hans00 commited on
Commit
7b9818b
·
verified ·
1 Parent(s): d282b16

Upload custom-code python model

Browse files
configuration_bert_vits2.py ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The Kakao Enterprise Authors and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """VITS model configuration"""
16
+
17
+ from typing import List
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+ from transformers.models.bert.configuration_bert import BertConfig
22
+ import copy
23
+
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+
28
+ class BertVits2Config(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`BertVits2Model`]. It is used to instantiate a VITS
31
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
32
+ defaults will yield a similar configuration to that of the VITS
33
+ [facebook/mms-tts-eng](https://huggingface.co/facebook/mms-tts-eng) architecture.
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 38):
40
+ Vocabulary size of the VITS model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed to the forward method of [`BertVits2Model`].
42
+ hidden_size (`int`, *optional*, defaults to 192):
43
+ Dimensionality of the text encoder layers.
44
+ num_hidden_layers (`int`, *optional*, defaults to 6):
45
+ Number of hidden layers in the Transformer encoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 2):
47
+ Number of attention heads for each attention layer in the Transformer encoder.
48
+ window_size (`int`, *optional*, defaults to 4):
49
+ Window size for the relative positional embeddings in the attention layers of the Transformer encoder.
50
+ use_bias (`bool`, *optional*, defaults to `True`):
51
+ Whether to use bias in the key, query, value projection layers in the Transformer encoder.
52
+ ffn_dim (`int`, *optional*, defaults to 768):
53
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
54
+ layerdrop (`float`, *optional*, defaults to 0.1):
55
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
56
+ for more details.
57
+ ffn_kernel_size (`int`, *optional*, defaults to 3):
58
+ Kernel size of the 1D convolution layers used by the feed-forward network in the Transformer encoder.
59
+ flow_size (`int`, *optional*, defaults to 192):
60
+ Dimensionality of the flow layers.
61
+ spectrogram_bins (`int`, *optional*, defaults to 513):
62
+ Number of frequency bins in the target spectrogram.
63
+ hidden_act (`str` or `function`, *optional*, defaults to `"relu"`):
64
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
65
+ `"relu"`, `"selu"` and `"gelu_new"` are supported.
66
+ hidden_dropout (`float`, *optional*, defaults to 0.1):
67
+ The dropout probability for all fully connected layers in the embeddings and encoder.
68
+ attention_dropout (`float`, *optional*, defaults to 0.1):
69
+ The dropout ratio for the attention probabilities.
70
+ activation_dropout (`float`, *optional*, defaults to 0.1):
71
+ The dropout ratio for activations inside the fully connected layer.
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ layer_norm_eps (`float`, *optional*, defaults to 1e-05):
75
+ The epsilon used by the layer normalization layers.
76
+ use_stochastic_duration_prediction (`bool`, *optional*, defaults to `True`):
77
+ Whether to use the stochastic duration prediction module or the regular duration predictor.
78
+ num_speakers (`int`, *optional*, defaults to 1):
79
+ Number of speakers if this is a multi-speaker model.
80
+ speaker_embedding_size (`int`, *optional*, defaults to 0):
81
+ Number of channels used by the speaker embeddings. Is zero for single-speaker models.
82
+ upsample_initial_channel (`int`, *optional*, defaults to 512):
83
+ The number of input channels into the HiFi-GAN upsampling network.
84
+ upsample_rates (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 2, 2]`):
85
+ A tuple of integers defining the stride of each 1D convolutional layer in the HiFi-GAN upsampling network.
86
+ The length of `upsample_rates` defines the number of convolutional layers and has to match the length of
87
+ `upsample_kernel_sizes`.
88
+ upsample_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[16, 16, 4, 4]`):
89
+ A tuple of integers defining the kernel size of each 1D convolutional layer in the HiFi-GAN upsampling
90
+ network. The length of `upsample_kernel_sizes` defines the number of convolutional layers and has to match
91
+ the length of `upsample_rates`.
92
+ resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 7, 11]`):
93
+ A tuple of integers defining the kernel sizes of the 1D convolutional layers in the HiFi-GAN
94
+ multi-receptive field fusion (MRF) module.
95
+ resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 5], [1, 3, 5], [1, 3, 5]]`):
96
+ A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the
97
+ HiFi-GAN multi-receptive field fusion (MRF) module.
98
+ leaky_relu_slope (`float`, *optional*, defaults to 0.1):
99
+ The angle of the negative slope used by the leaky ReLU activation.
100
+ depth_separable_channels (`int`, *optional*, defaults to 2):
101
+ Number of channels to use in each depth-separable block.
102
+ depth_separable_num_layers (`int`, *optional*, defaults to 3):
103
+ Number of convolutional layers to use in each depth-separable block.
104
+ duration_predictor_flow_bins (`int`, *optional*, defaults to 10):
105
+ Number of channels to map using the unonstrained rational spline in the duration predictor model.
106
+ duration_predictor_tail_bound (`float`, *optional*, defaults to 5.0):
107
+ Value of the tail bin boundary when computing the unconstrained rational spline in the duration predictor
108
+ model.
109
+ duration_predictor_kernel_size (`int`, *optional*, defaults to 3):
110
+ Kernel size of the 1D convolution layers used in the duration predictor model.
111
+ duration_predictor_dropout (`float`, *optional*, defaults to 0.5):
112
+ The dropout ratio for the duration predictor model.
113
+ duration_predictor_num_flows (`int`, *optional*, defaults to 4):
114
+ Number of flow stages used by the duration predictor model.
115
+ duration_predictor_filter_channels (`int`, *optional*, defaults to 256):
116
+ Number of channels for the convolution layers used in the duration predictor model.
117
+ prior_encoder_num_flows (`int`, *optional*, defaults to 4):
118
+ Number of flow stages used by the prior encoder flow model.
119
+ prior_encoder_num_wavenet_layers (`int`, *optional*, defaults to 4):
120
+ Number of WaveNet layers used by the prior encoder flow model.
121
+ posterior_encoder_num_wavenet_layers (`int`, *optional*, defaults to 16):
122
+ Number of WaveNet layers used by the posterior encoder model.
123
+ wavenet_kernel_size (`int`, *optional*, defaults to 5):
124
+ Kernel size of the 1D convolution layers used in the WaveNet model.
125
+ wavenet_dilation_rate (`int`, *optional*, defaults to 1):
126
+ Dilation rates of the dilated 1D convolutional layers used in the WaveNet model.
127
+ wavenet_dropout (`float`, *optional*, defaults to 0.0):
128
+ The dropout ratio for the WaveNet layers.
129
+ speaking_rate (`float`, *optional*, defaults to 1.0):
130
+ Speaking rate. Larger values give faster synthesised speech.
131
+ noise_scale (`float`, *optional*, defaults to 0.667):
132
+ How random the speech prediction is. Larger values create more variation in the predicted speech.
133
+ noise_scale_duration (`float`, *optional*, defaults to 0.8):
134
+ How random the duration prediction is. Larger values create more variation in the predicted durations.
135
+ sampling_rate (`int`, *optional*, defaults to 16000):
136
+ The sampling rate at which the output audio waveform is digitalized expressed in hertz (Hz).
137
+
138
+ Example:
139
+
140
+ ```python
141
+ >>> from transformers import BertVits2Model, BertVits2Config
142
+
143
+ >>> # Initializing a "facebook/mms-tts-eng" style configuration
144
+ >>> configuration = BertVits2Config()
145
+
146
+ >>> # Initializing a model (with random weights) from the "facebook/mms-tts-eng" style configuration
147
+ >>> model = BertVits2Model(configuration)
148
+
149
+ >>> # Accessing the model configuration
150
+ >>> configuration = model.config
151
+ ```"""
152
+
153
+ model_type = "bert_vits2"
154
+
155
+ def __init__(
156
+ self,
157
+ vocab_size=38,
158
+ hidden_size=192,
159
+ num_tones=12,
160
+ num_languages=1,
161
+ num_hidden_layers=6,
162
+ num_attention_heads=2,
163
+ window_size=4,
164
+ use_bias=True,
165
+ ffn_dim=768,
166
+ layerdrop=0.1,
167
+ ffn_kernel_size=3,
168
+ flow_size=192,
169
+ spectrogram_bins=513,
170
+ hidden_act="relu",
171
+ hidden_dropout=0.1,
172
+ attention_dropout=0.1,
173
+ activation_dropout=0.1,
174
+ initializer_range=0.02,
175
+ layer_norm_eps=1e-5,
176
+ use_transformer_flow=True,
177
+ num_speakers=1,
178
+ speaker_embedding_size=0,
179
+ upsample_initial_channel=512,
180
+ upsample_rates=[8, 8, 2, 2],
181
+ upsample_kernel_sizes=[16, 16, 4, 4],
182
+ resblock_kernel_sizes=[3, 7, 11],
183
+ resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
184
+ leaky_relu_slope=0.1,
185
+ depth_separable_channels=2,
186
+ depth_separable_num_layers=3,
187
+ duration_predictor_flow_bins=10,
188
+ duration_predictor_tail_bound=5.0,
189
+ duration_predictor_kernel_size=3,
190
+ duration_predictor_dropout=0.5,
191
+ duration_predictor_num_flows=4,
192
+ duration_predictor_filter_channels=256,
193
+ prior_encoder_num_flows=4,
194
+ prior_encoder_num_flows_layers=6,
195
+ prior_encoder_num_wavenet_layers=4,
196
+ posterior_encoder_num_wavenet_layers=16,
197
+ wavenet_kernel_size=5,
198
+ wavenet_dilation_rate=1,
199
+ wavenet_dropout=0.0,
200
+ conditioning_layer_index=2,
201
+ speaking_rate=1.0,
202
+ noise_scale=0.667,
203
+ noise_scale_duration=0.8,
204
+ stochastic_duration_prediction_ratio=0.0,
205
+ sampling_rate=16_000,
206
+ bert_configs = [],
207
+ **kwargs,
208
+ ):
209
+ self.vocab_size = vocab_size
210
+ self.hidden_size = hidden_size
211
+ self.num_tones = num_tones
212
+ self.num_languages = num_languages
213
+ self.num_hidden_layers = num_hidden_layers
214
+ self.num_attention_heads = num_attention_heads
215
+ self.window_size = window_size
216
+ self.use_bias = use_bias
217
+ self.ffn_dim = ffn_dim
218
+ self.layerdrop = layerdrop
219
+ self.ffn_kernel_size = ffn_kernel_size
220
+ self.flow_size = flow_size
221
+ self.spectrogram_bins = spectrogram_bins
222
+ self.hidden_act = hidden_act
223
+ self.hidden_dropout = hidden_dropout
224
+ self.attention_dropout = attention_dropout
225
+ self.activation_dropout = activation_dropout
226
+ self.initializer_range = initializer_range
227
+ self.layer_norm_eps = layer_norm_eps
228
+ self.use_transformer_flow = use_transformer_flow
229
+ self.num_speakers = num_speakers
230
+ self.speaker_embedding_size = speaker_embedding_size
231
+ self.upsample_initial_channel = upsample_initial_channel
232
+ self.upsample_rates = upsample_rates
233
+ self.upsample_kernel_sizes = upsample_kernel_sizes
234
+ self.resblock_kernel_sizes = resblock_kernel_sizes
235
+ self.resblock_dilation_sizes = resblock_dilation_sizes
236
+ self.leaky_relu_slope = leaky_relu_slope
237
+ self.depth_separable_channels = depth_separable_channels
238
+ self.depth_separable_num_layers = depth_separable_num_layers
239
+ self.duration_predictor_flow_bins = duration_predictor_flow_bins
240
+ self.duration_predictor_tail_bound = duration_predictor_tail_bound
241
+ self.duration_predictor_kernel_size = duration_predictor_kernel_size
242
+ self.duration_predictor_dropout = duration_predictor_dropout
243
+ self.duration_predictor_num_flows = duration_predictor_num_flows
244
+ self.duration_predictor_filter_channels = duration_predictor_filter_channels
245
+ self.prior_encoder_num_flows = prior_encoder_num_flows
246
+ self.prior_encoder_num_flows_layers = prior_encoder_num_flows_layers
247
+ self.prior_encoder_num_wavenet_layers = prior_encoder_num_wavenet_layers
248
+ self.posterior_encoder_num_wavenet_layers = posterior_encoder_num_wavenet_layers
249
+ self.wavenet_kernel_size = wavenet_kernel_size
250
+ self.wavenet_dilation_rate = wavenet_dilation_rate
251
+ self.wavenet_dropout = wavenet_dropout
252
+ self.conditioning_layer_index = conditioning_layer_index
253
+ self.speaking_rate = speaking_rate
254
+ self.noise_scale = noise_scale
255
+ self.noise_scale_duration = noise_scale_duration
256
+ self.stochastic_duration_prediction_ratio = stochastic_duration_prediction_ratio
257
+ self.sampling_rate = sampling_rate
258
+ self.bert_configs = [BertConfig.from_dict(config) for config in bert_configs]
259
+
260
+ if len(upsample_kernel_sizes) != len(upsample_rates):
261
+ raise ValueError(
262
+ f"The length of `upsample_kernel_sizes` ({len(upsample_kernel_sizes)}) must match the length of "
263
+ f"`upsample_rates` ({len(upsample_rates)})"
264
+ )
265
+
266
+ super().__init__(**kwargs)
267
+
268
+ def to_dict(self):
269
+ # patch the bert_configs to be serializable
270
+ bert_configs = self.bert_configs.copy()
271
+ self.bert_configs = [config.to_dict() for config in self.bert_configs]
272
+ config_dict = super().to_dict()
273
+ self.bert_configs = bert_configs
274
+ return config_dict
modeling_bert_vits2.py ADDED
@@ -0,0 +1,1674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The Kakao Enterprise Authors and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """PyTorch Bert VITS2 model."""
