Brizape commited on
Commit
41a1a69
1 Parent(s): 01698dc

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: Yepes_0.0001_250
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # Yepes_0.0001_250
19
+
20
+ This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1555
23
+ - Precision: 0.5922
24
+ - Recall: 0.4552
25
+ - F1: 0.5148
26
+ - Accuracy: 0.9768
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 0.0001
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - training_steps: 500
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.4065 | 1.39 | 25 | 0.2115 | 0.0 | 0.0 | 0.0 | 0.9672 |
58
+ | 0.1995 | 2.78 | 50 | 0.2120 | 0.0 | 0.0 | 0.0 | 0.9672 |
59
+ | 0.1995 | 4.17 | 75 | 0.2108 | 0.0 | 0.0 | 0.0 | 0.9672 |
60
+ | 0.1694 | 5.56 | 100 | 0.1646 | 0.0 | 0.0 | 0.0 | 0.9672 |
61
+ | 0.1493 | 6.94 | 125 | 0.1513 | 0.0 | 0.0 | 0.0 | 0.9672 |
62
+ | 0.1266 | 8.33 | 150 | 0.1446 | 0.0 | 0.0 | 0.0 | 0.9672 |
63
+ | 0.106 | 9.72 | 175 | 0.1396 | 0.4019 | 0.2139 | 0.2792 | 0.9704 |
64
+ | 0.086 | 11.11 | 200 | 0.1162 | 0.5037 | 0.3408 | 0.4065 | 0.9740 |
65
+ | 0.0613 | 12.5 | 225 | 0.1230 | 0.5015 | 0.4104 | 0.4514 | 0.9740 |
66
+ | 0.047 | 13.89 | 250 | 0.1306 | 0.5333 | 0.4378 | 0.4809 | 0.9753 |
67
+ | 0.0351 | 15.28 | 275 | 0.1351 | 0.5629 | 0.4453 | 0.4972 | 0.9757 |
68
+ | 0.0266 | 16.67 | 300 | 0.1453 | 0.5617 | 0.4303 | 0.4873 | 0.9765 |
69
+ | 0.02 | 18.06 | 325 | 0.1441 | 0.5573 | 0.4478 | 0.4966 | 0.9757 |
70
+ | 0.0153 | 19.44 | 350 | 0.1555 | 0.5922 | 0.4552 | 0.5148 | 0.9768 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.27.4
76
+ - Pytorch 1.13.1+cu116
77
+ - Datasets 2.11.0
78
+ - Tokenizers 0.13.2