update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: Yepes_0.0001_250
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# Yepes_0.0001_250
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.1555
|
23 |
+
- Precision: 0.5922
|
24 |
+
- Recall: 0.4552
|
25 |
+
- F1: 0.5148
|
26 |
+
- Accuracy: 0.9768
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 0.0001
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- training_steps: 500
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.4065 | 1.39 | 25 | 0.2115 | 0.0 | 0.0 | 0.0 | 0.9672 |
|
58 |
+
| 0.1995 | 2.78 | 50 | 0.2120 | 0.0 | 0.0 | 0.0 | 0.9672 |
|
59 |
+
| 0.1995 | 4.17 | 75 | 0.2108 | 0.0 | 0.0 | 0.0 | 0.9672 |
|
60 |
+
| 0.1694 | 5.56 | 100 | 0.1646 | 0.0 | 0.0 | 0.0 | 0.9672 |
|
61 |
+
| 0.1493 | 6.94 | 125 | 0.1513 | 0.0 | 0.0 | 0.0 | 0.9672 |
|
62 |
+
| 0.1266 | 8.33 | 150 | 0.1446 | 0.0 | 0.0 | 0.0 | 0.9672 |
|
63 |
+
| 0.106 | 9.72 | 175 | 0.1396 | 0.4019 | 0.2139 | 0.2792 | 0.9704 |
|
64 |
+
| 0.086 | 11.11 | 200 | 0.1162 | 0.5037 | 0.3408 | 0.4065 | 0.9740 |
|
65 |
+
| 0.0613 | 12.5 | 225 | 0.1230 | 0.5015 | 0.4104 | 0.4514 | 0.9740 |
|
66 |
+
| 0.047 | 13.89 | 250 | 0.1306 | 0.5333 | 0.4378 | 0.4809 | 0.9753 |
|
67 |
+
| 0.0351 | 15.28 | 275 | 0.1351 | 0.5629 | 0.4453 | 0.4972 | 0.9757 |
|
68 |
+
| 0.0266 | 16.67 | 300 | 0.1453 | 0.5617 | 0.4303 | 0.4873 | 0.9765 |
|
69 |
+
| 0.02 | 18.06 | 325 | 0.1441 | 0.5573 | 0.4478 | 0.4966 | 0.9757 |
|
70 |
+
| 0.0153 | 19.44 | 350 | 0.1555 | 0.5922 | 0.4552 | 0.5148 | 0.9768 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.27.4
|
76 |
+
- Pytorch 1.13.1+cu116
|
77 |
+
- Datasets 2.11.0
|
78 |
+
- Tokenizers 0.13.2
|