16
+
17
+ import math
18
+ from dataclasses import dataclass
19
+ from typing import Any, Optional, Tuple, Union, List
20
+
21
+ import numpy as np
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+
26
+ from transformers.activations import ACT2FN
27
+ from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
28
+ from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
29
+ from transformers.modeling_outputs import (
30
+ BaseModelOutput,
31
+ ModelOutput,
32
+ )
33
+ from transformers.models.bert.modeling_bert import BertModel
34
+ from transformers.modeling_utils import PreTrainedModel
35
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
36
+ from configuration_bert_vits2 import BertVits2Config
37
+
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+
42
+ # General docstring
43
+ _CONFIG_FOR_DOC = "BertVits2Config"
44
+
45
+
46
+ @dataclass
47
+ class BertVits2ModelOutput(ModelOutput):
48
+ """
49
+ Describes the outputs for the VITS model, with potential hidden states and attentions.
50
+
51
+ Args:
52
+ waveform (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
53
+ The final audio waveform predicted by the model.
54
+ sequence_lengths (`torch.FloatTensor` of shape `(batch_size,)`):
55
+ The length in samples of each element in the `waveform` batch.
56
+ spectrogram (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_bins)`):
57
+ The log-mel spectrogram predicted at the output of the flow model. This spectrogram is passed to the Hi-Fi
58
+ GAN decoder model to obtain the final audio waveform.
59
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
60
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
61
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
62
+
63
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
64
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
65
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
66
+ sequence_length)`.
67
+
68
+ Attention weights after the attention softmax, used to compute the weighted average in the self-attention
69
+ heads.
70
+ """
71
+
72
+ waveform: torch.FloatTensor = None
73
+ sequence_lengths: torch.FloatTensor = None
74
+ spectrogram: Optional[Tuple[torch.FloatTensor]] = None
75
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
76
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
77
+
78
+
79
+ @dataclass
80
+ class BertVits2TextEncoderOutput(ModelOutput):
81
+ """
82
+ Describes the outputs for the VITS text encoder model, with potential hidden states and attentions.
83
+
84
+ Args:
85
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
86
+ Sequence of hidden-states at the output of the last layer of the model.
87
+ prior_means (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
88
+ The predicted mean values of the prior distribution for the latent text variables.
89
+ prior_log_variances (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
90
+ The predicted log-variance values of the prior distribution for the latent text variables.
91
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
92
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
93
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
94
+
95
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
96
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
97
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
98
+ sequence_length)`.
99
+
100
+ Attention weights after the attention softmax, used to compute the weighted average in the self-attention
101
+ heads.
102
+ """
103
+
104
+ last_hidden_state: torch.FloatTensor = None
105
+ prior_means: torch.FloatTensor = None
106
+ prior_log_variances: torch.FloatTensor = None
107
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
108
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
109
+
110
+
111
+ @torch.jit.script
112
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, num_channels):
113
+ in_act = input_a + input_b
114
+ t_act = torch.tanh(in_act[:, :num_channels, :])
115
+ s_act = torch.sigmoid(in_act[:, num_channels:, :])
116
+ acts = t_act * s_act
117
+ return acts
118
+
119
+
120
+ def _unconstrained_rational_quadratic_spline(
121
+ inputs,
122
+ unnormalized_widths,
123
+ unnormalized_heights,
124
+ unnormalized_derivatives,
125
+ reverse=False,
126
+ tail_bound=5.0,
127
+ min_bin_width=1e-3,
128
+ min_bin_height=1e-3,
129
+ min_derivative=1e-3,
130
+ ):
131
+ """
132
+ This transformation represents a monotonically increasing piecewise rational quadratic function. Outside of the
133
+ `tail_bound`, the transform behaves as an identity function.
134
+
135
+ Args:
136
+ inputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
137
+ Second half of the hidden-states input to the Vits convolutional flow module.
138
+ unnormalized_widths (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
139
+ First `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
140
+ layer in the convolutional flow module
141
+ unnormalized_heights (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
142
+ Second `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
143
+ layer in the convolutional flow module
144
+ unnormalized_derivatives (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
145
+ Third `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
146
+ layer in the convolutional flow module
147
+ reverse (`bool`, *optional*, defaults to `False`):
148
+ Whether the model is being run in reverse mode.
149
+ tail_bound (`float`, *optional* defaults to 5):
150
+ Upper and lower limit bound for the rational quadratic function. Outside of this `tail_bound`, the
151
+ transform behaves as an identity function.
152
+ min_bin_width (`float`, *optional*, defaults to 1e-3):
153
+ Minimum bin value across the width dimension for the piecewise rational quadratic function.
154
+ min_bin_height (`float`, *optional*, defaults to 1e-3):
155
+ Minimum bin value across the height dimension for the piecewise rational quadratic function.
156
+ min_derivative (`float`, *optional*, defaults to 1e-3):
157
+ Minimum bin value across the derivatives for the piecewise rational quadratic function.
158
+ Returns:
159
+ outputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
160
+ Hidden-states as transformed by the piecewise rational quadratic function with the `tail_bound` limits
161
+ applied.
162
+ log_abs_det (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
163
+ Logarithm of the absolute value of the determinants corresponding to the `outputs` with the `tail_bound`
164
+ limits applied.
165
+ """
166
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
167
+ outside_interval_mask = ~inside_interval_mask
168
+
169
+ outputs = torch.zeros_like(inputs)
170
+ log_abs_det = torch.zeros_like(inputs)
171
+ constant = np.log(np.exp(1 - min_derivative) - 1)
172
+
173
+ unnormalized_derivatives = nn.functional.pad(unnormalized_derivatives, pad=(1, 1))
174
+ unnormalized_derivatives[..., 0] = constant
175
+ unnormalized_derivatives[..., -1] = constant
176
+
177
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
178
+ log_abs_det[outside_interval_mask] = 0.0
179
+
180
+ outputs[inside_interval_mask], log_abs_det[inside_interval_mask] = _rational_quadratic_spline(
181
+ inputs=inputs[inside_interval_mask],
182
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
183
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
184
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
185
+ reverse=reverse,
186
+ tail_bound=tail_bound,
187
+ min_bin_width=min_bin_width,
188
+ min_bin_height=min_bin_height,
189
+ min_derivative=min_derivative,
190
+ )
191
+ return outputs, log_abs_det
192
+
193
+
194
+ def _rational_quadratic_spline(
195
+ inputs,
196
+ unnormalized_widths,
197
+ unnormalized_heights,
198
+ unnormalized_derivatives,
199
+ reverse,
200
+ tail_bound,
201
+ min_bin_width,
202
+ min_bin_height,
203
+ min_derivative,
204
+ ):
205
+ """
206
+ This transformation represents a monotonically increasing piecewise rational quadratic function. Unlike the
207
+ function `_unconstrained_rational_quadratic_spline`, the function behaves the same across the `tail_bound`.
208
+
209
+ Args:
210
+ inputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
211
+ Second half of the hidden-states input to the Vits convolutional flow module.
212
+ unnormalized_widths (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
213
+ First `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
214
+ layer in the convolutional flow module
215
+ unnormalized_heights (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
216
+ Second `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
217
+ layer in the convolutional flow module
218
+ unnormalized_derivatives (`torch.FloatTensor` of shape `(batch_size, channels, seq_len, duration_predictor_flow_bins)`):
219
+ Third `duration_predictor_flow_bins` of the hidden-states from the output of the convolution projection
220
+ layer in the convolutional flow module
221
+ reverse (`bool`):
222
+ Whether the model is being run in reverse mode.
223
+ tail_bound (`float`):
224
+ Upper and lower limit bound for the rational quadratic function. Outside of this `tail_bound`, the
225
+ transform behaves as an identity function.
226
+ min_bin_width (`float`):
227
+ Minimum bin value across the width dimension for the piecewise rational quadratic function.
228
+ min_bin_height (`float`):
229
+ Minimum bin value across the height dimension for the piecewise rational quadratic function.
230
+ min_derivative (`float`):
231
+ Minimum bin value across the derivatives for the piecewise rational quadratic function.
232
+ Returns:
233
+ outputs (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
234
+ Hidden-states as transformed by the piecewise rational quadratic function.
235
+ log_abs_det (`torch.FloatTensor` of shape `(batch_size, channels, seq_len)`:
236
+ Logarithm of the absolute value of the determinants corresponding to the `outputs`.
