proteinglm-1b-clm / modeling_proteinglm.py
Bo1015's picture
Upload modeling_proteinglm.py
af1daa2 verified
""" PyTorch ProteinGLM model. """
import math
import copy
import warnings
import re
import sys
import os
import pathlib
import time
import random
import numpy as np
from tqdm.auto import tqdm
import torch, deepspeed
import torch.utils.checkpoint
import torch.nn.functional as F
from torch import nn
from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
from torch.nn.utils import skip_init
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
from copy import deepcopy
from collections import namedtuple
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
MaskedLMOutput,
CausalLMOutputWithPast,
SequenceClassifierOutput,
TokenClassifierOutput
)
from transformers import PreTrainedModel
from transformers.utils import logging
from transformers.generation.logits_process import LogitsProcessor
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
from .configuration_proteinglm import ProteinGLMConfig
from .quantization import quantize
def get_checkpoint_fn():
if deepspeed.checkpointing.is_configured():
checkpoint = deepspeed.checkpointing.checkpoint
else:
checkpoint = torch.utils.checkpoint.checkpoint
return checkpoint
# flags required to enable jit fusion kernels
if sys.platform != 'darwin':
torch._C._jit_set_profiling_mode(False)
torch._C._jit_set_profiling_executor(False)
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "proteinglm-1b-clm"
_CONFIG_FOR_DOC = "ProteinGLMConfig"
DeepNormCoefficients = namedtuple("DeepNormCoefficients", ["alpha", "beta"])
def default_init(cls, *args, **kwargs):
return cls(*args, **kwargs)
def get_deepnorm_coefficients(config: ProteinGLMConfig):
"""
DeepNorm coefficients from : https://kexue.fm/archives/8978
"""
num_layers = config.num_layers
return DeepNormCoefficients(alpha=(2 * num_layers) ** 0.5, beta=(2 * num_layers) ** -0.5)
class InvalidScoreLogitsProcessor(LogitsProcessor):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
if torch.isnan(scores).any() or torch.isinf(scores).any():
scores.zero_()
scores[..., 5] = 5e4
return scores
def split_tensor_along_last_dim(
tensor: torch.Tensor,
num_partitions: int,
contiguous_split_chunks: bool = False,
) -> List[torch.Tensor]:
"""Split a tensor along its last dimension.
Arguments:
tensor: input tensor.
num_partitions: number of partitions to split the tensor
contiguous_split_chunks: If True, make each chunk contiguous
in memory.
Returns:
A list of Tensors
"""
# Get the size and dimension.
last_dim = tensor.dim() - 1
last_dim_size = tensor.size()[last_dim] // num_partitions
# Split.
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
# Note: torch.split does not create contiguous tensors by default.
if contiguous_split_chunks:
return tuple(chunk.contiguous() for chunk in tensor_list)
return tensor_list
class RotaryEmbedding(torch.nn.Module):
def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
super().__init__()
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)).to(precision)
self.dim = dim
self.base = base
self.learnable = learnable
if learnable:
self.inv_freq = torch.nn.Parameter(inv_freq)
self.max_seq_len_cached = None
else:
self.register_buffer('inv_freq', inv_freq)
self.max_seq_len_cached = None
self.cos_cached = None
self.sin_cached = None
self.precision = precision
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
if f'{prefix}inv_freq' in state_dict:
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
else:
self.inv_freq.copy_(1. / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim)).to(self.precision))
def forward(self, x, seq_dim=1, seq_len=None):
if seq_len is None:
seq_len = x.shape[seq_dim]
if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
self.max_seq_len_cached = None if self.learnable else seq_len
t = torch.arange(seq_len, device=x.device, dtype=torch.float32)
freqs = torch.einsum('i,j->ij', t, self.inv_freq.to(x.device))
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
if self.precision == torch.bfloat16 or self.precision == torch.half:
emb = emb.float()
# [sx, 1 (b * np), hn]
cos_cached = emb.cos()[:, None, :]
sin_cached = emb.sin()[:, None, :]
if self.precision == torch.bfloat16:
cos_cached = cos_cached.bfloat16()
sin_cached = sin_cached.bfloat16()
elif self.precision == torch.half:
cos_cached = cos_cached.half()
sin_cached = sin_cached.half()
if self.learnable:
return cos_cached, sin_cached
self.cos_cached, self.sin_cached = cos_cached, sin_cached
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
def rotate_half(x):
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
def assert_dim_check(tensor, ndim=None, shape=None):
if ndim is not None:
assert tensor.ndim == ndim, f"Exepct tensor.ndim={ndim}. gut got tensor.shape={tensor.shape}"
if shape is not None:
assert list(tensor.shape) == list(shape), f"Exepct tensor.shape={shape}. gut got tensor.shape={tensor.shape}"
def apply_rotary_pos_emb_index_torch(q, k, cos, sin, position_id): # jitting fails with bf16
# position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \
F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
return q, k
class RMSNorm(torch.nn.Module):
def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
super().__init__()
self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
self.eps = eps
def forward(self, hidden_states: torch.Tensor):
input_dtype = hidden_states.dtype
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
return (self.weight * hidden_states).to(input_dtype)
class CoreAttention(torch.nn.Module):
def __init__(self, config: ProteinGLMConfig, layer_number):
super(CoreAttention, self).__init__()
self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
if self.apply_query_key_layer_scaling:
self.attention_softmax_in_fp32 = True
self.layer_number = max(1, layer_number)
