update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: multiCorp_2e-05_LabelNorm_0404
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# multiCorp_2e-05_LabelNorm_0404
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0307
|
23 |
+
- Precision: 0.7335
|
24 |
+
- Recall: 0.5525
|
25 |
+
- F1: 0.6303
|
26 |
+
- Accuracy: 0.9910
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- training_steps: 2000
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.4089 | 0.08 | 25 | 0.1001 | 0.0 | 0.0 | 0.0 | 0.9838 |
|
58 |
+
| 0.0776 | 0.15 | 50 | 0.0771 | 0.0 | 0.0 | 0.0 | 0.9838 |
|
59 |
+
| 0.0576 | 0.23 | 75 | 0.0631 | 0.5929 | 0.0521 | 0.0959 | 0.9843 |
|
60 |
+
| 0.0621 | 0.31 | 100 | 0.0582 | 0.2212 | 0.0179 | 0.0331 | 0.9839 |
|
61 |
+
| 0.0438 | 0.39 | 125 | 0.0505 | 0.4326 | 0.3346 | 0.3774 | 0.9859 |
|
62 |
+
| 0.047 | 0.46 | 150 | 0.0479 | 0.5205 | 0.3549 | 0.4220 | 0.9868 |
|
63 |
+
| 0.043 | 0.54 | 175 | 0.0461 | 0.5706 | 0.3144 | 0.4054 | 0.9871 |
|
64 |
+
| 0.0292 | 0.62 | 200 | 0.0437 | 0.4402 | 0.3899 | 0.4135 | 0.9865 |
|
65 |
+
| 0.0395 | 0.7 | 225 | 0.0411 | 0.5338 | 0.4669 | 0.4981 | 0.9882 |
|
66 |
+
| 0.0345 | 0.77 | 250 | 0.0414 | 0.5533 | 0.3471 | 0.4266 | 0.9869 |
|
67 |
+
| 0.0491 | 0.85 | 275 | 0.0379 | 0.6573 | 0.3447 | 0.4523 | 0.9883 |
|
68 |
+
| 0.0388 | 0.93 | 300 | 0.0370 | 0.6529 | 0.3704 | 0.4727 | 0.9884 |
|
69 |
+
| 0.0348 | 1.01 | 325 | 0.0371 | 0.5327 | 0.5191 | 0.5258 | 0.9883 |
|
70 |
+
| 0.0316 | 1.08 | 350 | 0.0363 | 0.5613 | 0.4988 | 0.5282 | 0.9884 |
|
71 |
+
| 0.0252 | 1.16 | 375 | 0.0340 | 0.6533 | 0.4957 | 0.5637 | 0.9898 |
|
72 |
+
| 0.0386 | 1.24 | 400 | 0.0367 | 0.5861 | 0.5829 | 0.5845 | 0.9889 |
|
73 |
+
| 0.0251 | 1.32 | 425 | 0.0362 | 0.6452 | 0.4444 | 0.5263 | 0.9890 |
|
74 |
+
| 0.0337 | 1.39 | 450 | 0.0348 | 0.6794 | 0.4981 | 0.5748 | 0.9896 |
|
75 |
+
| 0.0306 | 1.47 | 475 | 0.0371 | 0.7112 | 0.4350 | 0.5398 | 0.9895 |
|
76 |
+
| 0.022 | 1.55 | 500 | 0.0340 | 0.7126 | 0.5556 | 0.6244 | 0.9907 |
|
77 |
+
| 0.0292 | 1.63 | 525 | 0.0306 | 0.6797 | 0.5533 | 0.6100 | 0.9907 |
|
78 |
+
| 0.0277 | 1.7 | 550 | 0.0321 | 0.6529 | 0.5782 | 0.6133 | 0.9903 |
|
79 |
+
| 0.0295 | 1.78 | 575 | 0.0313 | 0.6564 | 0.5992 | 0.6265 | 0.9906 |
|
80 |
+
| 0.0253 | 1.86 | 600 | 0.0351 | 0.7402 | 0.4545 | 0.5632 | 0.9902 |
|
81 |
+
| 0.0228 | 1.93 | 625 | 0.0304 | 0.668 | 0.6498 | 0.6588 | 0.9910 |
|
82 |
+
| 0.0276 | 2.01 | 650 | 0.0313 | 0.6880 | 0.5183 | 0.5912 | 0.9904 |
|
83 |
+
| 0.0185 | 2.09 | 675 | 0.0325 | 0.6661 | 0.6257 | 0.6453 | 0.9907 |
|
84 |
+
| 0.0199 | 2.17 | 700 | 0.0303 | 0.6809 | 0.6459 | 0.6629 | 0.9911 |
|
85 |
+
| 0.0191 | 2.24 | 725 | 0.0307 | 0.6933 | 0.6156 | 0.6521 | 0.9910 |
|
86 |
+
| 0.0167 | 2.32 | 750 | 0.0334 | 0.6620 | 0.5930 | 0.6256 | 0.9906 |
|
87 |
+
| 0.0247 | 2.4 | 775 | 0.0317 | 0.6591 | 0.6062 | 0.6315 | 0.9902 |
|
88 |
+
| 0.0236 | 2.48 | 800 | 0.0315 | 0.7354 | 0.5798 | 0.6484 | 0.9914 |
|
89 |
+
| 0.0191 | 2.55 | 825 | 0.0367 | 0.7523 | 0.4420 | 0.5569 | 0.9900 |
|
90 |
+
| 0.0252 | 2.63 | 850 | 0.0307 | 0.7335 | 0.5525 | 0.6303 | 0.9910 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.27.4
|
96 |
+
- Pytorch 2.0.0+cu118
|
97 |
+
- Datasets 2.11.0
|
98 |
+
- Tokenizers 0.13.3
|