237
+ """
238
+ upper_bound = tail_bound
239
+ lower_bound = -tail_bound
240
+
241
+ if torch.min(inputs) < lower_bound or torch.max(inputs) > upper_bound:
242
+ raise ValueError("Input to a transform is not within its domain")
243
+
244
+ num_bins = unnormalized_widths.shape[-1]
245
+
246
+ if min_bin_width * num_bins > 1.0:
247
+ raise ValueError(f"Minimal bin width {min_bin_width} too large for the number of bins {num_bins}")
248
+ if min_bin_height * num_bins > 1.0:
249
+ raise ValueError(f"Minimal bin height {min_bin_height} too large for the number of bins {num_bins}")
250
+
251
+ widths = nn.functional.softmax(unnormalized_widths, dim=-1)
252
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
253
+ cumwidths = torch.cumsum(widths, dim=-1)
254
+ cumwidths = nn.functional.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
255
+ cumwidths = (upper_bound - lower_bound) * cumwidths + lower_bound
256
+ cumwidths[..., 0] = lower_bound
257
+ cumwidths[..., -1] = upper_bound
258
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
259
+
260
+ derivatives = min_derivative + nn.functional.softplus(unnormalized_derivatives)
261
+
262
+ heights = nn.functional.softmax(unnormalized_heights, dim=-1)
263
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
264
+ cumheights = torch.cumsum(heights, dim=-1)
265
+ cumheights = nn.functional.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
266
+ cumheights = (upper_bound - lower_bound) * cumheights + lower_bound
267
+ cumheights[..., 0] = lower_bound
268
+ cumheights[..., -1] = upper_bound
269
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
270
+
271
+ bin_locations = cumheights if reverse else cumwidths
272
+ bin_locations[..., -1] += 1e-6
273
+ bin_idx = torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
274
+ bin_idx = bin_idx[..., None]
275
+
276
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
277
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
278
+
279
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
280
+ delta = heights / widths
281
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
282
+
283
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
284
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
285
+
286
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
287
+
288
+ intermediate1 = input_derivatives + input_derivatives_plus_one - 2 * input_delta
289
+ if not reverse:
290
+ theta = (inputs - input_cumwidths) / input_bin_widths
291
+ theta_one_minus_theta = theta * (1 - theta)
292
+
293
+ numerator = input_heights * (input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta)
294
+ denominator = input_delta + intermediate1 * theta_one_minus_theta
295
+ outputs = input_cumheights + numerator / denominator
296
+
297
+ derivative_numerator = input_delta.pow(2) * (
298
+ input_derivatives_plus_one * theta.pow(2)
299
+ + 2 * input_delta * theta_one_minus_theta
300
+ + input_derivatives * (1 - theta).pow(2)
301
+ )
302
+ log_abs_det = torch.log(derivative_numerator) - 2 * torch.log(denominator)
303
+ return outputs, log_abs_det
304
+ else:
305
+ # find the roots of a quadratic equation
306
+ intermediate2 = inputs - input_cumheights
307
+ intermediate3 = intermediate2 * intermediate1
308
+ a = input_heights * (input_delta - input_derivatives) + intermediate3
309
+ b = input_heights * input_derivatives - intermediate3
310
+ c = -input_delta * intermediate2
311
+
312
+ discriminant = b.pow(2) - 4 * a * c
313
+ if not (discriminant >= 0).all():
314
+ raise RuntimeError(f"invalid discriminant {discriminant}")
315
+
316
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
317
+ outputs = root * input_bin_widths + input_cumwidths
318
+
319
+ theta_one_minus_theta = root * (1 - root)
320
+ denominator = input_delta + intermediate1 * theta_one_minus_theta
321
+ derivative_numerator = input_delta.pow(2) * (
322
+ input_derivatives_plus_one * root.pow(2)
323
+ + 2 * input_delta * theta_one_minus_theta
324
+ + input_derivatives * (1 - root).pow(2)
325
+ )
326
+ log_abs_det = torch.log(derivative_numerator) - 2 * torch.log(denominator)
327
+ return outputs, -log_abs_det
328
+
329
+
330
+ class BertVits2WaveNet(torch.nn.Module):
331
+ def __init__(self, config: BertVits2Config, num_layers: int):
332
+ super().__init__()
333
+ self.hidden_size = config.hidden_size
334
+ self.num_layers = num_layers
335
+
336
+ self.in_layers = torch.nn.ModuleList()
337
+ self.res_skip_layers = torch.nn.ModuleList()
338
+ self.dropout = nn.Dropout(config.wavenet_dropout)
339
+
340
+ # if hasattr(nn.utils.parametrizations, "weight_norm"):
341
+ # weight_norm = nn.utils.parametrizations.weight_norm
342
+ # else:
343
+ weight_norm = nn.utils.weight_norm
344
+
345
+ if config.speaker_embedding_size != 0:
346
+ cond_layer = torch.nn.Conv1d(config.speaker_embedding_size, 2 * config.hidden_size * num_layers, 1)
347
+ self.cond_layer = weight_norm(cond_layer, name="weight")
348
+
349
+ for i in range(num_layers):
350
+ dilation = config.wavenet_dilation_rate**i
351
+ padding = (config.wavenet_kernel_size * dilation - dilation) // 2
352
+ in_layer = torch.nn.Conv1d(
353
+ in_channels=config.hidden_size,
354
+ out_channels=2 * config.hidden_size,
355
+ kernel_size=config.wavenet_kernel_size,
356
+ dilation=dilation,
357
+ padding=padding,
358
+ )
359
+ in_layer = weight_norm(in_layer, name="weight")
360
+ self.in_layers.append(in_layer)
361
+
362
+ # last one is not necessary
363
+ if i < num_layers - 1:
364
+ res_skip_channels = 2 * config.hidden_size
365
+ else:
366
+ res_skip_channels = config.hidden_size
367
+
368
+ res_skip_layer = torch.nn.Conv1d(config.hidden_size, res_skip_channels, 1)
369
+ res_skip_layer = weight_norm(res_skip_layer, name="weight")
370
+ self.res_skip_layers.append(res_skip_layer)
371
+
372
+ def forward(self, inputs, padding_mask, global_conditioning=None):
373
+ outputs = torch.zeros_like(inputs)
374
+ num_channels_tensor = torch.IntTensor([self.hidden_size])
375
+
376
+ if global_conditioning is not None:
377
+ global_conditioning = self.cond_layer(global_conditioning)
378
+
379
+ for i in range(self.num_layers):
380
+ hidden_states = self.in_layers[i](inputs)
381
+
382
+ if global_conditioning is not None:
383
+ cond_offset = i * 2 * self.hidden_size
384
+ global_states = global_conditioning[:, cond_offset : cond_offset + 2 * self.hidden_size, :]
385
+ else:
386
+ global_states = torch.zeros_like(hidden_states)
387
+
388
+ acts = fused_add_tanh_sigmoid_multiply(hidden_states, global_states, num_channels_tensor[0])
389
+ acts = self.dropout(acts)
390
+
391
+ res_skip_acts = self.res_skip_layers[i](acts)
392
+ if i < self.num_layers - 1:
393
+ res_acts = res_skip_acts[:, : self.hidden_size, :]
394
+ inputs = (inputs + res_acts) * padding_mask
395
+ outputs = outputs + res_skip_acts[:, self.hidden_size :, :]
396
+ else:
397
+ outputs = outputs + res_skip_acts
398
+
399
+ return outputs * padding_mask
400
+
401
+ def remove_weight_norm(self):
402
+ if self.speaker_embedding_size != 0:
403
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
404
+ for layer in self.in_layers:
405
+ torch.nn.utils.remove_weight_norm(layer)
406
+ for layer in self.res_skip_layers:
407
+ torch.nn.utils.remove_weight_norm(layer)
408
+
409
+
410
+ class BertVits2PosteriorEncoder(nn.Module):
411
+ def __init__(self, config: BertVits2Config):
412
+ super().__init__()
413
+ self.out_channels = config.flow_size
414
+
415
+ self.conv_pre = nn.Conv1d(config.spectrogram_bins, config.hidden_size, 1)
416
+ self.wavenet = BertVits2WaveNet(config, num_layers=config.posterior_encoder_num_wavenet_layers)
417
+ self.conv_proj = nn.Conv1d(config.hidden_size, self.out_channels * 2, 1)
418
+
419
+ def forward(self, inputs, padding_mask, global_conditioning=None):
420
+ inputs = self.conv_pre(inputs) * padding_mask
421
+ inputs = self.wavenet(inputs, padding_mask, global_conditioning)
422
+ stats = self.conv_proj(inputs) * padding_mask
423
+ mean, log_stddev = torch.split(stats, self.out_channels, dim=1)
424
+ sampled = (mean + torch.randn_like(mean) * torch.exp(log_stddev)) * padding_mask
425
+ return sampled, mean, log_stddev
426
+
427
+
428
+ # Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock
429
+ class HifiGanResidualBlock(nn.Module):
430
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1):
431
+ super().__init__()
432
+ self.leaky_relu_slope = leaky_relu_slope
433
+
434
+ self.convs1 = nn.ModuleList(
435
+ [
436
+ nn.Conv1d(
437
+ channels,
438
+ channels,
439
+ kernel_size,
440
+ stride=1,
441
+ dilation=dilation[i],
442
+ padding=self.get_padding(kernel_size, dilation[i]),
443
+ )
444
+ for i in range(len(dilation))
445
+ ]
446
+ )
447
+ self.convs2 = nn.ModuleList(
448
+ [
449
+ nn.Conv1d(
450
+ channels,
451
+ channels,
452
+ kernel_size,
453
+ stride=1,
454
+ dilation=1,
455
+ padding=self.get_padding(kernel_size, 1),
456
+ )
457
+ for _ in range(len(dilation))
458
+ ]
459
+ )
460
+
461
+ def get_padding(self, kernel_size, dilation=1):
462
+ return (kernel_size * dilation - dilation) // 2
463
+
464
+ def apply_weight_norm(self):
465
+ for layer in self.convs1:
466
+ nn.utils.weight_norm(layer)
467
+ for layer in self.convs2:
468
+ nn.utils.weight_norm(layer)
469
+
470
+ def remove_weight_norm(self):
471
+ for layer in self.convs1:
472
+ nn.utils.remove_weight_norm(layer)
473
+ for layer in self.convs2:
474
+ nn.utils.remove_weight_norm(layer)
475
+
476
+ def forward(self, hidden_states):
477
+ for conv1, conv2 in zip(self.convs1, self.convs2):
478
+ residual = hidden_states
479
+ hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
480
+ hidden_states = conv1(hidden_states)
481
+ hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
482
+ hidden_states = conv2(hidden_states)
483
+ hidden_states = hidden_states + residual
484
+ return hidden_states
485
+
486
+
487
+ class BertVits2HifiGan(nn.Module):
488
+ def __init__(self, config: BertVits2Config):
489
+ super().__init__()
490
+ self.config = config
491
+ self.num_kernels = len(config.resblock_kernel_sizes)
492
+ self.num_upsamples = len(config.upsample_rates)
493
+ self.conv_pre = nn.Conv1d(
494
+ config.flow_size,
495
+ config.upsample_initial_channel,
496
+ kernel_size=7,
497
+ stride=1,
498
+ padding=3,
499
+ )
500
+
501
+ self.upsampler = nn.ModuleList()
502
+ for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)):
503
+ self.upsampler.append(
504
+ nn.ConvTranspose1d(
505
+ config.upsample_initial_channel // (2**i),
506
+ config.upsample_initial_channel // (2 ** (i + 1)),
507
+ kernel_size=kernel_size,
508
+ stride=upsample_rate,
509
+ padding=(kernel_size - upsample_rate) // 2,
510
+ )
511
+ )
512
+
513
+ self.resblocks = nn.ModuleList()
514
+ for i in range(len(self.upsampler)):
515
+ channels = config.upsample_initial_channel // (2 ** (i + 1))
516
+ for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes):
517
+ self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope))
518
+
519
+ self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3, bias=False)
520
+
521
+ if config.speaker_embedding_size != 0:
522
+ self.cond = nn.Conv1d(config.speaker_embedding_size, config.upsample_initial_channel, 1)
523
+
524
+ def apply_weight_norm(self):
525
+ for layer in self.upsampler:
526
+ nn.utils.weight_norm(layer)
527
+ for layer in self.resblocks:
528
+ layer.apply_weight_norm()
529
+
530
+ def remove_weight_norm(self):
531
+ for layer in self.upsampler:
532
+ nn.utils.remove_weight_norm(layer)
533
+ for layer in self.resblocks:
534
+ layer.remove_weight_norm()
535
+
536
+ def forward(
537
+ self,
538
+ spectrogram: torch.FloatTensor,
539
+ global_conditioning: Optional[torch.FloatTensor] = None
540
+ ) -> torch.FloatTensor:
541
+ r"""
542
+ Converts a spectrogram into a speech waveform.
543
+
544
+ Args:
545
+ spectrogram (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`):
546
+ Tensor containing the spectrograms.
547
+ global_conditioning (`torch.FloatTensor` of shape `(batch_size, config.speaker_embedding_size, 1)`, *optional*):
548
+ Tensor containing speaker embeddings, for multispeaker models.
549
+
550
+ Returns:
551
+ `torch.FloatTensor`: Tensor of shape shape `(batch_size, 1, num_frames)` containing the speech waveform.