projection_size = config.kv_channels * config.num_attention_heads
# Per attention head and per partition values.
self.hidden_size_per_partition = projection_size
self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
self.num_attention_heads_per_partition = config.num_attention_heads
coeff = None
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
if self.apply_query_key_layer_scaling:
coeff = self.layer_number
self.norm_factor *= coeff
self.coeff = coeff
self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
self.is_causal = config.is_causal
self.use_pytorch_sdpa = config.use_pytorch_sdpa
def forward(self, query_layer, key_layer, value_layer, attention_mask):
# query_layer, key_layer, value_layer: [seq_len, batch_size, num_heads, head_dim]
# import pdb; pdb.set_trace();
pytorch_major_version = int(torch.__version__.split('.')[0])
# assert pytorch_major_version >= 2, f"Expect PyTorch version > 2.0"
if pytorch_major_version >= 2 and self.use_pytorch_sdpa:
dropout_p = self.attention_dropout.p if self.training else 0
# [seq_len, batch_size, num_heads, head_dim] -> [batch_size, num_heads, seq_len, head_dim]
query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
# import pdb; pdb.set_trace();
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
# context_layer: [batch_size, num_heads, seq_len, head_dim]
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer, is_causal=self.is_causal, dropout_p=dropout_p)
else:
if (attention_mask is not None) and (attention_mask.dtype == torch.bool):
attention_mask = attention_mask.logical_not() ## DO NOT inplace operation!!!!
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer, attention_mask, dropout_p=dropout_p)
# [batch_size, num_heads, seq_len, head_dim] -> [seq_len, batch_size, num_heads, head_dim]
context_layer = context_layer.permute(2, 0, 1, 3)
# [seq_len, batch_size, 2560]
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
context_layer = context_layer.reshape(*new_context_layer_shape)
else:
# Raw attention scores
# [b, np, sq, sk]
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
# [sq, b, np, hn] -> [sq, b * np, hn]
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
# [sk, b, np, hn] -> [sk, b * np, hn]
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
# preallocting input tensor: [b * np, sq, sk]
matmul_input_buffer = torch.empty(
output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
device=query_layer.device
)
# Raw attention scores. [b * np, sq, sk]
matmul_result = torch.baddbmm(
matmul_input_buffer,
query_layer.transpose(0, 1), # [b * np, sq, hn]
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
beta=0.0,
alpha=(1.0 / self.norm_factor),
)
# change view to [b, np, sq, sk]
attention_scores = matmul_result.view(*output_size)
# ===========================
# Attention probs and dropout
# ===========================
# attention scores and attention mask [b, np, sq, sk]
if self.attention_softmax_in_fp32:
attention_scores = attention_scores.float()
if self.coeff is not None:
attention_scores = attention_scores * self.coeff
if self.is_causal and attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
device=attention_scores.device, dtype=torch.bool)
attention_mask.tril_()
attention_mask = ~attention_mask
if attention_mask is not None:
attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
attention_probs = F.softmax(attention_scores, dim=-1)
attention_probs = attention_probs.type_as(value_layer)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.attention_dropout(attention_probs)
# =========================
# Context layer. [sq, b, hp]
# =========================
# value_layer -> context layer.
# [sk, b, np, hn] --> [b, np, sq, hn]
# context layer shape: [b, np, sq, hn]
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
# change view [sk, b * np, hn]
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
# change view [b * np, sq, sk]
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
# matmul: [b * np, sq, hn]
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
# change view [b, np, sq, hn]
context_layer = context_layer.view(*output_size)
# [b, np, sq, hn] --> [sq, b, np, hn]
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
# [sq, b, np, hn] --> [sq, b, hp]
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class SelfAttention(torch.nn.Module):
"""Parallel self-attention layer abstract class.
Self-attention layer takes input with size [s, b, h]
and returns output of the same size.
