Brizape commited on
Commit
0298a2f
1 Parent(s): 2b479d6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: Yepes_5e-05_0404_ES6_strict_tok
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # Yepes_5e-05_0404_ES6_strict_tok
19
+
20
+ This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0986
23
+ - Precision: 0.7635
24
+ - Recall: 0.4641
25
+ - F1: 0.5773
26
+ - Accuracy: 0.9811
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - training_steps: 2000
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.6203 | 0.43 | 25 | 0.2206 | 0.0 | 0.0 | 0.0 | 0.9663 |
58
+ | 0.2394 | 0.86 | 50 | 0.1770 | 0.0 | 0.0 | 0.0 | 0.9663 |
59
+ | 0.1771 | 1.29 | 75 | 0.1435 | 0.0 | 0.0 | 0.0 | 0.9663 |
60
+ | 0.1761 | 1.72 | 100 | 0.1277 | 0.2656 | 0.2036 | 0.2305 | 0.9722 |
61
+ | 0.1386 | 2.16 | 125 | 0.1152 | 0.4471 | 0.2275 | 0.3016 | 0.9742 |
62
+ | 0.1227 | 2.59 | 150 | 0.1401 | 0.3871 | 0.3234 | 0.3524 | 0.9623 |
63
+ | 0.1188 | 3.02 | 175 | 0.0922 | 0.6331 | 0.3204 | 0.4254 | 0.9778 |
64
+ | 0.0897 | 3.45 | 200 | 0.1012 | 0.6416 | 0.3323 | 0.4379 | 0.9773 |
65
+ | 0.099 | 3.88 | 225 | 0.0885 | 0.5671 | 0.3922 | 0.4637 | 0.9780 |
66
+ | 0.1172 | 4.31 | 250 | 0.0858 | 0.5938 | 0.4551 | 0.5153 | 0.9761 |
67
+ | 0.0693 | 4.74 | 275 | 0.0899 | 0.8072 | 0.4012 | 0.536 | 0.9785 |
68
+ | 0.0686 | 5.17 | 300 | 0.0986 | 0.7635 | 0.4641 | 0.5773 | 0.9811 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.27.4
74
+ - Pytorch 2.0.0+cu118
75
+ - Datasets 2.11.0
76
+ - Tokenizers 0.13.3