ChemboC / Project_Notes.txt
Bon-God's picture
Upload 4 files
64566a7 verified
raw
history blame
2.9 kB
ChemboChat- RAG Chat Application Project Notes
##############################################
Shortcut: Ctrl + Space
Action: This triggers the IntelliSense menu to show code suggestions manually.
Step1.
Create venv and install all required Project Dependencies
python -m venv .venv && source .venv/bin/activate
Install packages
pip install -r requirements.txt
Step2.
Download all libraries & Dependencies for LlamaParse & Langchain.
Dependency Tools required for Splitting & Chunking Data & Vectoring
a. Text-Splitter
b. Embeddings
c. Vecotr Stores
d. Document Loaders
"""
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
from langchain_community.vectorstores import Qdrant
from langchain_community.document_loaders import DirectoryLoader
"""
Step3.
# Define a function to load parsed data if available, or parse if not
"""LLM - parsingInstructionUber10k
parser = LlamaParse(api_key=, result_type="", parsing_instruction=parsingInstructionUber10k)
llama_parse_documents = parser.load_data("./data/uber_10q_march_2022.pdf")"""
def load_or_parse_data():
data_file = "./data/parsed_data.pkl"
if os.path.exists(data_file):
# Load the parsed data from the file
with open(data_file, "rb") as f:
parsed_data = pickle.load(f)
else:
# Perform the parsing step and store the result in llama_parse_documents
parsingInstructionUber10k = """The provided document is a quarterly report filed by Uber Technologies,
Inc. with the Securities and Exchange Commission (SEC).
This form provides detailed financial information about the company's performance for a specific quarter.
It includes unaudited financial statements, management discussion and analysis, and other relevant disclosures required by the SEC.
It contains many tables.
Try to be precise while answering the questions"""
parser = LlamaParse(api_key=llamaparse_api_key, result_type="markdown", parsing_instruction=parsingInstructionUber10k)
llama_parse_documents = parser.load_data("./data/uber_10q_march_2022.pdf")
# Save the parsed data to a file
with open(data_file, "wb") as f:
pickle.dump(llama_parse_documents, f)
# Set the parsed data to the variable
parsed_data = llama_parse_documents
return parsed_data
Step 4.
# Create vector database
Create a vector database using document loaders and embeddings.
This function is to load the data and split them in to chunks using Document_loaders in LlamaParse.
Transform the chunks into embeddings using llama.FastEmbedEmbeddings
Finally, persist the embeddings into vector database.