"""
def __init__(self, config: ProteinGLMConfig, layer_number, device=None):
super(SelfAttention, self).__init__()
self.layer_number = max(1, layer_number)
self.projection_size = config.kv_channels * config.num_attention_heads
# Per attention head and per partition values.
self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
self.num_attention_heads_per_partition = config.num_attention_heads
self.multi_query_attention = config.multi_query_attention
self.qkv_hidden_size = 3 * self.projection_size
if self.multi_query_attention:
self.num_multi_query_groups_per_partition = config.multi_query_group_num
self.qkv_hidden_size = (
self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
)
self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
bias=config.add_bias_linear or config.add_qkv_bias,
device=device, **_config_to_kwargs(config)
)
self.core_attention = CoreAttention(config, self.layer_number)
# Output.
self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear, device=device, **_config_to_kwargs(config))
self.rotary_embedding_2d = config.rotary_embedding_2d
# dim, base=10000, precision=torch.half, learnable=False
self.rotary_emb = RotaryEmbedding(self.hidden_size_per_attention_head // 2 if self.rotary_embedding_2d else self.hidden_size_per_attention_head,
base=10000, precision=config.torch_dtype, learnable=False)
def forward(
self, hidden_states, attention_mask, position_ids, kv_cache=None, use_cache=True
):
# hidden_states: [sq, b, h]
# =================================================
# Pre-allocate memory for key-values for inference.
# =================================================
# =====================
# Query, Key, and Value
# =====================
# Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
mixed_x_layer = self.query_key_value(hidden_states)
if self.multi_query_attention:
(query_layer, key_layer, value_layer) = mixed_x_layer.split(
[
self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
],
dim=-1,
)
query_layer = query_layer.view(
query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
)
key_layer = key_layer.view(
key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
)
value_layer = value_layer.view(
value_layer.size()[:-1]
+ (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
)
else:
new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_attention_heads_per_partition, 3 * self.hidden_size_per_attention_head)
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
(query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
# apply relative positional encoding (rotary embedding)
if position_ids is not None: # [seq_len, 2, batch_size, 32, 2]
if self.rotary_embedding_2d:
q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1)) # 32
k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
# import pdb; pdb.set_trace();
cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1) # 32
position_ids, block_position_ids = \
position_ids[:, 0, :].transpose(0, 1).contiguous(), \
position_ids[:, 1, :].transpose(0, 1).contiguous()
q1, k1 = apply_rotary_pos_emb_index_torch(q1, k1, cos, sin, position_ids)
q2, k2 = apply_rotary_pos_emb_index_torch(q2, k2, cos, sin, block_position_ids)
query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
else:
# [b, sq] -> [sq, b]
position_ids = position_ids.transpose(0, 1)
cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)
query_layer, key_layer = apply_rotary_pos_emb_index_torch(query_layer, key_layer, cos, sin, position_ids)
# adjust key and value for inference
if kv_cache is not None:
cache_k, cache_v = kv_cache
key_layer = torch.cat((cache_k, key_layer), dim=0)
value_layer = torch.cat((cache_v, value_layer), dim=0)
if use_cache:
kv_cache = (key_layer, value_layer)
else:
kv_cache = None
if self.multi_query_attention:
key_layer = key_layer.unsqueeze(-2)
key_layer = key_layer.expand(-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1)
key_layer = key_layer.contiguous().view(key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head))
value_layer = value_layer.unsqueeze(-2)
value_layer = value_layer.expand(-1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1)
value_layer = value_layer.contiguous().view(value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head))
# ==================================
# core attention computation
# ==================================
context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask) # context_layer: [seq_len, batch_size, num_heads*head_dim]
output = self.dense(context_layer)
# =================
# Output. [sq, b, h]
# =================
# output = context_layer @ self.dense.weight.T + self.dense.bias
return output, kv_cache
def _config_to_kwargs(args):
common_kwargs = {
"dtype": args.torch_dtype,
}
return common_kwargs
class MLP(torch.nn.Module):
"""MLP.
MLP will take the input with h hidden state, project it to 4*h
hidden dimension, perform nonlinear transformation, and project the
state back into h hidden dimension.
"""
def __init__(self, config: ProteinGLMConfig, device=None):
super(MLP, self).__init__()
self.add_bias = config.add_bias_linear
self.moe = config.moe
self.num_experts = config.num_experts
self.experts_per_token = config.experts_per_token # 2
# Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
self.dense_h_to_4h = nn.Linear(
config.hidden_size,
config.ffn_hidden_size * 2,
bias=self.add_bias,
device=device,
**_config_to_kwargs(config)
)
def swiglu(x):
x = torch.chunk(x, 2, dim=-1)
return x[0] * F.silu(x[1])
def geglu(x):
x = torch.chunk(x, 2, dim=-1)
return x[0] * F.gelu(x[1])
if config.glu_activation == 'geglu':
self.activation_func = geglu
elif config.glu_activation == 'swiglu':
self.activation_func = swiglu
else:
assert RuntimeError(f"Unsupported glu_activation: {config.glu_activation}")
