output directory/ name for huggingface hub
|
38 |
+
learning_rate=5e-5,
|
39 |
+
per_device_train_batch_size=16,
|
40 |
+
per_device_eval_batch_size=16,
|
41 |
+
weight_decay=0.01,
|
42 |
+
evaluation_strategy = 'steps', # check evaluation metrics at each epoch
|
43 |
+
max_steps = 2000,
|
44 |
+
logging_steps = 25, # we will log every 25 steps
|
45 |
+
eval_steps = 25, # we will perform evaluation every 25 steps
|
46 |
+
save_steps = 25,
|
47 |
+
load_best_model_at_end=True,
|
48 |
+
metric_for_best_model = 'eval_loss',
|
49 |
+
greater_is_better = False,
|
50 |
+
push_to_hub=True,
|
51 |
+
run_name = runname # name of the W&B run
|
52 |
+
)
|
53 |
+
|
54 |
+
trainer = Trainer(
|
55 |
+
model=model,
|
56 |
+
args=training_args,
|
57 |
+
train_dataset=tokenized_data["train"],
|
58 |
+
eval_dataset=tokenized_data["validation"],
|
59 |
+
tokenizer=tokenizer,
|
60 |
+
data_collator=data_collator,
|
61 |
+
compute_metrics=compute_metrics,
|
62 |
+
callbacks = [EarlyStoppingCallback(early_stopping_patience=6)]
|
63 |
+
)
|
64 |
+
|
65 |
+
[1101/2000 1:00:33 < 49:32, 0.30 it/s, Epoch 3.41/7]
|
66 |
+
|
67 |
+
25 0.836100 0.201612 0.000000 0.000000 0.000000 0.973546
|
68 |
+
50 0.149500 0.154239 0.233246 0.124420 0.162277 0.972420
|
69 |
+
75 0.136300 0.138105 0.145299 0.094708 0.114671 0.972385
|
70 |
+
100 0.129900 0.123477 0.425243 0.203343 0.275126 0.975886
|
71 |
+
125 0.103100 0.118570 0.297553 0.321727 0.309168 0.974136
|
72 |
+
150 0.117300 0.113230 0.393373 0.214949 0.277995 0.977039
|
73 |
+
175 0.117500 0.106183 0.320082 0.291551 0.305151 0.975930
|
74 |
+
200 0.093800 0.102443 0.353604 0.291551 0.319593 0.975297
|
75 |
+
225 0.091900 0.105976 0.446684 0.318942 0.372156 0.977127
|
76 |
+
250 0.088700 0.093393 0.439173 0.335190 0.380200 0.977734
|
77 |
+
275 0.113300 0.097715 0.522222 0.218199 0.307793 0.977637
|
78 |
+
300 0.092900 0.085730 0.473552 0.349118 0.401924 0.979405
|
79 |
+
325 0.085700 0.091731 0.380009 0.409471 0.394190 0.976960
|
80 |
+
350 0.081700 0.086656 0.554161 0.389508 0.457470 0.980162
|
81 |
+
375 0.062400 0.083441 0.538000 0.374652 0.441708 0.980769
|
82 |
+
400 0.077500 0.085072 0.486742 0.477252 0.481950 0.978869
|
83 |
+
425 0.073000 0.078521 0.516658 0.467967 0.491108 0.981103
|
84 |
+
450 0.081000 0.077073 0.552381 0.430826 0.484090 0.981288
|
85 |
+
475 0.075100 0.078478 0.483887 0.446147 0.464251 0.980408
|
86 |
+
500 0.062800 0.073298 0.550633 0.484680 0.515556 0.982247
|
87 |
+
525 0.060600 0.069571 0.542723 0.536676 0.539683 0.982608
|
88 |
+
550 0.063900 0.071559 0.539832 0.506500 0.522635 0.981983
|
89 |
+
575 0.060700 0.068333 0.564646 0.519034 0.540881 0.982546
|
90 |
+
600 0.062900 0.072810 0.602013 0.416435 0.492316 0.981886
|
91 |
+
625 0.051300 0.071469 0.550901 0.525070 0.537675 0.982335
|
92 |
+
650 0.059500 0.067657 0.553466 0.478180 0.513076 0.982528
|
93 |
+
675 0.047500 0.067443 0.594739 0.566852 0.580461 0.983663
|
94 |
+
700 0.052100 0.065269 0.564447 0.546890 0.555529 0.983039
|
95 |
+
725 0.041500 0.067790 0.593516 0.552461 0.572253 0.983672
|
96 |
+
750 0.046300 0.067922 0.609038 0.538069 0.571358 0.983461
|
97 |
+
775 0.054300 0.064636 0.646725 0.582173 0.612753 0.984499
|
98 |
+
800 0.049500 0.067722 0.650905 0.517642 0.576674 0.983830
|
99 |
+
825 0.043100 0.069327 0.630043 0.471216 0.539177 0.982880
|
100 |
+
850 0.048000 0.063814 0.631025 0.528784 0.575398 0.984068
|
101 |
+
875 0.042500 0.064527 0.644913 0.582637 0.612195 0.984543
|
102 |
+
900 0.043500 0.065475 0.608295 0.490251 0.542931 0.983522
|
103 |
+
925 0.039200 0.066043 0.635938 0.566852 0.599411 0.984323
|
104 |
+
950 0.046800 0.062491 0.646930 0.547818 0.593263 0.984719
|
105 |
+
975 0.043700 0.061204 0.634625 0.585422 0.609032 0.984543
|
106 |
+
1000 0.032000 0.066377 0.643390 0.560353 0.599007 0.984349
|
107 |
+
1025 0.038100 0.064764 0.666482 0.559424 0.608279 0.984745
|
108 |
+
1050 0.035300 0.065642 0.635359 0.587279 0.610374 0.984464
|
109 |
+
1075 0.032800 0.064835 0.657262 0.584030 0.618486 0.984587
|
110 |
+
1100 0.031700 0.065726 0.639810 0.626741 0.633208 0.984710
|
111 |
+
|
112 |
## Model description
|
113 |
|
114 |
More information needed
|