552
+ """
553
+ hidden_states = self.conv_pre(spectrogram)
554
+
555
+ if global_conditioning is not None:
556
+ hidden_states = hidden_states + self.cond(global_conditioning)
557
+
558
+ for i in range(self.num_upsamples):
559
+ hidden_states = nn.functional.leaky_relu(hidden_states, self.config.leaky_relu_slope)
560
+ hidden_states = self.upsampler[i](hidden_states)
561
+
562
+ res_state = self.resblocks[i * self.num_kernels](hidden_states)
563
+ for j in range(1, self.num_kernels):
564
+ res_state += self.resblocks[i * self.num_kernels + j](hidden_states)
565
+ hidden_states = res_state / self.num_kernels
566
+
567
+ hidden_states = nn.functional.leaky_relu(hidden_states)
568
+ hidden_states = self.conv_post(hidden_states)
569
+ waveform = torch.tanh(hidden_states)
570
+ return waveform
571
+
572
+
573
+ class BertVits2ResidualCouplingLayer(nn.Module):
574
+ def __init__(self, config: BertVits2Config):
575
+ super().__init__()
576
+ self.half_channels = config.flow_size // 2
577
+
578
+ self.conv_pre = nn.Conv1d(self.half_channels, config.hidden_size, 1)
579
+ self.wavenet = BertVits2WaveNet(config, num_layers=config.prior_encoder_num_wavenet_layers)
580
+ self.conv_post = nn.Conv1d(config.hidden_size, self.half_channels, 1)
581
+
582
+ def forward(self, inputs, padding_mask, global_conditioning=None):
583
+ first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1)
584
+ hidden_states = self.conv_pre(first_half) * padding_mask
585
+ hidden_states = self.wavenet(hidden_states, padding_mask, global_conditioning)
586
+ mean = self.conv_post(hidden_states) * padding_mask
587
+ log_stddev = torch.zeros_like(mean)
588
+
589
+ second_half = mean + second_half * torch.exp(log_stddev) * padding_mask
590
+ outputs = torch.cat([first_half, second_half], dim=1)
591
+ log_determinant = torch.sum(log_stddev, [1, 2])
592
+ return outputs, log_determinant
593
+
594
+
595
+ class BertVits2ResidualCouplingBlock(nn.Module):
596
+ def __init__(self, config: BertVits2Config):
597
+ super().__init__()
598
+ self.flows = nn.ModuleList()
599
+ for _ in range(config.prior_encoder_num_flows):
600
+ self.flows.append(BertVits2ResidualCouplingLayer(config))
601
+
602
+ def forward(self, inputs, padding_mask, global_conditioning=None):
603
+ x = inputs
604
+ for flow in self.flows:
605
+ x, _ = flow(x, padding_mask, global_conditioning)
606
+ x = torch.flip(x, [1])
607
+ return x
608
+
609
+
610
+ class BertVits2TransformerCouplingLayer(nn.Module):
611
+ def __init__(self, config: BertVits2Config):
612
+ super().__init__()
613
+ self.half_channels = config.flow_size // 2
614
+
615
+ self.conv_pre = nn.Conv1d(self.half_channels, config.hidden_size, 1)
616
+ self.encoder = BertVits2Encoder(
617
+ config,
618
+ kernel_size=5,
619
+ n_layers=config.prior_encoder_num_flows_layers,
620
+ )
621
+ self.conv_post = nn.Conv1d(config.hidden_size, self.half_channels, 1)
622
+
623
+ def forward(
624
+ self,
625
+ inputs,
626
+ padding_mask,
627
+ global_conditioning=None,
628
+ reverse=False,
629
+ return_dict=True,
630
+ ):
631
+ inputs1, inputs2 = torch.split(inputs, [self.half_channels] * 2, 1)
632
+ hidden_state = self.conv_pre(inputs1) * padding_mask
633
+ hidden_state = self.encoder(
634
+ hidden_states=hidden_state.transpose(1, 2),
635
+ padding_mask=padding_mask.transpose(1, 2),
636
+ global_conditioning=global_conditioning,
637
+ return_dict=return_dict
638
+ )
639
+ hidden_state = hidden_state.last_hidden_state if return_dict else hidden_state[0]
640
+ hidden_state = hidden_state.transpose(1, 2)
641
+ hidden_state = self.conv_post(hidden_state) * padding_mask
642
+ logs = torch.zeros_like(hidden_state)
643
+
644
+ if not reverse:
645
+ inputs1 = hidden_state + inputs1 * torch.exp(logs) * padding_mask
646
+ x = torch.cat([inputs1, inputs2], 1)
647
+ logdet = torch.sum(logs, [1, 2])
648
+ return x, logdet
649
+ else:
650
+ inputs2 = (inputs2 - hidden_state) * torch.exp(-logs) * padding_mask
651
+ x = torch.cat([inputs1, inputs2], 1)
652
+ return x, None
653
+
654
+
655
+ class BertVits2TransformerCouplingBlock(nn.Module):
656
+ def __init__(self, config: BertVits2Config):
657
+ super().__init__()
658
+ self.flows = nn.ModuleList([
659
+ BertVits2TransformerCouplingLayer(config) for _ in range(config.prior_encoder_num_flows)
660
+ ])
661
+
662
+ def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
663
+ if not reverse:
664
+ for flow in self.flows:
665
+ inputs, _ = flow(inputs, padding_mask, global_conditioning, reverse=False)
666
+ inputs = torch.flip(inputs, [1])
667
+ else:
668
+ for flow in reversed(self.flows):
669
+ inputs = torch.flip(inputs, [1])
670
+ inputs, _ = flow(inputs, padding_mask, global_conditioning, reverse=True)
671
+ return inputs
672
+
673
+
674
+ class BertVits2DilatedDepthSeparableConv(nn.Module):
675
+ def __init__(self, config: BertVits2Config, dropout_rate=0.0):
676
+ super().__init__()
677
+ kernel_size = config.duration_predictor_kernel_size
678
+ channels = config.hidden_size
679
+ self.num_layers = config.depth_separable_num_layers
680
+
681
+ self.dropout = nn.Dropout(dropout_rate)
682
+ self.convs_dilated = nn.ModuleList()
683
+ self.convs_pointwise = nn.ModuleList()
684
+ self.norms_1 = nn.ModuleList()
685
+ self.norms_2 = nn.ModuleList()
686
+ for i in range(self.num_layers):
687
+ dilation = kernel_size**i
688
+ padding = (kernel_size * dilation - dilation) // 2
689
+ self.convs_dilated.append(
690
+ nn.Conv1d(
691
+ in_channels=channels,
692
+ out_channels=channels,
693
+ kernel_size=kernel_size,
694
+ groups=channels,
695
+ dilation=dilation,
696
+ padding=padding,
697
+ )
698
+ )
699
+ self.convs_pointwise.append(nn.Conv1d(channels, channels, 1))
700
+ self.norms_1.append(nn.LayerNorm(channels))
701
+ self.norms_2.append(nn.LayerNorm(channels))
702
+
703
+ def forward(self, inputs, padding_mask, global_conditioning=None):
704
+ if global_conditioning is not None:
705
+ inputs = inputs + global_conditioning
706
+
707
+ for i in range(self.num_layers):
708
+ hidden_states = self.convs_dilated[i](inputs * padding_mask)
709
+ hidden_states = self.norms_1[i](hidden_states.transpose(1, -1)).transpose(1, -1)
710
+ hidden_states = nn.functional.gelu(hidden_states)
711
+ hidden_states = self.convs_pointwise[i](hidden_states)
712
+ hidden_states = self.norms_2[i](hidden_states.transpose(1, -1)).transpose(1, -1)
713
+ hidden_states = nn.functional.gelu(hidden_states)
714
+ hidden_states = self.dropout(hidden_states)
715
+ inputs = inputs + hidden_states
716
+
717
+ return inputs * padding_mask
718
+
719
+
720
+ class BertVits2ConvFlow(nn.Module):
721
+ def __init__(self, config: BertVits2Config):
722
+ super().__init__()
723
+ self.filter_channels = config.hidden_size
724
+ self.half_channels = config.depth_separable_channels // 2
725
+ self.num_bins = config.duration_predictor_flow_bins
726
+ self.tail_bound = config.duration_predictor_tail_bound
727
+
728
+ self.conv_pre = nn.Conv1d(self.half_channels, self.filter_channels, 1)
729
+ self.conv_dds = BertVits2DilatedDepthSeparableConv(config)
730
+ self.conv_proj = nn.Conv1d(self.filter_channels, self.half_channels * (self.num_bins * 3 - 1), 1)
731
+
732
+ def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
733
+ first_half, second_half = torch.split(inputs, [self.half_channels] * 2, dim=1)
734
+
735
+ hidden_states = self.conv_pre(first_half)
736
+ hidden_states = self.conv_dds(hidden_states, padding_mask, global_conditioning)
737
+ hidden_states = self.conv_proj(hidden_states) * padding_mask
738
+
739
+ batch_size, channels, length = first_half.shape
740
+ hidden_states = hidden_states.reshape(batch_size, channels, -1, length).permute(0, 1, 3, 2)
741
+
742
+ unnormalized_widths = hidden_states[..., : self.num_bins] / math.sqrt(self.filter_channels)
743
+ unnormalized_heights = hidden_states[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.filter_channels)
744
+ unnormalized_derivatives = hidden_states[..., 2 * self.num_bins :]
745
+
746
+ second_half, log_abs_det = _unconstrained_rational_quadratic_spline(
747
+ second_half,
748
+ unnormalized_widths,
749
+ unnormalized_heights,
750
+ unnormalized_derivatives,
751
+ reverse=reverse,
752
+ tail_bound=self.tail_bound,
753
+ )
754
+
755
+ outputs = torch.cat([first_half, second_half], dim=1) * padding_mask
756
+ if not reverse:
757
+ log_determinant = torch.sum(log_abs_det * padding_mask, [1, 2])
758
+ return outputs, log_determinant
759
+ else:
760
+ return outputs, None
761
+
762
+
763
+ class BertVits2ElementwiseAffine(nn.Module):
764
+ def __init__(self, config: BertVits2Config):
765
+ super().__init__()
766
+ self.channels = config.depth_separable_channels
767
+ self.translate = nn.Parameter(torch.zeros(self.channels, 1))
768
+ self.log_scale = nn.Parameter(torch.zeros(self.channels, 1))
769
+
770
+ def forward(self, inputs, padding_mask, global_conditioning=None, reverse=False):
771
+ if not reverse:
772
+ outputs = self.translate + torch.exp(self.log_scale) * inputs
773
+ outputs = outputs * padding_mask
774
+ log_determinant = torch.sum(self.log_scale * padding_mask, [1, 2])
775
+ return outputs, log_determinant
776
+ else:
777
+ outputs = (inputs - self.translate) * torch.exp(-self.log_scale) * padding_mask
778
+ return outputs, None
779
+
780
+
781
+ class BertVits2StochasticDurationPredictor(nn.Module):
782
+ def __init__(self, config):
783
+ super().__init__()
784
+ embed_dim = config.speaker_embedding_size
785
+ filter_channels = config.hidden_size
786
+
787
+ self.conv_pre = nn.Conv1d(filter_channels, filter_channels, 1)
788
+ self.conv_proj = nn.Conv1d(filter_channels, filter_channels, 1)
789
+ self.conv_dds = BertVits2DilatedDepthSeparableConv(
790
+ config,
791
+ dropout_rate=config.duration_predictor_dropout,
792
+ )
793
+
794
+ if embed_dim != 0:
795
+ self.cond = nn.Conv1d(embed_dim, filter_channels, 1)
796
+
797
+ self.flows = nn.ModuleList()
798
+ self.flows.append(BertVits2ElementwiseAffine(config))
799
+ for _ in range(config.duration_predictor_num_flows):
800
+ self.flows.append(BertVits2ConvFlow(config))
801
+
802
+ self.post_conv_pre = nn.Conv1d(1, filter_channels, 1)
803
+ self.post_conv_proj = nn.Conv1d(filter_channels, filter_channels, 1)
804
+ self.post_conv_dds = BertVits2DilatedDepthSeparableConv(
805
+ config,
806
+ dropout_rate=config.duration_predictor_dropout,
807
+ )
808
+
809
+ self.post_flows = nn.ModuleList()
810
+ self.post_flows.append(BertVits2ElementwiseAffine(config))
811
+ for _ in range(config.duration_predictor_num_flows):
812
+ self.post_flows.append(BertVits2ConvFlow(config))
813
+
814
+ def forward(self, inputs, padding_mask, global_conditioning=None, durations=None, reverse=False, noise_scale=1.0):
815
+ inputs = torch.detach(inputs)
816
+ inputs = self.conv_pre(inputs)
817
+
818
+ if global_conditioning is not None:
819
+ global_conditioning = torch.detach(global_conditioning)
820
+ inputs = inputs + self.cond(global_conditioning)
821
+
822
+ inputs = self.conv_dds(inputs, padding_mask)
823
+ inputs = self.conv_proj(inputs) * padding_mask
824
+
825
+ if not reverse:
826
+ hidden_states = self.post_conv_pre(durations)
827
+ hidden_states = self.post_conv_dds(hidden_states, padding_mask)
828
+ hidden_states = self.post_conv_proj(hidden_states) * padding_mask
829
+
830
+ random_posterior = (
831
+ torch.randn(durations.size(0), 2, durations.size(2)).to(device=inputs.device, dtype=inputs.dtype)
832
+ * padding_mask
833
+ )
834
+ log_determinant_posterior_sum = 0
835
+ latents_posterior = random_posterior
836
+ for flow in self.post_flows:
837
+ latents_posterior, log_determinant = flow(
838
+ latents_posterior, padding_mask, global_conditioning=inputs + hidden_states
839
+ )
840
+ latents_posterior = torch.flip(latents_posterior, [1])
841
+ log_determinant_posterior_sum += log_determinant
842
+
843
+ first_half, second_half = torch.split(latents_posterior, [1, 1], dim=1)
844
+
845
+ log_determinant_posterior_sum += torch.sum(
846
+ (nn.functional.logsigmoid(first_half) + nn.functional.logsigmoid(-first_half)) * padding_mask, [1, 2]
847
+ )
848
+ logq = (
849
+ torch.sum(-0.5 * (math.log(2 * math.pi) + (random_posterior**2)) * padding_mask, [1, 2])
850
+ - log_determinant_posterior_sum
851
+ )
852
+
853
+ first_half = (durations - torch.sigmoid(first_half)) * padding_mask
854
+ first_half = torch.log(torch.clamp_min(first_half, 1e-5)) * padding_mask
855
+ log_determinant_sum = torch.sum(-first_half, [1, 2])
856
+
857
+ latents = torch.cat([first_half, second_half], dim=1)
858
+ for flow in self.flows:
859
+ latents, log_determinant = flow(latents, padding_mask, global_conditioning=inputs)
860
+ latents = torch.flip(latents, [1])
861
+ log_determinant_sum += log_determinant
862
+
863
+ nll = torch.sum(0.5 * (math.log(2 * math.pi) + (latents**2)) * padding_mask, [1, 2]) - log_determinant_sum
864
+ return nll + logq
865
+ else:
866
+ flows = list(reversed(self.flows))
867
+ flows = flows[:-2] + [flows[-1]] # remove a useless vflow
868
+
869
+ latents = (
870
+ torch.randn(inputs.size(0), 2, inputs.size(2)).to(device=inputs.device, dtype=inputs.dtype)
871
+ * noise_scale
872
+ )
873
+ for flow in flows:
874
+ latents = torch.flip(latents, [1])
875
+ latents, _ = flow(latents, padding_mask, global_conditioning=inputs, reverse=True)
876
+
877
+ log_duration, _ = torch.split(latents, [1, 1], dim=1)
878
+ return log_duration
879
+
880
+
881
+ class BertVits2DurationPredictor(nn.Module):
882
+ def __init__(self, config):
883
+ super().__init__()
884
+ kernel_size = config.duration_predictor_kernel_size
885
+ filter_channels = config.duration_predictor_filter_channels
886
+
887
+ self.dropout = nn.Dropout(config.duration_predictor_dropout)
888
+ self.conv_1 = nn.Conv1d(config.hidden_size, filter_channels, kernel_size, padding=kernel_size // 2)
889
+ self.norm_1 = nn.LayerNorm(filter_channels, eps=config.layer_norm_eps)
890
+ self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
891
+ self.norm_2 = nn.LayerNorm(filter_channels, eps=config.layer_norm_eps)
892
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
893
+
894
+ if config.speaker_embedding_size != 0:
895
+ self.cond = nn.Conv1d(config.speaker_embedding_size, config.hidden_size, 1)
896
+
897
+ def forward(self, inputs, padding_mask, global_conditioning=None):
898
+ inputs = torch.detach(inputs)
899
+
900
+ if global_conditioning is not None:
901
+ global_conditioning = torch.detach(global_conditioning)
902
+ inputs = inputs + self.cond(global_conditioning)
903
+
904
+ inputs = self.conv_1(inputs * padding_mask)
905
+ inputs = torch.relu(inputs)
906
+ inputs = self.norm_1(inputs.transpose(1, -1)).transpose(1, -1)
907
+ inputs = self.dropout(inputs)
908
+
909
+ inputs = self.conv_2(inputs * padding_mask)
910
+ inputs = torch.relu(inputs)
911
+ inputs = self.norm_2(inputs.transpose(1, -1)).transpose(1, -1)
912
+ inputs = self.dropout(inputs)
913
+
914
+ inputs = self.proj(inputs * padding_mask)
915
+ return inputs * padding_mask
916
+
917
+
918
+ class BertVits2Attention(nn.Module):
919
+ """Multi-headed attention with relative positional representation."""
