Louise-Belcher
/
Finetune Model for WAV 27db Sample Rate 22050
/finetune_archived_230424-020648
/17042023_092830_train.yaml
name: 'louise' | |
model: extensibletrainer | |
scale: 1 | |
gpu_ids: [0] # Manually edit this if the GPU you want to train on is not your primary, as this will set the env var that exposes CUDA devices | |
start_step: 0 | |
checkpointing_enabled: true | |
fp16: True | |
bitsandbytes: True | |
gpus: 1 | |
datasets: | |
train: | |
name: training | |
n_workers: 2 | |
batch_size: 28 | |
mode: paired_voice_audio | |
path: ./training/louise/train.txt | |
fetcher_mode: ['lj'] | |
phase: train | |
max_wav_length: 255995 # ~11.6 seconds | |
max_text_length: 200 | |
sample_rate: 22050 | |
load_conditioning: True | |
num_conditioning_candidates: 2 | |
conditioning_length: 44000 | |
use_bpe_tokenizer: True | |
tokenizer_vocab: ./modules/tortoise-tts/tortoise/data/tokenizer.json # ./models/tortoise/bpe_lowercase_asr_256.json | |
load_aligned_codes: False | |
val: | |
name: validation | |
n_workers: 2 | |
batch_size: 7 | |
mode: paired_voice_audio | |
path: ./training/louise/validation.txt | |
fetcher_mode: ['lj'] | |
phase: val | |
max_wav_length: 255995 | |
max_text_length: 200 | |
sample_rate: 22050 | |
load_conditioning: True | |
num_conditioning_candidates: 2 | |
conditioning_length: 44000 | |
use_bpe_tokenizer: True | |
tokenizer_vocab: ./modules/tortoise-tts/tortoise/data/tokenizer.json # ./models/tortoise/bpe_lowercase_asr_256.json | |
load_aligned_codes: False | |
steps: | |
gpt_train: | |
training: gpt | |
loss_log_buffer: 500 | |
# Generally follows the recipe from the DALLE paper. | |
optimizer: adamw # this should be adamw_zero if you're using distributed training | |
optimizer_params: | |
lr: !!float 1e-05 # originally: 1e-4 | |
weight_decay: !!float 1e-2 | |
beta1: 0.9 | |
beta2: 0.96 | |
clip_grad_eps: 4 | |
injectors: | |
paired_to_mel: | |
type: torch_mel_spectrogram | |
mel_norm_file: ./modules/tortoise-tts/tortoise/data/mel_norms.pth # ./models/tortoise/clips_mel_norms.pth | |
in: wav | |
out: paired_mel | |
paired_cond_to_mel: | |
type: for_each | |
subtype: torch_mel_spectrogram | |
mel_norm_file: ./modules/tortoise-tts/tortoise/data/mel_norms.pth # ./models/tortoise/clips_mel_norms.pth | |
in: conditioning | |
out: paired_conditioning_mel | |
to_codes: | |
type: discrete_token | |
in: paired_mel | |
out: paired_mel_codes | |
dvae_config: "./models/tortoise/train_diffusion_vocoder_22k_level.yml" | |
paired_fwd_text: | |
type: generator | |
generator: gpt | |
in: [paired_conditioning_mel, padded_text, text_lengths, paired_mel_codes, wav_lengths] | |
out: [loss_text_ce, loss_mel_ce, logits] | |
losses: | |
text_ce: | |
type: direct | |
weight: 0.01 | |
key: loss_text_ce | |
mel_ce: | |
type: direct | |
weight: 1 | |
key: loss_mel_ce | |
networks: | |
gpt: | |
type: generator | |
which_model_G: unified_voice2 | |
kwargs: | |
layers: 30 # originally: 8 | |
model_dim: 1024 # originally: 512 | |
heads: 16 # originally: 8 | |
max_text_tokens: 402 # originally: 120 | |
max_mel_tokens: 604 # originally: 250 | |
max_conditioning_inputs: 2 # originally: 1 | |
mel_length_compression: 1024 | |
number_text_tokens: 256 # supposed to be 255 for newer unified_voice files | |
number_mel_codes: 8194 | |
start_mel_token: 8192 | |
stop_mel_token: 8193 | |
start_text_token: 255 | |
train_solo_embeddings: False # missing in uv3/4 | |
use_mel_codes_as_input: True # ditto | |
checkpointing: True | |
tortoise_compat: True | |
# freeze_everything_but_position_embeddings: True | |
path: | |
strict_load: true | |
# pretrain_model_gpt: './models/tortoise/autoregressive.pth' | |
resume_state: './training/louise/finetune/training_state//1900.state' | |
train: | |
niter: 2750 | |
warmup_iter: -1 | |
mega_batch_factor: 4 | |
val_freq: 100 | |
ema_enabled: false # I really don't think EMA matters | |
default_lr_scheme: MultiStepLR | |
gen_lr_steps: [2, 4, 9, 18, 25, 33, 50, 59] | |
lr_gamma: 0.5 | |
eval: | |
pure: False | |
output_state: gen | |
logger: | |
save_checkpoint_freq: 100 | |
visuals: [gen, mel] | |
visual_debug_rate: 1100 | |
is_mel_spectrogram: true | |