NeverlandPeter
commited on
Commit
β’
502d2e6
1
Parent(s):
76efecd
new model
Browse files- img_demoAE.py +182 -102
- img_test/{genshin-out-13bit.png β genshin-out-v7c_d8_256-224-13bit-OB32x0.5-745.png} +0 -0
- img_test/genshin-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png +0 -0
- img_test/{kodim14-modified-out-13bit.png β kodim14-modified-out-v7c_d8_256-224-13bit-OB32x0.5-745.png} +0 -0
- img_test/kodim14-modified-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png +0 -0
- img_test/{kodim19-modified-out-13bit.png β kodim19-modified-out-v7c_d8_256-224-13bit-OB32x0.5-745.png} +0 -0
- img_test/kodim19-modified-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png +0 -0
- img_test/{kodim24-modified-out-13bit.png β kodim24-modified-out-v7c_d8_256-224-13bit-OB32x0.5-745.png} +0 -0
- img_test/kodim24-modified-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png +0 -0
- img_test/{lena-out-13bit.png β lena-out-v7c_d8_256-224-13bit-OB32x0.5-745.png} +0 -0
- img_test/lena-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png +0 -0
- out-v7d_d16_512-224-13bit-OB32x0.5-2487-D.pth +3 -0
- out-v7d_d16_512-224-13bit-OB32x0.5-2487-E.pth +3 -0
img_demoAE.py
CHANGED
@@ -14,7 +14,8 @@ print(f'loading...')
|
|
14 |
|
15 |
########################################################################################################
|
16 |
|
17 |
-
model_prefix = 'out-v7c_d8_256-224-13bit-OB32x0.5-745'
|
|
|
18 |
input_imgs = ['lena.png', 'genshin.png', 'kodim14-modified.png', 'kodim19-modified.png', 'kodim24-modified.png']
|
19 |
device = 'cpu' # cpu cuda
|
20 |
|
@@ -29,108 +30,187 @@ class ToBinary(torch.autograd.Function):
|
|
29 |
def backward(ctx, grad_output):
|
30 |
return grad_output.clone() # pass-through
|
31 |
|
32 |
-
class
|
33 |
-
def __init__(self,
|
34 |
super().__init__()
|
35 |
-
self.
|
36 |
-
|
37 |
-
self.
|
38 |
-
|
39 |
-
self.
|
40 |
-
|
41 |
-
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
|
42 |
-
|
43 |
-
self.B00 = nn.BatchNorm2d(dd*4)
|
44 |
-
self.C00 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
|
45 |
-
self.C01 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
|
46 |
-
self.C02 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
|
47 |
-
self.C03 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
|
48 |
-
|
49 |
-
self.B10 = nn.BatchNorm2d(dd*16)
|
50 |
-
self.C10 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
|
51 |
-
self.C11 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
|
52 |
-
self.C12 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
|
53 |
-
self.C13 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
|
54 |
-
|
55 |
-
self.B20 = nn.BatchNorm2d(dd*64)
|
56 |
-
self.C20 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
|
57 |
-
self.C21 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
|
58 |
-
self.C22 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
|
59 |
-
self.C23 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
|
60 |
-
|
61 |
-
self.COUT = nn.Conv2d(dd*64, args.my_img_bit, kernel_size=3, padding=1)
|
62 |
-
|
63 |
-
def forward(self, img):
|
64 |
ACT = F.mish
|
65 |
-
|
66 |
-
x = self.