920
+
921
+ def __init__(self, config: BertVits2Config):
922
+ super().__init__()
923
+ self.embed_dim = config.hidden_size
924
+ self.num_heads = config.num_attention_heads
925
+ self.dropout = config.attention_dropout
926
+ self.window_size = config.window_size
927
+
928
+ self.head_dim = self.embed_dim // self.num_heads
929
+ self.scaling = self.head_dim**-0.5
930
+
931
+ if (self.head_dim * self.num_heads) != self.embed_dim:
932
+ raise ValueError(
933
+ f"hidden_size must be divisible by num_attention_heads (got `hidden_size`: {self.embed_dim}"
934
+ f" and `num_attention_heads`: {self.num_heads})."
935
+ )
936
+
937
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
938
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
939
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
940
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
941
+
942
+ nn.init.xavier_uniform_(self.k_proj.weight)
943
+ nn.init.xavier_uniform_(self.v_proj.weight)
944
+ nn.init.xavier_uniform_(self.q_proj.weight)
945
+
946
+ if self.window_size:
947
+ self.emb_rel_k = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling)
948
+ self.emb_rel_v = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.head_dim) * self.scaling)
949
+
950
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
951
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
952
+
953
+ def forward(
954
+ self,
955
+ hidden_states: torch.Tensor,
956
+ key_value_states: Optional[torch.Tensor] = None,
957
+ attention_mask: Optional[torch.Tensor] = None,
958
+ layer_head_mask: Optional[torch.Tensor] = None,
959
+ output_attentions: bool = False,
960
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
961
+ """Input shape: Batch x Time x Channel"""
962
+
963
+ # if key_value_states are provided this layer is used as a cross-attention layer
964
+ # for the decoder
965
+
966
+ bsz, tgt_len, _ = hidden_states.size()
967
+
968
+ # get query proj
969
+ query_states = self.q_proj(hidden_states) * self.scaling
970
+
971
+ # self_attention
972
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
973
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
974
+
975
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
976
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
977
+ key_states = key_states.view(*proj_shape)
978
+ value_states = value_states.view(*proj_shape)
979
+
980
+ src_len = key_states.size(1)
981
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
982
+
983
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
984
+ raise ValueError(
985
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
986
+ f" {attn_weights.size()}"
987
+ )
988
+
989
+ if self.window_size is not None:
990
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, src_len)
991
+ relative_logits = torch.matmul(query_states, key_relative_embeddings.transpose(-2, -1))
992
+ rel_pos_bias = self._relative_position_to_absolute_position(relative_logits)
993
+ attn_weights += rel_pos_bias
994
+
995
+ if attention_mask is not None:
996
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
997
+ raise ValueError(
998
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
999
+ )
1000
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
1001
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
1002
+
1003
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
1004
+
1005
+ if layer_head_mask is not None:
1006
+ if layer_head_mask.size() != (self.num_heads,):
1007
+ raise ValueError(
1008
+ f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
1009
+ f" {layer_head_mask.size()}"
1010
+ )
1011
+ attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
1012
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
1013
+
1014
+ if output_attentions:
1015
+ # this operation is a bit awkward, but it's required to
1016
+ # make sure that attn_weights keeps its gradient.
1017
+ # In order to do so, attn_weights have to be reshaped
1018
+ # twice and have to be reused in the following
1019
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
1020
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
1021
+ else:
1022
+ attn_weights_reshaped = None
1023
+
1024
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
1025
+
1026
+ attn_output = torch.bmm(attn_probs, value_states)
1027
+
1028
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
1029
+ raise ValueError(
1030
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
1031
+ f" {attn_output.size()}"
1032
+ )
1033
+
1034
+ if self.window_size is not None:
1035
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, src_len)
1036
+ relative_weights = self._absolute_position_to_relative_position(attn_probs)
1037
+ rel_pos_bias = torch.matmul(relative_weights, value_relative_embeddings)
1038
+ attn_output += rel_pos_bias
1039
+
1040
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
1041
+ attn_output = attn_output.transpose(1, 2)
1042
+
1043
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
1044
+ # partitioned aross GPUs when using tensor-parallelism.
1045
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
1046
+
1047
+ attn_output = self.out_proj(attn_output)
1048
+
1049
+ return attn_output, attn_weights_reshaped
1050
+
1051
+ def _get_relative_embeddings(self, relative_embeddings, length):
1052
+ pad_length = max(length - (self.window_size + 1), 0)
1053
+ if pad_length > 0:
1054
+ relative_embeddings = nn.functional.pad(relative_embeddings, [0, 0, pad_length, pad_length, 0, 0])
1055
+
1056
+ slice_start_position = max((self.window_size + 1) - length, 0)
1057
+ slice_end_position = slice_start_position + 2 * length - 1
1058
+ return relative_embeddings[:, slice_start_position:slice_end_position]
1059
+
1060
+ def _relative_position_to_absolute_position(self, x):
1061
+ batch_heads, length, _ = x.size()
1062
+
1063
+ # Concat columns of pad to shift from relative to absolute indexing.
1064
+ x = nn.functional.pad(x, [0, 1, 0, 0, 0, 0])
1065
+
1066
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
1067
+ x_flat = x.view([batch_heads, length * 2 * length])
1068
+ x_flat = nn.functional.pad(x_flat, [0, length - 1, 0, 0])
1069
+
1070
+ # Reshape and slice out the padded elements.
1071
+ x_final = x_flat.view([batch_heads, length + 1, 2 * length - 1])
1072
+ x_final = x_final[:, :length, length - 1 :]
1073
+ return x_final
1074
+
1075
+ def _absolute_position_to_relative_position(self, x):
1076
+ batch_heads, length, _ = x.size()
1077
+
1078
+ # Pad along column
1079
+ x = nn.functional.pad(x, [0, length - 1, 0, 0, 0, 0])
1080
+ x_flat = x.view([batch_heads, length * (2 * length - 1)])
1081
+
1082
+ # Add 0's in the beginning that will skew the elements after reshape
1083
+ x_flat = nn.functional.pad(x_flat, [length, 0, 0, 0])
1084
+ x_final = x_flat.view([batch_heads, length, 2 * length])[:, :, 1:]
1085
+ return x_final
1086
+
1087
+
1088
+ class BertVits2FeedForward(nn.Module):
1089
+ def __init__(self, config, kernel_size=None):
1090
+ super().__init__()
1091
+ if kernel_size is None:
1092
+ kernel_size = config.ffn_kernel_size
1093
+ self.conv_1 = nn.Conv1d(config.hidden_size, config.ffn_dim, kernel_size)
1094
+ self.conv_2 = nn.Conv1d(config.ffn_dim, config.hidden_size, kernel_size)
1095
+ self.dropout = nn.Dropout(config.activation_dropout)
1096
+
1097
+ if isinstance(config.hidden_act, str):
1098
+ self.act_fn = ACT2FN[config.hidden_act]
1099
+ else:
1100
+ self.act_fn = config.hidden_act
1101
+
1102
+ if kernel_size > 1:
1103
+ pad_left = (kernel_size - 1) // 2
1104
+ pad_right = kernel_size // 2
1105
+ self.padding = [pad_left, pad_right, 0, 0, 0, 0]
1106
+ else:
1107
+ self.padding = None
1108
+
1109
+ def forward(self, hidden_states, padding_mask):
1110
+ hidden_states = hidden_states.permute(0, 2, 1)
1111
+ padding_mask = padding_mask.permute(0, 2, 1)
1112
+
1113
+ hidden_states = hidden_states * padding_mask
1114
+ if self.padding is not None:
1115
+ hidden_states = nn.functional.pad(hidden_states, self.padding)
1116
+
1117
+ hidden_states = self.conv_1(hidden_states)
1118
+ hidden_states = self.act_fn(hidden_states)
1119
+ hidden_states = self.dropout(hidden_states)
1120
+
1121
+ hidden_states = hidden_states * padding_mask
1122
+ if self.padding is not None:
1123
+ hidden_states = nn.functional.pad(hidden_states, self.padding)
1124
+
1125
+ hidden_states = self.conv_2(hidden_states)
1126
+ hidden_states = hidden_states * padding_mask
1127
+
1128
+ hidden_states = hidden_states.permute(0, 2, 1)
1129
+ return hidden_states
1130
+
1131
+
1132
+ class BertVits2EncoderLayer(nn.Module):
1133
+ def __init__(self, config: BertVits2Config, kernel_size=None):
1134
+ super().__init__()
1135
+ self.attention = BertVits2Attention(config)
1136
+ self.dropout = nn.Dropout(config.hidden_dropout)
1137
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
1138
+ self.feed_forward = BertVits2FeedForward(config, kernel_size=kernel_size)
1139
+ self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
1140
+
1141
+ def forward(
1142
+ self,
1143
+ hidden_states: torch.Tensor,
1144
+ padding_mask: torch.FloatTensor,
1145
+ attention_mask: Optional[torch.Tensor] = None,
1146
+ output_attentions: bool = False,
1147
+ ):
1148
+ residual = hidden_states
1149
+ hidden_states, attn_weights = self.attention(
1150
+ hidden_states=hidden_states,
1151
+ attention_mask=attention_mask,
1152
+ output_attentions=output_attentions,
1153
+ )
1154
+
1155
+ hidden_states = self.dropout(hidden_states)
1156
+ hidden_states = self.layer_norm(residual + hidden_states)
1157
+
1158
+ residual = hidden_states
1159
+ hidden_states = self.feed_forward(hidden_states, padding_mask)
1160
+ hidden_states = self.dropout(hidden_states)
1161
+ hidden_states = self.final_layer_norm(residual + hidden_states)
1162
+
1163
+ outputs = (hidden_states,)
1164
+
1165
+ if output_attentions:
1166
+ outputs += (attn_weights,)
1167
+
1168
+ return outputs
1169
+
1170
+
1171
+ class BertVits2Encoder(nn.Module):
1172
+ def __init__(self, config: BertVits2Config, kernel_size=None, n_layers=None):
1173
+ super().__init__()
1174
+ self.config = config
1175
+ if n_layers is None:
1176
+ n_layers = config.num_hidden_layers
1177
+ self.speaker_embed_proj = nn.Linear(config.speaker_embedding_size, config.hidden_size)
1178
+ self.layers = nn.ModuleList([BertVits2EncoderLayer(config, kernel_size=kernel_size) for _ in range(n_layers)])
1179
+ self.gradient_checkpointing = False
1180
+ self.layerdrop = config.layerdrop
1181
+ self.conditioning_layer_index = config.conditioning_layer_index
1182
+
1183
+ def forward(
1184
+ self,
1185
+ hidden_states: torch.FloatTensor,
1186
+ padding_mask: torch.FloatTensor,
1187
+ attention_mask: Optional[torch.Tensor] = None,
1188
+ global_conditioning: Optional[torch.Tensor] = None,
1189
+ output_attentions: Optional[bool] = None,
1190
+ output_hidden_states: Optional[bool] = None,
1191
+ return_dict: Optional[bool] = None,
1192
+ ) -> Union[Tuple, BaseModelOutput]:
1193
+ all_hidden_states = () if output_hidden_states else None
1194
+ all_self_attentions = () if output_attentions else None
1195
+
1196
+ # expand attention_mask
1197
+ if attention_mask is not None:
1198
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
1199
+ attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
1200
+
1201
+ hidden_states = hidden_states * padding_mask
1202
+
1203
+ deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
1204
+
1205
+ for i, encoder_layer in enumerate(self.layers):
1206
+ if output_hidden_states:
1207
+ all_hidden_states = all_hidden_states + (hidden_states,)
1208
+
1209
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
1210
+ dropout_probability = np.random.uniform(0, 1)
1211
+
1212
+ if i == self.conditioning_layer_index and global_conditioning is not None:
1213
+ global_conditioning = self.speaker_embed_proj(global_conditioning.transpose(1, 2))
1214
+ hidden_states = hidden_states + global_conditioning
1215
+ hidden_states = hidden_states * padding_mask
1216
+
1217
+ skip_the_layer = self.training and (dropout_probability < self.layerdrop)
1218
+ if not skip_the_layer or deepspeed_zero3_is_enabled:
1219
+ # under deepspeed zero3 all gpus must run in sync
1220
+ if self.gradient_checkpointing and self.training:
1221
+ layer_outputs = self._gradient_checkpointing_func(
1222
+ encoder_layer.__call__,
1223
+ hidden_states,
1224
+ padding_mask,
1225
+ attention_mask,
1226
+ output_attentions,
1227
+ )
1228
+ else:
1229
+ layer_outputs = encoder_layer(
1230
+ hidden_states,
1231
+ attention_mask=attention_mask,
1232
+ padding_mask=padding_mask,
1233
+ output_attentions=output_attentions,
1234
+ )
1235
+ hidden_states = layer_outputs[0]
1236
+
1237
+ if skip_the_layer:
1238
+ layer_outputs = (None, None)
1239
+
1240
+ if output_attentions:
1241
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
1242
+
1243
+ hidden_states = hidden_states * padding_mask
1244
+
1245
+ if output_hidden_states:
1246
+ all_hidden_states = all_hidden_states + (hidden_states,)
1247
+
1248
+ if not return_dict:
1249
+ return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
1250
+
1251
+ return BaseModelOutput(
1252
+ last_hidden_state=hidden_states,
1253
+ hidden_states=all_hidden_states,
1254
+ attentions=all_self_attentions,
1255
+ )
1256
+
1257
+
1258
+ class BertVits2TextEncoder(nn.Module):
1259
+ """
1260
+ Transformer encoder that uses relative positional representation instead of absolute positional encoding.