# Project back to h.
self.dense_4h_to_h = nn.Linear(
config.ffn_hidden_size,
config.hidden_size,
bias=self.add_bias,
device=device,
**_config_to_kwargs(config)
)
if self.moe:
assert self.num_experts > 1
del self.dense_h_to_4h
del self.dense_4h_to_h
self.router = nn.Linear(
config.hidden_size,
config.num_experts,
bias=False,
device=device,
dtype=torch.float32
)
for i in range(0, self.num_experts):
self.register_module(f"dense_h_to_4h_{i}", nn.Linear(
config.hidden_size,
config.ffn_hidden_size * 2,
bias=self.add_bias,
device=device,
**_config_to_kwargs(config)
))
self.register_module(f"dense_4h_to_h_{i}", nn.Linear(
config.ffn_hidden_size,
config.hidden_size,
bias=self.add_bias,
device=device,
**_config_to_kwargs(config)
))
def moe_forward(self, hidden_states, expert_idx):
intermediate_parallel = getattr(self, f"dense_h_to_4h_{expert_idx}")(hidden_states)
intermediate_parallel = self.activation_func(intermediate_parallel)
output = getattr(self, f"dense_4h_to_h_{expert_idx}")(intermediate_parallel)
return output
def forward(self, hidden_states):
if self.moe:
# import pdb; pdb.set_trace();
s, b, n = hidden_states.shape
dtype = hidden_states.dtype
hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [s*b h]
route = self.router(hidden_states).to(dtype)
weights, selected_experts = torch.topk(route, self.experts_per_token)
weights = F.softmax(weights, dim=1, dtype=torch.float).to(hidden_states.dtype)
output = torch.zeros_like(hidden_states, dtype=hidden_states.dtype, device=hidden_states.device)
for expert_idx in range(self.num_experts):
batch_idx, nth_expert = torch.where(selected_experts == expert_idx)
if nth_expert.shape[0] == 0:
continue
cur_out = self.moe_forward(hidden_states[batch_idx], expert_idx)
output[batch_idx] += weights[batch_idx, nth_expert, None] * cur_out
output = output.reshape(s, b, n)
else:
# [s, b, 4hp]
intermediate_parallel = self.dense_h_to_4h(hidden_states)
intermediate_parallel = self.activation_func(intermediate_parallel)
# [s, b, h]
output = self.dense_4h_to_h(intermediate_parallel)
return output
class ProteinGLMBlock(torch.nn.Module):
"""A single transformer layer.
Transformer layer takes input with size [s, b, h] and returns an
output of the same size.
"""
def __init__(self, config: ProteinGLMConfig, layer_number, device=None):
super(ProteinGLMBlock, self).__init__()
self.layer_number = layer_number
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
self.fp32_residual_connection = config.fp32_residual_connection
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
# Layernorm on the input data.
self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon)
# Self attention.
self.self_attention = SelfAttention(config, layer_number, device=device)
self.hidden_dropout = config.hidden_dropout
# Layernorm on the attention output
self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon)
# MLP
self.mlp = MLP(config, device=device)
self.deepnorm_coeff = get_deepnorm_coefficients(config) if config.deepnorm else None
def forward(
self, hidden_states, attention_mask, position_ids, kv_cache=None, use_cache=True,
):
# hidden_states: [s, b, h]
# Layer norm at the beginning of the transformer layer.
layernorm_output = self.input_layernorm(hidden_states)
# Self attention.
attention_output, kv_cache = self.self_attention(
layernorm_output,
attention_mask,
position_ids, # [batch_size, 2, seq_len, 32, 2]
kv_cache=kv_cache,
use_cache=use_cache
)
# Residual connection.
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = hidden_states
layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
if self.deepnorm_coeff is not None:
layernorm_input = residual*self.deepnorm_coeff.alpha + layernorm_input
else:
layernorm_input = residual + layernorm_input
# Layer norm post the self attention.
layernorm_output = self.post_attention_layernorm(layernorm_input)
# MLP.
mlp_output = self.mlp(layernorm_output)
# Second residual connection.
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = layernorm_input
output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
if self.deepnorm_coeff is not None:
output = residual*self.deepnorm_coeff.alpha + output
else:
#print(f"2 self.deepnorm_coeff is None")
output = residual + output
return output, kv_cache
class ProteinGLMTransformer(torch.nn.Module):
"""Transformer class."""