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
########################################################################################################
|
136 |
|
@@ -165,4 +245,4 @@ for input_img in input_imgs:
|
|
165 |
print(f'Code shape = {zz.shape}\n{zz.cpu().numpy()}\n')
|
166 |
|
167 |
out = decoder(z)
|
168 |
-
vision.utils.save_image(out, f"img_test/{input_img.split('.')[0]}-
|
|
|
14 |
|
15 |
########################################################################################################
|
16 |
|
17 |
+
# model_prefix = 'out-v7c_d8_256-224-13bit-OB32x0.5-745'
|
18 |
+
model_prefix = 'out-v7d_d16_512-224-13bit-OB32x0.5-2487'
|
19 |
input_imgs = ['lena.png', 'genshin.png', 'kodim14-modified.png', 'kodim19-modified.png', 'kodim24-modified.png']
|
20 |
device = 'cpu' # cpu cuda
|
21 |
|
|
|
30 |
def backward(ctx, grad_output):
|
31 |
return grad_output.clone() # pass-through
|
32 |
|
33 |
+
class ResBlock(nn.Module):
|
34 |
+
def __init__(self, c_x, c_hidden):
|
35 |
super().__init__()
|
36 |
+
self.B0 = nn.BatchNorm2d(c_x)
|
37 |
+
self.C0 = nn.Conv2d(c_x, c_hidden, kernel_size=3, padding=1)
|
38 |
+
self.C1 = nn.Conv2d(c_hidden, c_x, kernel_size=3, padding=1)
|
39 |
+
self.C2 = nn.Conv2d(c_x, c_hidden, kernel_size=3, padding=1)
|
40 |
+
self.C3 = nn.Conv2d(c_hidden, c_x, kernel_size=3, padding=1)
|
41 |
+
def forward(self, x):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
ACT = F.mish
|
43 |
+
x = x + self.C1(ACT(self.C0(ACT(self.B0(x)))))
|
44 |
+
x = x + self.C3(ACT(self.C2(x)))
|
45 |
+
return x
|
46 |
+
|
47 |
+
if model_prefix == 'out-v7c_d8_256-224-13bit-OB32x0.5-745':
|
48 |
+
class R_ENCODER(nn.Module):
|
49 |
+
def __init__(self, args):
|
50 |
+
super().__init__()
|
51 |
+
self.args = args
|
52 |
+
dd = 8
|
53 |
+
self.Bxx = nn.BatchNorm2d(dd*64)
|
54 |
+
|
55 |
+
self.CIN = nn.Conv2d(3, dd, kernel_size=3, padding=1)
|
56 |
+
self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
|
57 |
+
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
|
58 |
+
|
59 |
+
self.B00 = nn.BatchNorm2d(dd*4)
|
60 |
+
self.C00 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
|
61 |
+
self.C01 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
|
62 |
+
self.C02 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
|
63 |
+
self.C03 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
|
64 |
+
|
65 |
+
self.B10 = nn.BatchNorm2d(dd*16)
|
66 |
+
self.C10 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
|
67 |
+
self.C11 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
|
68 |
+
self.C12 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
|
69 |
+
self.C13 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
|
70 |
+
|
71 |
+
self.B20 = nn.BatchNorm2d(dd*64)
|
72 |
+
self.C20 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
|
73 |
+
self.C21 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
|
74 |
+
self.C22 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
|
75 |
+
self.C23 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
|
76 |
+
|
77 |
+
self.COUT = nn.Conv2d(dd*64, args.my_img_bit, kernel_size=3, padding=1)
|
78 |
+
|
79 |
+
def forward(self, img):
|
80 |
+
ACT = F.mish
|
81 |
+
|
82 |
+
x = self.CIN(img)
|
83 |
+
xx = self.Bxx(F.pixel_unshuffle(x, 8))
|
84 |