1261
+ """
1262
+
1263
+ def __init__(self, config: BertVits2Config):
1264
+ super().__init__()
1265
+ self.config = config
1266
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
1267
+ nn.init.normal_(self.embed_tokens.weight, 0.0, config.hidden_size**-0.5)
1268
+ self.embed_tones = nn.Embedding(config.num_tones, config.hidden_size)
1269
+ nn.init.normal_(self.embed_tones.weight, 0.0, config.hidden_size**-0.5)
1270
+ self.embed_languages = nn.Embedding(config.num_languages, config.hidden_size)
1271
+ nn.init.normal_(self.embed_languages.weight, 0.0, config.hidden_size**-0.5)
1272
+ self.bert_projs = nn.ModuleList()
1273
+ for bert in config.bert_configs:
1274
+ self.bert_projs.append(nn.Conv1d(bert.hidden_size, config.hidden_size, 1))
1275
+ self.encoder = BertVits2Encoder(config)
1276
+ self.project = nn.Conv1d(config.hidden_size, config.flow_size * 2, kernel_size=1)
1277
+
1278
+ def get_input_embeddings(self):
1279
+ return self.embed_tokens
1280
+
1281
+ def set_input_embeddings(self, value):
1282
+ self.embed_tokens = value
1283
+
1284
+ def forward(
1285
+ self,
1286
+ input_ids: torch.Tensor,
1287
+ tone_ids: torch.Tensor,
1288
+ language_ids: torch.Tensor,
1289
+ padding_mask: torch.FloatTensor,
1290
+ attention_mask: Optional[torch.Tensor] = None,
1291
+ bert_embeddings: Optional[List[torch.Tensor]] = None,
1292
+ global_conditioning: Optional[torch.Tensor] = None,
1293
+ output_attentions: Optional[bool] = None,
1294
+ output_hidden_states: Optional[bool] = None,
1295
+ return_dict: Optional[bool] = True,
1296
+ ) -> Union[Tuple[torch.Tensor], BertVits2TextEncoderOutput]:
1297
+ x = self.embed_tokens(input_ids)
1298
+ x = x + self.embed_tones(tone_ids)
1299
+ x = x + self.embed_languages(language_ids)
1300
+ for project, inputs in zip(self.bert_projs, bert_embeddings):
1301
+ x = x + project(inputs).transpose(1, 2)
1302
+ hidden_states = x * math.sqrt(self.config.hidden_size)
1303
+
1304
+ encoder_outputs = self.encoder(
1305
+ hidden_states=hidden_states,
1306
+ padding_mask=padding_mask,
1307
+ attention_mask=attention_mask,
1308
+ global_conditioning=global_conditioning,
1309
+ output_attentions=output_attentions,
1310
+ output_hidden_states=output_hidden_states,
1311
+ return_dict=return_dict,
1312
+ )
1313
+
1314
+ last_hidden_state = encoder_outputs[0] if not return_dict else encoder_outputs.last_hidden_state
1315
+
1316
+ stats = self.project(last_hidden_state.transpose(1, 2)).transpose(1, 2) * padding_mask
1317
+ prior_means, prior_log_variances = torch.split(stats, self.config.flow_size, dim=2)
1318
+
1319
+ if not return_dict:
1320
+ outputs = (last_hidden_state, prior_means, prior_log_variances) + encoder_outputs[1:]
1321
+ return outputs
1322
+
1323
+ return BertVits2TextEncoderOutput(
1324
+ last_hidden_state=last_hidden_state,
1325
+ prior_means=prior_means,
1326
+ prior_log_variances=prior_log_variances,
1327
+ hidden_states=encoder_outputs.hidden_states,
1328
+ attentions=encoder_outputs.attentions,
1329
+ )
1330
+
1331
+
1332
+ class BertVits2ReferenceEncoder(nn.Module):
1333
+ def __init__(self, config: BertVits2Config):
1334
+ super().__init__()
1335
+ self.config = config
1336
+ ref_enc_filters = [32, 32, 64, 64, 128, 128]
1337
+ K = len(ref_enc_filters)
1338
+ filters = [1] + ref_enc_filters
1339
+ self.convs = nn.ModuleList([
1340
+ nn.utils.weight_norm(
1341
+ nn.Conv2d(
1342
+ in_channels=filters[i],
1343
+ out_channels=filters[i + 1],
1344
+ kernel_size=(3, 3),
1345
+ stride=(2, 2),
1346
+ padding=(1, 1),
1347
+ )
1348
+ )
1349
+ for i in range(K)
1350
+ ])
1351
+ out_channels = self.calculate_channels(config.spectrogram_bins, 3, 2, 1, K)
1352
+ self.gru = nn.GRU(
1353
+ input_size=ref_enc_filters[-1] * out_channels,
1354
+ hidden_size=256 // 2,
1355
+ batch_first=True,
1356
+ )
1357
+ self.proj = nn.Linear(128, self.config.speaker_embedding_size)
1358
+
1359
+ def forward(self, input_ids, attention_mask):
1360
+ N = input_ids.size(0)
1361
+ out = input_ids.view(N, 1, -1, self.config.spectrogram_bins)
1362
+ for conv in self.convs:
1363
+ out = conv(out)
1364
+ # out = wn(out)
1365
+ out = nn.functional.relu(out)
1366
+
1367
+ out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
1368
+ T = out.size(1)
1369
+ N = out.size(0)
1370
+ out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
1371
+
1372
+ self.gru.flatten_parameters()
1373
+ _, out = self.gru(out) # out --- [1, N, 128]
1374
+
1375
+ return self.proj(out.squeeze(0))
1376
+
1377
+ def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
1378
+ for i in range(n_convs):
1379
+ L = (L - kernel_size + 2 * pad) // stride + 1
1380
+ return L
1381
+
1382
+
1383
+ class BertVits2PreTrainedModel(PreTrainedModel):
1384
+ """
1385
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
1386
+ models.
1387
+ """
1388
+
1389
+ config_class = BertVits2Config
1390
+ base_model_prefix = "vits"
1391
+ main_input_name = "input_ids"
1392
+ supports_gradient_checkpointing = True
1393
+
1394
+ def _init_weights(self, module):
1395
+ """Initialize the weights"""
1396
+ if isinstance(module, nn.Linear):
1397
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
1398
+ if module.bias is not None:
1399
+ module.bias.data.zero_()
1400
+ elif isinstance(module, nn.LayerNorm):
1401
+ module.bias.data.zero_()
1402
+ module.weight.data.fill_(1.0)
1403
+ elif isinstance(module, nn.Conv1d):
1404
+ nn.init.kaiming_normal_(module.weight)
1405
+ if module.bias is not None:
1406
+ k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
1407
+ nn.init.uniform_(module.bias, a=-k, b=k)
1408
+ elif isinstance(module, nn.Embedding):
1409
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
1410
+ if module.padding_idx is not None:
1411
+ module.weight.data[module.padding_idx].zero_()
1412
+
1413
+
1414
+ BERT_VITS2_START_DOCSTRING = r"""
1415
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1416
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1417
+ etc.)
1418
+
1419
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1420
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1421
+ and behavior.
1422
+
1423
+ Parameters:
1424
+ config ([`BertVits2Config`]):
1425
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1426
+ load the weights associated with the model, only the configuration. Check out the
1427
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1428
+ """
1429
+
1430
+
1431
+ BERT_VITS2_INPUTS_DOCSTRING = r"""
1432
+ Args:
1433
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1434
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1435
+ it.
1436
+
1437
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1438
+ [`PreTrainedTokenizer.__call__`] for details.
1439
+
1440
+ [What are input IDs?](../glossary#input-ids)
1441
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1442
+ Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
1443
+ 1]`:
1444
+
1445
+ - 1 for tokens that are **not masked**,
1446
+ - 0 for tokens that are **masked**.
1447
+
1448
+ [What are attention masks?](../glossary#attention-mask)
1449
+ speaker_id (`int`, *optional*):
1450
+ Which speaker embedding to use. Only used for multispeaker models.
1451
+ output_attentions (`bool`, *optional*):
1452
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1453
+ tensors for more detail.
1454
+ output_hidden_states (`bool`, *optional*):
1455
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1456
+ more detail.
1457
+ return_dict (`bool`, *optional*):
1458
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1459
+ """
1460
+
1461
+
1462
+ @add_start_docstrings(
1463
+ "The complete VITS model, for text-to-speech synthesis.",
1464
+ BERT_VITS2_START_DOCSTRING,
1465
+ )
1466
+ class BertVits2Model(BertVits2PreTrainedModel):
1467
+ def __init__(self, config: BertVits2Config):
1468
+ super().__init__(config)
1469
+ self.config = config
1470
+ self.text_encoder = BertVits2TextEncoder(config)
1471
+ self.decoder = BertVits2HifiGan(config)
1472
+
1473
+ self.bert_encoders = nn.ModuleList([BertModel(bert_config) for bert_config in config.bert_configs])
1474
+ self.bert_proj = nn.ModuleList([nn.Linear(bert_config.hidden_size, config.hidden_size) for bert_config in config.bert_configs])
1475
+
1476
+ self.stochastic_duration_predictor = BertVits2StochasticDurationPredictor(config)
1477
+ self.duration_predictor = BertVits2DurationPredictor(config)
1478
+
1479
+ if config.num_speakers > 1:
1480
+ self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size)
1481
+
1482
+ # This is used only for training.
