Brizape commited on
Commit
2f1b32d
1 Parent(s): 3546a2c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: Variome_0.0001_0404_ES6_strict_tok
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # Variome_0.0001_0404_ES6_strict_tok
19
+
20
+ This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1843
23
+ - Precision: 0.0
24
+ - Recall: 0.0
25
+ - F1: 0.0
26
+ - Accuracy: 0.9759
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 0.0001
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - training_steps: 2000
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
57
+ | 0.4144 | 0.13 | 25 | 0.1849 | 0.0 | 0.0 | 0.0 | 0.9759 |
58
+ | 0.1834 | 0.26 | 50 | 0.1818 | 0.0 | 0.0 | 0.0 | 0.9759 |
59
+ | 0.1924 | 0.39 | 75 | 0.1828 | 0.0 | 0.0 | 0.0 | 0.9759 |
60
+ | 0.1806 | 0.52 | 100 | 0.1817 | 0.0 | 0.0 | 0.0 | 0.9759 |
61
+ | 0.1699 | 0.65 | 125 | 0.1863 | 0.0 | 0.0 | 0.0 | 0.9759 |
62
+ | 0.1783 | 0.79 | 150 | 0.1812 | 0.0 | 0.0 | 0.0 | 0.9759 |
63
+ | 0.1747 | 0.92 | 175 | 0.1816 | 0.0 | 0.0 | 0.0 | 0.9759 |
64
+ | 0.1583 | 1.05 | 200 | 0.1843 | 0.0 | 0.0 | 0.0 | 0.9759 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.27.4
70
+ - Pytorch 2.0.0+cu118
71
+ - Datasets 2.11.0
72
+ - Tokenizers 0.13.3