+
x = x + self.Cx1(ACT(self.Cx0(x)))
|
85 |
+
|
86 |
+
x = F.pixel_unshuffle(x, 2)
|
87 |
+
x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
|
88 |
+
x = x + self.C03(ACT(self.C02(x)))
|
89 |
+
|
90 |
+
x = F.pixel_unshuffle(x, 2)
|
91 |
+
x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
|
92 |
+
x = x + self.C13(ACT(self.C12(x)))
|
93 |
+
|
94 |
+
x = F.pixel_unshuffle(x, 2)
|
95 |
+
x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
|
96 |
+
x = x + self.C23(ACT(self.C22(x)))
|
97 |
+
|
98 |
+
x = self.COUT(x + xx)
|
99 |
+
return torch.sigmoid(x)
|
100 |
+
|
101 |
+
class R_DECODER(nn.Module):
|
102 |
+
def __init__(self, args):
|
103 |
+
super().__init__()
|
104 |
+
self.args = args
|
105 |
+
dd = 8
|
106 |
+
self.CIN = nn.Conv2d(args.my_img_bit, dd*64, kernel_size=3, padding=1)
|
107 |
+
|
108 |
+
self.B00 = nn.BatchNorm2d(dd*64)
|
109 |
+
self.C00 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
|
110 |
+
self.C01 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
|
111 |
+
self.C02 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
|
112 |
+
self.C03 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
|
113 |
+
|
114 |
+
self.B10 = nn.BatchNorm2d(dd*16)
|
115 |
+
self.C10 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
|
116 |
+
self.C11 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
|
117 |
+
self.C12 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
|
118 |
+
self.C13 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
|
119 |
+
|
120 |
+
self.B20 = nn.BatchNorm2d(dd*4)
|
121 |
+
self.C20 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
|
122 |
+
self.C21 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
|
123 |
+
self.C22 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
|
124 |
+
self.C23 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
|
125 |
+
|
126 |
+
self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
|
127 |
+
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
|
128 |
+
self.COUT = nn.Conv2d(dd, 3, kernel_size=3, padding=1)
|
129 |
+
|
130 |
+
def forward(self, code):
|
131 |
+
ACT = F.mish
|
132 |
+
x = self.CIN(code)
|
133 |
+
|
134 |
+
x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
|
135 |
+
x = x + self.C03(ACT(self.C02(x)))
|
136 |
+
x = F.pixel_shuffle(x, 2)
|
137 |
+
|
138 |
+
x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
|
139 |
+
x = x + self.C13(ACT(self.C12(x)))
|
140 |
+
x = F.pixel_shuffle(x, 2)
|
141 |
+
|
142 |
+
x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
|
143 |
+
x = x + self.C23(ACT(self.C22(x)))
|
144 |
+
x = F.pixel_shuffle(x, 2)
|
145 |
+
|
146 |
+
x = x + self.Cx1(ACT(self.Cx0(x)))
|
147 |
+
x = self.COUT(x)
|
148 |
+
|
149 |
+
return torch.sigmoid(x)
|
150 |
+
else:
|
151 |
+
class R_ENCODER(nn.Module):
|
152 |
+
def __init__(self, args):
|
153 |
+
super().__init__()
|
154 |
+
self.args = args
|
155 |
+
if 'd16_512' in model_prefix:
|
156 |
+
dd, ee, ff = 16, 64, 512
|
157 |
+
else:
|
158 |
+
dd, ee, ff = 32, 128, 1024
|
159 |
+
self.CXX = nn.Conv2d(3, dd, kernel_size=3, padding=1)
|
160 |
+
self.BXX = nn.BatchNorm2d(dd)
|
161 |
+
self.CX0 = nn.Conv2d(dd, ee, kernel_size=3, padding=1)
|
162 |
+
self.CX1 = nn.Conv2d(ee, dd, kernel_size=3, padding=1)
|
163 |
+
self.R0 = ResBlock(dd*4, ff)