def __init__(self, config: ProteinGLMConfig, device=None):
super(ProteinGLMTransformer, self).__init__()
self.fp32_residual_connection = config.fp32_residual_connection
self.post_layer_norm = config.post_layer_norm
# Number of layers.
self.num_layers = config.num_layers
# Transformer layers.
def build_layer(layer_number):
return ProteinGLMBlock(config, layer_number, device=device)
self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
if self.post_layer_norm:
LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
# Final layer norm before output.
self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon)
self.gradient_checkpointing = False
def _get_layer(self, layer_number):
return self.layers[layer_number]
def forward(
self, hidden_states, attention_mask, position_ids, kv_caches=None,
use_cache: Optional[bool] = True,
output_hidden_states: Optional[bool] = False,
):
if not kv_caches:
kv_caches = [None for _ in range(self.num_layers)]
presents = () if use_cache else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_self_attentions = None
all_hidden_states = () if output_hidden_states else None
for index in range(self.num_layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer = self._get_layer(index)
if self.gradient_checkpointing and self.training and torch.is_grad_enabled():
layer_ret = get_checkpoint_fn()(
layer,
hidden_states,
attention_mask,
position_ids,
kv_caches[index],
use_cache
)
else:
layer_ret = layer(
hidden_states,
attention_mask,
position_ids,
kv_cache=kv_caches[index],
use_cache=use_cache
)
hidden_states, kv_cache = layer_ret
if use_cache:
presents = presents + (kv_cache,)
# Final layer norm.
if self.post_layer_norm:
hidden_states = self.final_layernorm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
return hidden_states, presents, all_hidden_states, all_self_attentions
class ProteinGLMPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and
a simple interface for downloading and loading pretrained models.
"""
is_parallelizable = False
supports_gradient_checkpointing = True
config_class = ProteinGLMConfig
base_model_prefix = "transformer"
_no_split_modules = ["ProteinGLMBlock"]
_quantized = False
def get_masks(self, input_ids, past_key_values, padding_mask=None, is_causal=True):
batch_size, seq_length = input_ids.shape
full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
if is_causal:
full_attention_mask.tril_()
past_length = 0
if past_key_values:
past_length = past_key_values[0][0].shape[0]
if past_length:
full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
device=input_ids.device), full_attention_mask), dim=-1)
if padding_mask is not None:
full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
if not past_length and padding_mask is not None:
full_attention_mask -= padding_mask.unsqueeze(-1) - 1
full_attention_mask = (full_attention_mask < 0.5).bool()
full_attention_mask.unsqueeze_(1)
return full_attention_mask
def get_position_ids(self, input_ids, device, context_length=0):
batch_size, seq_length = input_ids.shape
if self.config.rotary_embedding_2d:
if self.config.is_causal: # 100b model
position_ids_1 = torch.zeros(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) # [batch_size, seq_len]
position_ids_2 = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) # [batch_size, seq_len]
position_ids = torch.stack([position_ids_1, position_ids_2], axis=1) # [batch_size, 2, seq_len]
else:
position_ids_1 = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) # [batch_size, seq_len]
position_ids_2 = torch.zeros(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) # [batch_size, seq_len]
position_ids = torch.stack([position_ids_1, position_ids_2], axis=1) # [batch_size, 2, seq_len]
else:
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1) # [batch_size, 1, seq_len]
return position_ids
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, ProteinGLMTransformer):
module.gradient_checkpointing = value
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
def _init_weights(self, module):
std = self.config.initializer_range
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def quantize(self, weight_bit_width: int, empty_init=True, device=None):
if self._quantized:
print(f"Model has been quantized...")
return
self.transformer.encoder = quantize(self.transformer.encoder, weight_bit_width, empty_init, device)
self._quantized = True
return self
class Embedding(torch.nn.Module):
"""Language model embeddings."""
def __init__(self, config: ProteinGLMConfig, device=None):
super(Embedding, self).__init__()
self.hidden_size = config.hidden_size
# Word embeddings (parallel).
self.word_embeddings = nn.Embedding(
config.padded_vocab_size,
self.hidden_size,
dtype=config.torch_dtype,
device=device
)
self.fp32_residual_connection = config.fp32_residual_connection
def forward(self, input_ids):
# Embeddings.
words_embeddings = self.word_embeddings(input_ids)
embeddings = words_embeddings
# Data format change to avoid explicit tranposes : [b s h] --> [s b h].
embeddings = embeddings.transpose(0, 1).contiguous()
# If the input flag for fp32 residual connection is set, convert for float.
if self.fp32_residual_connection:
embeddings = embeddings.float()
return embeddings
class ProteinGLMModel(ProteinGLMPreTrainedModel):
def __init__(self, config: ProteinGLMConfig, device=None, empty_init=True):
super().__init__(config)
if empty_init:
init_method = skip_init
else:
init_method = default_init
init_kwargs = {}
if device is not None:
init_kwargs["device"] = device
self.embedding = init_method(Embedding, config, **init_kwargs)
self.num_layers = config.num_layers
self.multi_query_group_num = config.multi_query_group_num
self.kv_channels = config.kv_channels
# Rotary positional embeddings
self.seq_length = config.seq_length
rotary_dim = (
config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
)
# self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, base=10000, precision=config.torch_dtype, learnable=False)
self.encoder = init_method(ProteinGLMTransformer, config, **init_kwargs)
self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
dtype=config.torch_dtype, **init_kwargs)
def get_input_embeddings(self):
return self.embedding.word_embeddings
def set_input_embeddings(self, value):
self.embedding.word_embeddings = value
def forward(
self,
input_ids,
position_ids: Optional[torch.Tensor] = None, # position_ids: [batch_size, 2, seq_len]
attention_mask: Optional[torch.BoolTensor] = None,
full_attention_mask: Optional[torch.BoolTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if self.config.is_causal:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, seq_length = input_ids.shape
if inputs_embeds is None:
inputs_embeds = self.embedding(input_ids)
if full_attention_mask is None:
if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
# Run encoder.
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
inputs_embeds, full_attention_mask, position_ids=position_ids,
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
)
if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class ProteinGLMForMaskedLM(ProteinGLMPreTrainedModel):
def __init__(self, config: ProteinGLMConfig, empty_init=True, device=None):
super().__init__(config)
self.max_sequence_length = config.max_length
self.transformer = ProteinGLMModel(config, empty_init=empty_init, device=device)
self.config = config
if self.config.quantization_bit:
print(f"Begin Quantization to {self.config.quantization_bit} bit")
self.quantize(self.config.quantization_bit, empty_init=True, device=device)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_last_logit: Optional[bool] = None,
return_last_hidden_state: Optional[bool] = None
):
if self.config.is_causal:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if position_ids is None:
position_ids = self.get_position_ids(input_ids, device=input_ids.device)
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask, is_causal=self.config.is_causal)
transformer_outputs = self.transformer(
input_ids=input_ids,
position_ids=position_ids, # position_ids: [batch_size, 2, seq_len]
full_attention_mask=full_attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
if return_last_logit:
hidden_states = hidden_states[-1:]
lm_logits = self.transformer.output_layer(hidden_states)
lm_logits = lm_logits.transpose(0, 1).contiguous()
masked_lm_loss = None
if labels is not None:
lm_logits = lm_logits.to(torch.float32)
# Flatten the tokens
loss_fct = CrossEntropyLoss(ignore_index=-100) # -100 for padding token.
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
lm_logits = lm_logits.to(hidden_states.dtype)
loss = loss.to(hidden_states.dtype)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return MaskedLMOutput(
loss = masked_lm_loss,
logits=lm_logits,
hidden_states=transformer_outputs.last_hidden_state if return_last_hidden_state else transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
class ProteinGLMForSequenceClassification(ProteinGLMPreTrainedModel):
def __init__(self, config: ProteinGLMConfig, empty_init=True, device=None):
super().__init__(config)
self.config = config
self.num_labels = config.num_labels
self.transformer = ProteinGLMModel(config, empty_init=empty_init, device=device)
self.classifier = ProteinGLMClassificationHead(config)
if self.config.quantization_bit:
print(f"Begin Quantization to {self.config.quantization_bit} bit")
self.quantize(self.config.quantization_bit, empty_init=True, device=device)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_last_logit: Optional[bool] = None,
return_last_hidden_state: Optional[bool] = None,
**kwargs
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
if self.config.is_causal:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if position_ids is None:
position_ids = self.get_position_ids(input_ids, device=input_ids.device)
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask, is_causal=self.config.is_causal)
transformer_outputs = self.transformer(
input_ids=input_ids,
position_ids=position_ids, # position_ids: [batch_size, 2, seq_len]
full_attention_mask=full_attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.add_special_tokens:
hidden_states = transformer_outputs[0][:-1] # get rid of <eos> token
else:
hidden_states = transformer_outputs[0]
logits = self.classifier(hidden_states, add_pooling=True)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + transformer_outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
class ProteinGLMForTokenClassification(ProteinGLMPreTrainedModel):
def __init__(self, config: ProteinGLMConfig, empty_init=True, device=None):
super().__init__(config)
self.config = config
self.num_labels = config.num_labels
self.transformer = ProteinGLMModel(config, empty_init=empty_init, device=device)
if config.task_modality == "token":
self.classifier = ProteinGLMClassificationHead(config)
elif config.task_modality == 'pair':
self.classifier = ProteinGLMContactHead(config)
self.quantized = False
if self.config.quantization_bit:
print(f"Begin Quantization to {self.config.quantization_bit} bit")
self.quantize(self.config.quantization_bit, empty_init=True, device=device)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_last_logit: Optional[bool] = None,
return_last_hidden_state: Optional[bool] = None,
**kwargs
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
if self.config.is_causal:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if position_ids is None:
position_ids = self.get_position_ids(input_ids, device=input_ids.device)
full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask, is_causal = self.config.is_causal)
transformer_outputs = self.transformer(
input_ids=input_ids,
position_ids=position_ids, # position_ids: [batch_size, 2, seq_len]
full_attention_mask=full_attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.add_special_tokens:
hidden_states = transformer_outputs[0][:-1] # get rid of <eos> token
else:
hidden_states = transformer_outputs[0]
logits = self.classifier(hidden_states, add_pooling=False)
loss = None
if labels is not None:
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + transformer_outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
class ProteinGLMClassificationHead(nn.Module):
"""Head for classification tasks."""