1483
+ self.posterior_encoder = BertVits2PosteriorEncoder(config)
1484
+
1485
+ if config.use_transformer_flow:
1486
+ self.flow = BertVits2TransformerCouplingBlock(config)
1487
+ else:
1488
+ self.flow = BertVits2ResidualCouplingBlock(config)
1489
+
1490
+ # These parameters control the synthesised speech properties
1491
+ self.speaking_rate = config.speaking_rate
1492
+ self.noise_scale = config.noise_scale
1493
+ self.noise_scale_duration = config.noise_scale_duration
1494
+ self.stochastic_duration_prediction_ratio = config.stochastic_duration_prediction_ratio
1495
+
1496
+ # Initialize weights and apply final processing
1497
+ self.post_init()
1498
+
1499
+ def get_encoder(self):
1500
+ return self.text_encoder
1501
+
1502
+ @add_start_docstrings_to_model_forward(BERT_VITS2_INPUTS_DOCSTRING)
1503
+ @replace_return_docstrings(output_type=BertVits2ModelOutput, config_class=_CONFIG_FOR_DOC)
1504
+ def forward(
1505
+ self,
1506
+ input_ids: Optional[torch.Tensor] = None,
1507
+ tone_ids: Optional[torch.Tensor] = None,
1508
+ language_ids: Optional[torch.Tensor] = None,
1509
+ attention_mask: Optional[torch.Tensor] = None,
1510
+ word_to_phoneme: Optional[torch.Tensor] = None,
1511
+ bert_input_ids: Optional[torch.Tensor] = None,
1512
+ bert_attention_mask: Optional[torch.Tensor] = None,
1513
+ language_id: Optional[int] = None,
1514
+ speaker_id: Optional[int] = None,
1515
+ output_attentions: Optional[bool] = None,
1516
+ output_hidden_states: Optional[bool] = None,
1517
+ return_dict: Optional[bool] = None,
1518
+ labels: Optional[torch.FloatTensor] = None,
1519
+ ) -> Union[Tuple[Any], BertVits2ModelOutput]:
1520
+ r"""
1521
+ labels (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`, *optional*):
1522
+ Float values of target spectrogram. Timesteps set to `-100.0` are ignored (masked) for the loss
1523
+ computation.
1524
+
1525
+ Returns:
1526
+
1527
+ Example:
1528
+
1529
+ ```python
1530
+ >>> from transformers import BertVits2Tokenizer, BertVits2Model, set_seed
1531
+ >>> import torch
1532
+
1533
+ >>> tokenizer = BertVits2Tokenizer.from_pretrained("facebook/mms-tts-eng")
1534
+ >>> model = BertVits2Model.from_pretrained("facebook/mms-tts-eng")
1535
+
1536
+ >>> inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt")
1537
+
1538
+ >>> set_seed(555) # make deterministic
1539
+
1540
+ >>> with torch.no_grad():
1541
+ ... outputs = model(inputs["input_ids"])
1542
+ >>> outputs.waveform.shape
1543
+ torch.Size([1, 45824])
1544
+ ```
1545
+ """
1546
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1547
+ output_hidden_states = (
1548
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1549
+ )
1550
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1551
+
1552
+ batch_size = input_ids.shape[0]
1553
+
1554
+ if labels is not None:
1555
+ raise NotImplementedError("Training of VITS is not supported yet.")
1556
+
1557
+ if attention_mask is not None:
1558
+ input_padding_mask = attention_mask.unsqueeze(-1).float()
1559
+ else:
1560
+ input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
1561
+
1562
+ if self.config.num_speakers > 1 and speaker_id is not None:
1563
+ if not 0 <= speaker_id < self.config.num_speakers:
1564
+ raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
1565
+ if isinstance(speaker_id, int):
1566
+ speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
1567
+ speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1)
1568
+ else:
1569
+ speaker_embeddings = None
1570
+
1571
+ if language_id is None:
1572
+ language_id = 0
1573
+
1574
+ if language_ids is None:
1575
+ language_ids = torch.full_like(input_ids, language_id)
1576
+
1577
+ phone_len = input_ids.shape[1]
1578
+
1579
+ is_tuple = isinstance(bert_input_ids, tuple)
1580
+
1581
+ bert_embeddings = [
1582
+ self.bert_features(i, bert_input_ids, bert_attention_mask, word_to_phoneme) if i == language_id and not is_tuple
1583
+ else torch.zeros(batch_size, enc.config.hidden_size, phone_len, device=self.device)
1584
+ for i, enc in enumerate(self.bert_encoders)
1585
+ ]
1586
+
1587
+ text_encoder_output = self.text_encoder(
1588
+ input_ids=input_ids,
1589
+ tone_ids=tone_ids,
1590
+ language_ids=language_ids,
1591
+ padding_mask=input_padding_mask,
1592
+ attention_mask=attention_mask,
1593
+ bert_embeddings=bert_embeddings,
1594
+ global_conditioning=speaker_embeddings,
1595
+ output_attentions=output_attentions,
1596
+ output_hidden_states=output_hidden_states,
1597
+ return_dict=return_dict,
1598
+ )
1599
+ hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
1600
+ hidden_states = hidden_states.transpose(1, 2)
1601
+ input_padding_mask = input_padding_mask.transpose(1, 2)
1602
+ prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
1603
+ prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
1604
+
1605
+ log_duration = \
1606
+ self.stochastic_duration_predictor(
1607
+ hidden_states,
1608
+ input_padding_mask,
1609
+ global_conditioning=speaker_embeddings,
1610
+ reverse=True,
1611
+ noise_scale=self.noise_scale_duration,
1612
+ ) * self.stochastic_duration_prediction_ratio + \
1613
+ self.duration_predictor(
1614
+ hidden_states,
1615
+ input_padding_mask,
1616
+ global_conditioning=speaker_embeddings
1617
+ ) * (1.0 - self.stochastic_duration_prediction_ratio)
1618
+
1619
+ length_scale = 1.0 / self.speaking_rate
1620
+ duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
1621
+ predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
1622
+
1623
+ # Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
1624
+ indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
1625
+ output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
1626
+ output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
1627
+
1628
+ # Reconstruct an attention tensor of shape (batch, 1, out_length, in_length)
1629
+ attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
1630
+ batch_size, _, output_length, input_length = attn_mask.shape
1631
+ cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
1632
+ indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
1633
+ valid_indices = indices.unsqueeze(0) < cum_duration
1634
+ valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
1635
+ padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
1636
+ attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
1637
+
1638
+ # Expand prior distribution
1639
+ prior_means = torch.matmul(attn.squeeze(1), prior_means).transpose(1, 2)
1640
+ prior_log_variances = torch.matmul(attn.squeeze(1), prior_log_variances).transpose(1, 2)
1641
+
1642
+ prior_latents = prior_means + torch.randn_like(prior_means) * torch.exp(prior_log_variances) * self.noise_scale
1643
+ latents = self.flow(prior_latents, output_padding_mask, global_conditioning=speaker_embeddings, reverse=True)
1644
+
1645
+ spectrogram = latents * output_padding_mask
1646
+ waveform = self.decoder(spectrogram, global_conditioning=speaker_embeddings)
1647
+ waveform = waveform.squeeze(1)
1648
+ sequence_lengths = predicted_lengths * np.prod(self.config.upsample_rates)
1649
+
1650
+ if not return_dict:
1651
+ outputs = (waveform, sequence_lengths, spectrogram) + text_encoder_output[3:]
1652
+ return outputs
1653
+
1654
+ return BertVits2ModelOutput(
1655
+ waveform=waveform,
1656
+ sequence_lengths=sequence_lengths,
1657
+ spectrogram=spectrogram,
1658
+ hidden_states=text_encoder_output.hidden_states,
1659
+ attentions=text_encoder_output.attentions,
1660
+ )
1661
+
1662
+ def bert_features(self, index, input_ids, attention_mask, word2phone):
1663
+ is_tuple = isinstance(input_ids, tuple)
1664
+ if is_tuple:
1665
+ input_ids = input_ids[index]
1666
+ attention_mask = attention_mask[index]
1667
+ bert_model = self.bert_encoders[index]
1668
+ features = bert_model(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True).hidden_states
1669
+ x = torch.cat(features[-3:-2], dim=-1)
1670
+ batch_size, _, hidden_dim = x.shape
1671
+ x = x.flatten(0, 1)
1672
+ w2p_flattened = word2phone.flatten()
1673
+ phone_level_feature = x.repeat_interleave(w2p_flattened, dim=0)
1674
+ return phone_level_feature.reshape(batch_size, -1, hidden_dim).transpose(1, 2)
processing_bert_vits2.py ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Processor class for Bert VITS2
17
+ """
18
+
19
+ import os
20
+ from typing import Optional, Dict
21
+ import re
22
+
23
+ from transformers.tokenization_utils_base import BatchEncoding
24
+ from transformers.processing_utils import ProcessorMixin
25
+ from transformers.utils import logging
26
+ from transformers.utils.hub import get_file_from_repo
27
+ from transformers import AutoTokenizer, PreTrainedTokenizer, TOKENIZER_MAPPING
28
+
29
+ # inject BertVits2Tokenizer
30
+ import transformers
31
+ from tokenization_bert_vits2 import BertVits2Tokenizer
32
+ transformers.BertVits2Tokenizer = BertVits2Tokenizer
33
+ TOKENIZER_MAPPING.register("bert_vits2", "BertVits2Tokenizer")
34
+
35
+ logger = logging.get_logger(__name__)
36
+
37
+ def chinese_number_to_words(text):
38
+ out = ""
39
+ if text[0] == "-":
40
+ out += "負"
41
+ text = text[1:]
42
+ elif text[0] == "+":
43
+ out += "正"
44
+ text = text[1:]
45
+ if "." in text:
46
+ integer, decimal = text.split(".")
47
+ out += chinese_number_to_words(integer)
48
+ out += "點"
49
+ for c in decimal:
50
+ out += chinese_number_to_words(c)
51
+ return out
52
+ chinese_num = ["零", "一", "二", "三", "四", "五", "六", "七", "八", "九"]
53
+ length = len(text)
54
+ for i, c in enumerate(text):
55
+ if c == "0" and out[-1] not in chinese_num:
56
+ if i != length - 1 or length == 1:
57
+ out += chinese_num[0]
58
+ else:
59
+ out += chinese_num[int(c)]
60
+ if length - i == 2:
61
+ out += "十"
62
+ elif length - i == 3:
63
+ out += "百"
64
+ elif length - i == 4:
65
+ out += "千"
66
+ elif length - i == 5:
67
+ out += "萬"
68
+ elif length - i == 6:
69
+ out += "十"
70
+ elif length - i == 7:
71
+ out += "百"
72
+ elif length - i == 8:
73
+ out += "千"
74
+ elif length - i == 9:
75
+ out += "億"
76
+ elif length - i == 10:
77
+ out += "十"
78
+ elif length - i == 11:
79
+ out += "百"
80
+ elif length - i == 12:
81
+ out += "千"
82
+ elif length - i == 13:
83
+ out += "兆"
84
+ elif length - i == 14:
85
+ out += "十"
86
+ elif length - i == 15:
87
+ out += "百"
88
+ elif length - i == 16:
89
+ out += "千"
90
+ elif length - i == 17:
91
+ out += "京"
92
+ return out
93
+
94
+
95
+ class BertVits2Processor(ProcessorMixin):
96
+ r"""
97
+ Constructs a Bark processor which wraps a text tokenizer and optional Bark voice presets into a single processor.
98
+
99
+ Args:
100
+ tokenizers ([`PreTrainedTokenizer`]):
101
+ An instance of [`PreTrainedTokenizer`].
102
+ bert_tokenizer ([`PreTrainedTokenizer`]):
103
+ An instance of [`PreTrainedTokenizer`].
104
+
105
+ """
106
+
107
+ tokenizer_class = "AutoTokenizer"
108
+ attributes = ["tokenizer"]
109
+
110
+ def __init__(self, tokenizer: PreTrainedTokenizer, bert_tokenizers: Dict[str, PreTrainedTokenizer]):
111
+ super().__init__(tokenizer)
112
+ self.__bert_tokenizers = bert_tokenizers
113
+
114
+ @property
115
+ def bert_tokenizers(self):
116
+ return self.__bert_tokenizers
117
+
118
+ def preprocess_stage1(self, text, language=None):
119
+ # normalize punctuation
120
+ text = text.replace(",", ",").replace("。", ".").replace("?", "?").replace("!", "!").replace("...", "…")
121
+ # normalize whitespace
122
+ text = re.sub(r"\s+", " ", text).strip()
123
+ # convert number to words
124
+ if language == "zh":
125
+ text = re.sub(r"[+-]?\d+", lambda x: chinese_number_to_words(x.group()), text)
126
+ return text
127
+
128
+ def preprocess_stage2(self, text, language=None):
129
+ # normalize whitespace
130
+ text = re.sub(r"\s", 'SP', text).strip()
131
+ return text
132
+
133
+ def __call__(
134
+ self,
135
+ text=None,
136
+ language=None,
137
+ return_tensors="pt",
138
+ max_length=256,
139
+ add_special_tokens=True,
140
+ return_attention_mask=True,
141
+ padding="longest",
142
+ **kwargs,
143
+ ):
144
+ """
145
+ Main method to prepare for the model one or several sequences(s). This method forwards the `text` and `kwargs`
146
+ arguments to the AutoTokenizer's [`~AutoTokenizer.__call__`] to encode the text. The method also proposes a
147
+ voice preset which is a dictionary of arrays that conditions `Bark`'s output. `kwargs` arguments are forwarded
148
+ to the tokenizer and to `cached_file` method if `voice_preset` is a valid filename.
149
+
150
+ Args:
151
+ text (`str`, `List[str]`, `List[List[str]]`):
152
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
153
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
154
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
155
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
156
+ If set, will return tensors of a particular framework. Acceptable values are:
157
+
158
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
159
+ - `'np'`: Return NumPy `np.ndarray` objects.
160
+
161
+ Returns:
162
+ Tuple([`BatchEncoding`], [`BatchFeature`]): A tuple composed of a [`BatchEncoding`], i.e the output of the
163
+ `tokenizer` and a [`BatchFeature`], i.e the voice preset with the right tensors type.
164
+ """
165
+
166
+ if language is None:
167
+ raise ValueError("The language argument is required for BertVits2Processor.")
168
+
169
+ if language not in self.bert_tokenizers:
170
+ raise ValueError(f"Language '{language}' not supported by BertVits2Processor.")
171
+
172
+ bert_text = self.preprocess_stage1(text, language)
173
+ g2p_text = self.preprocess_stage2(bert_text, language)
174
+
175
+ phone_text, tone_ids, lang_ids, word2ph = self.tokenizer.convert_g2p(g2p_text, language, add_special_tokens)
176
+
177
+ encoded_text = self.tokenizer(
178
+ phone_text,
179
+ return_tensors=return_tensors,
180
+ padding=padding,
181
+ max_length=max_length,
182
+ return_attention_mask=return_attention_mask,
183
+ **kwargs,
184
+ )
185
+
186
+ bert_tokenizer = self.bert_tokenizers[language]
187
+ bert_encoded_text = bert_tokenizer(
188
+ bert_text,
189
+ return_tensors=return_tensors,
190
+ padding=padding,
191
+ max_length=max_length,
192
+ return_attention_mask=return_attention_mask,
193
+ add_special_tokens=add_special_tokens,
194
+ return_token_type_ids=False,
195
+ **kwargs,
196
+ )
197
+
198
+ return BatchEncoding({
199
+ **encoded_text,
200
+ **{ f"bert_{k}": v for k, v in bert_encoded_text.items() },
201
+ "tone_ids": [tone_ids],
202
+ "language_ids": [lang_ids],
203
+ "word_to_phoneme": [word2ph],
204
+ }, tensor_type=return_tensors)
205
+
206
+ @classmethod
207
+ def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
208
+ args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs)
209
+ processor_dict, kwargs = cls.get_processor_dict(pretrained_model_name_or_path, **kwargs)
210
+ processor_dict['bert_tokenizers'] = {
211
+ key: AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder=val)
212
+ for key, val in processor_dict['bert_tokenizers'].items()
213
+ }
214
+ return cls.from_args_and_dict(args, processor_dict, **kwargs)
215
+
216
+ def save_pretrained(
217
+ self,
218
+ save_directory,
219
+ **kwargs,
220
+ ):
221
+ """
222
+ Save the processor to the `save_directory` directory. If the processor has been created from a
223
+ repository, the method will push the model to the `save_directory` repository.
224
+
225
+ Args:
226
+ save_directory (`str`):
227
+ Directory where the processor will be saved.
228
+ push_to_hub (`bool`, `optional`, defaults to `False`):
229
+ Whether or not to push the model to the Hugging Face Hub after saving it.
230
+ kwargs:
231
+ Additional attributes to be saved with the processor.
232
+ """
233
+ os.makedirs(save_directory, exist_ok=True)
234
+ for language, tokenizer in self.bert_tokenizers.items():
235
+ tokenizer.save_pretrained(os.path.join(save_directory, f"bert_{language}"))
236
+ bert_tokenizers = self.bert_tokenizers
237
+ self.bert_tokenizers = {language: f"bert_{language}" for language in self.bert_tokenizers}
238
+ outputs = super().save_pretrained(save_directory, **kwargs)
239
+ self.bert_tokenizers = bert_tokenizers
240
+ return outputs
tokenization_bert_vits2.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The Kakao Enterprise Authors, the MMS-TTS Authors and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Tokenization class for VITS."""
16
+
17
+ import json
18
+ import os
19
+ import re
20
+ from typing import Any, Dict, List, Optional, Tuple, Union
21
+
22
+ from transformers.tokenization_utils import PreTrainedTokenizer
23
+ from transformers.utils import is_phonemizer_available, logging
24
+
25
+
26
+ if is_phonemizer_available():
27
+ import phonemizer
28
+
29
+
30
+ logger = logging.get_logger(__name__)
31
+
32
+ VOCAB_FILES_NAMES = {
33
+ "vocab_file": "vocab.json",
34
+ }
35
+
36
+ def is_symbol(ch):
37
+ return ch in "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"
38
+
39
+ class BertVits2Tokenizer(PreTrainedTokenizer):
40
+ """
41
+ Construct a VITS tokenizer. Also supports MMS-TTS.
42
+
43
+ This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
44
+ this superclass for more information regarding those methods.
45
+
46
+ Args:
47
+ vocab_file (`str`):
48
+ Path to the vocabulary file.
49
+ language (`str`, *optional*):
50
+ Language identifier.
51
+ add_blank (`bool`, *optional*, defaults to `True`):
52
+ Whether to insert token id 0 in between the other tokens.
53
+ normalize (`bool`, *optional*, defaults to `True`):
54
+ Whether to normalize the input text by removing all casing and punctuation.
55
+ phonemize (`bool`, *optional*, defaults to `True`):
56
+ Whether to convert the input text into phonemes.
57
+ is_uroman (`bool`, *optional*, defaults to `False`):
58
+ Whether the `uroman` Romanizer needs to be applied to the input text prior to tokenizing.
59
+ """
60
+
61
+ vocab_files_names = VOCAB_FILES_NAMES
62
+ model_input_names = [
63
+ "input_ids",
64
+ # "input_tones",
65
+ "attention_mask",
66
+ ]
67
+
68
+ def __init__(
69
+ self,
70
+ vocab_file,
71
+ pad_token="<pad>",
72
+ unk_token="<unk>",
73
+ space_token=None,
74
+ languages=None,
75
+ add_blank=True,
76
+ **kwargs,
77
+ ) -> None:
78
+ with open(vocab_file, encoding="utf-8") as vocab_handle:
79
+ self.encoder = json.load(vocab_handle)
80
+
81
+ self.decoder = {v: k for k, v in self.encoder.items()}
82
+ self.languages = languages
83
+ self.add_blank = add_blank
84
+
85
+ super().__init__(
86
+ pad_token=pad_token,
87
+ unk_token=unk_token,
88
+ space_token=space_token,
89
+ languages=languages,
90
+ add_blank=add_blank,
91
+ **kwargs,
92
+ )
93
+
94
+ @property
95
+ def vocab_size(self):
96
+ return len(self.encoder)
97
+
98
+ def get_vocab(self):
99
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
100
+ vocab.update(self.added_tokens_encoder)
101
+ return vocab
102
+
103
+ def zh_g2p(self, text: str) -> Tuple[str, List[int], List[int]]:
104
+ """Converts a string of Chinese text into a list of phonemes and tones."""
105
+ from pypinyin import lazy_pinyin, Style
106
+
107
+ with open(os.path.join(os.path.dirname(__file__), "data", "zh_g2p.json"), encoding="utf-8") as f:
108
+ g2p = json.load(f)
109
+
110
+ phones = []
111
+ tones = []
112
+ word2ph = []
113
+
114
+ initials = lazy_pinyin(text, neutral_tone_with_five=True, style=Style.INITIALS, tone_sandhi=True)
115
+ finals = lazy_pinyin(text, neutral_tone_with_five=True, style=Style.FINALS_TONE3, tone_sandhi=True)
116
+
117
+ for initial, final in zip(initials, finals):
118
+ tone = 0
119
+ if final[-1].isdigit():
120
+ pinyin = initial + final[:-1]
121
+ tone = int(final[-1])
122
+ if initial:
123
+ pinyin = re.sub(r"uei$", "ui", pinyin)
124
+ pinyin = re.sub(r"iou$", "iu", pinyin)
125
+ pinyin = re.sub(r"uen$", "un", pinyin)
126
+ else:
127
+ pinyin = re.sub(r"^ing$", "ying", pinyin)
128
+ pinyin = re.sub(r"^i$", "yi", pinyin)
129
+ pinyin = re.sub(r"^in$", "yin", pinyin)
130
+ pinyin = re.sub(r"^u$", "wu", pinyin)
131
+ pinyin = re.sub(r"^v", "yu", pinyin)
132
+ pinyin = re.sub(r"^e", "e", pinyin)
133
+ pinyin = re.sub(r"^i", "y", pinyin)
134
+ pinyin = re.sub(r"^u", "w", pinyin)
135
+ else:
136
+ pinyin = initial + final
137
+ if initial == final:
138
+ tone = 0
139
+ phone = [initial]
140
+ else:
141
+ phone = g2p.get(pinyin, [self.unk_token])
142
+ if phone[0] == self.unk_token:
143
+ tone = 0
144
+ phone = [self.unk_token]
145
+ tones += [tone] * len(phone)
146
+ phones += phone
147
+ if initial != 'SP':
148
+ word2ph.append(len(phone))
149
+ else:
150
+ word2ph[-1] += 1
151
+
152
+ phones = "<|SEP|>".join(phones)
153
+ return phones, tones, word2ph
154
+
155
+
156
+ def convert_g2p(self, text: str, language: str, add_special_tokens: bool) -> Tuple[str, List[int], List[int]]:
157
+ """Converts a string of text into a list of phonemes and tones."""
158
+ if not is_phonemizer_available():
159
+ raise ImportError("Phonemizer is not available. Please install it using `pip install phonemizer`.")
160
+
161
+ if language.startswith("zh"):
162
+ phones, tones, word2ph = self.zh_g2p(text)
163
+ else:
164
+ raise ValueError(f"Language '{language}' not supported by VITS.")
165
+
166
+ lang_ids = [self.languages.index(language)] * len(tones)
167
+
168
+ if self.add_blank:
169
+ tones = self._add_blank(tones, 0)
170
+ lang_ids = self._add_blank(lang_ids, 0)
171
+
172
+ for i in range(len(word2ph)):
173
+ word2ph[i] = word2ph[i] * 2
174
+ word2ph[0] += 1
175
+
176
+ if add_special_tokens:
177
+ word2ph = [0] + word2ph + [0]
178
+
179
+ return phones, tones, lang_ids, word2ph
180
+
181
+ def _add_blank(self, sequence: List[Union[str, int]], blank: Union[str, int]) -> List[Union[str, int]]:
182
+ interspersed = [blank] * (len(sequence) * 2 + 1)
183
+ interspersed[1::2] = sequence
184
+ return interspersed
185
+
186
+ def _tokenize(self, text: str) -> List[str]:
187
+ """Tokenize a string by inserting the `<pad>` token at the boundary between adjacent characters."""
188
+ tokens = []
189
+
190
+ if '<|SEP|>' in text:
191
+ tokens = text.split('<|SEP|>')
192
+ else: # fallback
193
+ i = 0
194
+ while i < len(text):
195
+ found = False
196
+ for j in range(min(len(text), i + 2), i, -1):
197
+ subtext = text[i:j]
198
+ if subtext in self.encoder:
199
+ tokens.append(subtext)
200
+ i = j
201
+ found = True
202
+ break
203
+ if not found:
204
+ tokens.append(self.unk_token)
205
+ i += 1
206
+
207
+ if self.add_blank:
208
+ tokens = self._add_blank(tokens, self.pad_token)
209
+
210
+ return tokens
211
+
212
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
213
+ if self.add_blank and len(tokens) > 1:
214
+ tokens = tokens[1::2]
215
+ return "".join(tokens)
216
+
217
+ def _convert_token_to_id(self, token):
218
+ """Converts a token (str) in an id using the vocab."""
219
+ return self.encoder.get(token, self.encoder.get(self.unk_token))
220
+
221
+ def _convert_id_to_token(self, index):
222
+ """Converts an index (integer) in a token (str) using the vocab."""
223
+ return self.decoder.get(index)
224
+
225
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Union[Tuple[str], None]:
226
+ if not os.path.isdir(save_directory):
227
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
228
+ return
229
+
230
+ vocab_file = os.path.join(
231
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
232
+ )
233
+
234
+ with open(vocab_file, "w", encoding="utf-8") as f:
235
+ f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
236
+
237
+ return (vocab_file,)