def __init__(self, config):
super().__init__()
self.activation_func = config.activation_func
self.layers = torch.nn.ModuleList()
last_size = config.hidden_size
for sz in config.inter_hidden_size:
this_layer = torch.nn.Linear(last_size, sz, bias=config.bias)
last_size = sz
self.layers.append(this_layer)
def forward(self,
input_features,
add_pooling: Optional[bool] = True
):
# [s, b, h] -> [b, s ,h]
input_features = input_features.transpose(0,1).contiguous()
if add_pooling:
# [b, h]
input_features = torch.mean(input_features, dim = 1)
for i, layer in enumerate(self.layers):
if i > 0:
input_features = self.activation_func(input_features)
input_features = layer(input_features)
return input_features
class ProteinGLMContactHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.activation_func = config.activation_func
self.layers = torch.nn.ModuleList()
last_size = config.hidden_size * 2
for sz in config.inter_hidden_size:
this_layer = torch.nn.Linear(last_size, sz, bias=config.bias)
last_size = sz
self.layers.append(this_layer)
def outer_concat(self, x):
batch_size, seq_len, features = x.shape
# Permute to [batch_size, features, seq_len]
x = x.permute(0, 2, 1)
# Introduce new dimensions for broadcasting
x_1 = x[:, None, :, :, None] # [batch_size, 1, features, seq_len, 1]
x_2 = x[:, None, :, None, :] # [batch_size, 1, features, 1, seq_len]
# Repeat along new dimensions
x_1 = x_1.repeat(1, 1, 1, 1, seq_len) # [batch_size, 1, features, seq_len, seq_len]
x_2 = x_2.repeat(1, 1, 1, seq_len, 1) # [batch_size, 1, features, seq_len, seq_len]
# Concatenate along the second dimension
x = torch.cat((x_1, x_2), dim=1) # [batch_size, 2, features, seq_len, seq_len]
# Get lower triangular indices
I, J = torch.tril_indices(seq_len, seq_len, -1)
# Symmetrize
x[:, :, :, I, J] = x[:, :, :, J, I]
# Permute to desired shape and make contiguous
x = x.permute(0, 3, 4, 2, 1).contiguous() # [batch_size, seq_len, seq_len, features, 2]
# Reshape to combine the last two dimensions
x = x.view(batch_size, seq_len, seq_len, features * 2) # [batch_size, seq_len, seq_len, features * 2]
return x
def forward(self,
input_features,
add_pooling: Optional[bool] = True
):
# [s, b, h] -> [b, s ,h]
input_features = input_features.transpose(0,1).contiguous()
input_features = self.outer_concat(input_features)
for i, layer in enumerate(self.layers):
if i > 0:
input_features = self.activation_func(input_features)
input_features = layer(input_features)
return input_features
class ProteinGLMForCasualLM(ProteinGLMPreTrainedModel):
def __init__(self, config: ProteinGLMConfig, empty_init=True, device=None):
super().__init__(config)
self.max_sequence_length = config.max_length
self.transformer = ProteinGLMModel(config, empty_init=empty_init, device=device)
self.config = config
if self.config.quantization_bit:
print(f"Begin Quantization to {self.config.quantization_bit} bit")
self.quantize(self.config.quantization_bit, empty_init=True, device=device)
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
) -> Dict[str, Any]:
# update past_key_values
cache_name, cache = self._extract_past_from_model_output(outputs)
model_kwargs[cache_name] = cache
# update attention mask
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
model_kwargs["attention_mask"] = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
)
# update position ids
if "position_ids" in model_kwargs:
position_ids = model_kwargs["position_ids"]
new_position_id = position_ids[..., -1:].clone() # [batch_size, 2, 1]
if self.config.rotary_embedding_2d:
new_position_id[:, 1] += 1 # Only update the 2nd dimension
else:
new_position_id[:] += 1
model_kwargs["position_ids"] = torch.cat(
[position_ids, new_position_id], dim=-1
) # [batch_size, 2, seq_len+1]
model_kwargs["is_first_forward"] = False
return model_kwargs
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
is_first_forward: bool = True,
**kwargs
) -> dict:
# only last token for input_ids if past is not None
if position_ids is None:
position_ids = self.get_position_ids(input_ids, device=input_ids.device) # position_ids: [batch_size, 2, seq_len]
if not is_first_forward:
if past_key_values is not None:
position_ids = position_ids[..., -1:]
input_ids = input_ids[:, -1:]
return {
"input_ids": input_ids,
"past_key_values": past_key_values,
"position_ids": position_ids,
"attention_mask": attention_mask,
"return_last_logit": True,
"use_cache": use_cache
}
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
return_last_logit: Optional[bool] = False
):
if self.config.is_causal:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if position_ids is None:
position_ids = self.get_position_ids(input_ids, device=input_ids.device)
transformer_outputs = self.transformer(
input_ids=input_ids,
position_ids=position_ids, # position_ids: [batch_size, 2, seq_len]
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = transformer_outputs[0]
if return_last_logit:
hidden_states = hidden_states[-1:]
lm_logits = self.transformer.output_layer(hidden_states)
lm_logits = lm_logits.transpose(0, 1).contiguous()
loss = None
if labels is not None:
lm_logits = lm_logits.to(torch.float32)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss(ignore_index=-100)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
lm_logits = lm_logits.to(hidden_states.dtype)
loss = loss.to(hidden_states.dtype)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@staticmethod
def _reorder_cache(
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
Output shares the same memory storage as `past`.
"""
return tuple(
(
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
)
for layer_past in past
)
@torch.inference_mode()
def chat(self, tokenizer, query: str, max_length: int = 256, num_beams=1, do_sample=True,
top_p=1.0, temperature=1.0, logits_processor=None, **kwargs):
if logits_processor is None:
logits_processor = LogitsProcessorList()
logits_processor.append(InvalidScoreLogitsProcessor())
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
inputs = tokenizer.apply_chat_template(query, add_generation_prompt=True, tokenize=True,
return_tensors="pt", return_dict=True)
position_ids = self.get_position_ids(inputs['input_ids'], device=self.device) # TODO: ADD BATCH
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<eop>")]
inputs["position_ids"] = position_ids
inputs = inputs.to(self.device)
outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
outputs = outputs.tolist()[0][3:] # 3 for generation prompt "<gmask><sop><eos>"
if outputs[-1] in eos_token_id:
outputs = outputs[:-1]
response = tokenizer.decode(outputs)
return response
# TODO: fix bug in streaming chat
@torch.inference_mode()
def stream_chat(self, tokenizer, query: str, max_length: int = 56, num_beams=1, do_sample=True,
top_p=0.8, temperature=0.8, logits_processor=None, past_key_values = None, **kwargs):
if logits_processor is None:
logits_processor = LogitsProcessorList()
logits_processor.append(InvalidScoreLogitsProcessor())
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<eop>")]
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
inputs = tokenizer.apply_chat_template(query, add_generation_prompt=True, tokenize=True,
return_tensors="pt", return_dict=True)
position_ids = self.get_position_ids(inputs['input_ids'], device=self.device) # TODO: ADD BATCH
eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<eop>")]
inputs["position_ids"] = position_ids
inputs = inputs.to(self.device)
offset = 3 # 3 for generation prompt
for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
eos_token_id=eos_token_id, return_past_key_values=False,
**gen_kwargs):
outputs = outputs.tolist()[0][3:]
if outputs[-1] in eos_token_id:
outputs = outputs[:-1]
# offset = 3 + len(outputs)
response = tokenizer.decode(outputs)
if response:
yield response
@torch.inference_mode()
def stream_generate(
self,
input_ids,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
return_past_key_values=False,
**kwargs,
):
breakpoint()
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
if generation_config is None:
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs)
model_kwargs["use_cache"] = generation_config.use_cache
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
if has_default_max_length and generation_config.max_new_tokens is None:
warnings.warn(
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
" recommend using `max_new_tokens` to control the maximum length of the generation.",
UserWarning,
)
elif generation_config.max_new_tokens is not None:
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
if not has_default_max_length:
logger.warn(
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
"Please refer to the documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
UserWarning,
)
if input_ids_seq_length >= generation_config.max_length:
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
logger.warning(
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
" increasing `max_new_tokens`."
)
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
encoder_input_ids=input_ids,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
logits_processor=logits_processor,
)
stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria
)
logits_warper = self._get_logits_warper(generation_config)
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
scores = None
while True:
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = self(
**model_inputs,
return_dict=True,
output_attentions=False,
output_hidden_states=False,
)
next_token_logits = outputs.logits[:, -1, :]
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
next_token_scores = logits_warper(input_ids, next_token_scores)
# sample
probs = nn.functional.softmax(next_token_scores, dim=-1)
if generation_config.do_sample:
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
next_tokens = torch.argmax(probs, dim=-1)
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
unfinished_sequences = unfinished_sequences.mul(
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
)
if return_past_key_values:
yield input_ids, outputs.past_key_values
else:
yield input_ids
# stop when each sentence is finished, or if we exceed the maximum length
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
break