|
164 |
+
self.R1 = ResBlock(dd*16, ff)
|
165 |
+
self.R2 = ResBlock(dd*64, ff)
|
166 |
+
self.CZZ = nn.Conv2d(dd*64, args.my_img_bit, kernel_size=3, padding=1)
|
167 |
+
|
168 |
+
def forward(self, x):
|
169 |
+
ACT = F.mish
|
170 |
+
x = self.BXX(self.CXX(x))
|
171 |
+
|
172 |
+
x = x + self.CX1(ACT(self.CX0(x)))
|
173 |
+
x = F.pixel_unshuffle(x, 2)
|
174 |
+
x = self.R0(x)
|
175 |
+
x = F.pixel_unshuffle(x, 2)
|
176 |
+
x = self.R1(x)
|
177 |
+
x = F.pixel_unshuffle(x, 2)
|
178 |
+
x = self.R2(x)
|
179 |
+
|
180 |
+
x = self.CZZ(x)
|
181 |
+
return torch.sigmoid(x)
|
182 |
+
|
183 |
+
class R_DECODER(nn.Module):
|
184 |
+
def __init__(self, args):
|
185 |
+
super().__init__()
|
186 |
+
self.args = args
|
187 |
+
if 'd16_512' in model_prefix:
|
188 |
+
dd, ee, ff = 16, 64, 512
|
189 |
+
else:
|
190 |
+
dd, ee, ff = 32, 128, 1024
|
191 |
+
self.CZZ = nn.Conv2d(args.my_img_bit, dd*64, kernel_size=3, padding=1)
|
192 |
+
self.BZZ = nn.BatchNorm2d(dd*64)
|
193 |
+
self.R0 = ResBlock(dd*64, ff)
|
194 |
+
self.R1 = ResBlock(dd*16, ff)
|
195 |
+
self.R2 = ResBlock(dd*4, ff)
|
196 |
+
self.CX0 = nn.Conv2d(dd, ee, kernel_size=3, padding=1)
|
197 |
+
self.CX1 = nn.Conv2d(ee, dd, kernel_size=3, padding=1)
|
198 |
+
self.CXX = nn.Conv2d(dd, 3, kernel_size=3, padding=1)
|
199 |
+
|
200 |
+
def forward(self, x):
|
201 |
+
ACT = F.mish
|
202 |
+
x = self.BZZ(self.CZZ(x))
|
203 |
+
|
204 |
+
x = self.R0(x)
|
205 |
+
x = F.pixel_shuffle(x, 2)
|
206 |
+
x = self.R1(x)
|
207 |
+
x = F.pixel_shuffle(x, 2)
|
208 |
+
x = self.R2(x)
|
209 |
+
x = F.pixel_shuffle(x, 2)
|
210 |
+
x = x + self.CX1(ACT(self.CX0(x)))
|
211 |
+
|
212 |
+
x = self.CXX(x)
|
213 |
+
return torch.sigmoid(x)
|
214 |
|
215 |
########################################################################################################
|
216 |
|
|
|
245 |
print(f'Code shape = {zz.shape}\n{zz.cpu().numpy()}\n')
|
246 |
|
247 |
out = decoder(z)
|
248 |
+
vision.utils.save_image(out, f"img_test/{input_img.split('.')[0]}-{model_prefix}.png")
|
img_test/{genshin-out-13bit.png β genshin-out-v7c_d8_256-224-13bit-OB32x0.5-745.png}
RENAMED
File without changes
|
img_test/genshin-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png
ADDED
img_test/{kodim14-modified-out-13bit.png β kodim14-modified-out-v7c_d8_256-224-13bit-OB32x0.5-745.png}
RENAMED
File without changes
|
img_test/kodim14-modified-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png
ADDED
img_test/{kodim19-modified-out-13bit.png β kodim19-modified-out-v7c_d8_256-224-13bit-OB32x0.5-745.png}
RENAMED
File without changes
|
img_test/kodim19-modified-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png
ADDED
img_test/{kodim24-modified-out-13bit.png β kodim24-modified-out-v7c_d8_256-224-13bit-OB32x0.5-745.png}
RENAMED
File without changes
|
img_test/kodim24-modified-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png
ADDED
img_test/{lena-out-13bit.png β lena-out-v7c_d8_256-224-13bit-OB32x0.5-745.png}
RENAMED
File without changes
|
img_test/lena-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png
ADDED
out-v7d_d16_512-224-13bit-OB32x0.5-2487-D.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c679523f7d74d54d125746a365f27a6cbed0503d48ddcab872f28131866924a
|
3 |
+
size 99724745
|
out-v7d_d16_512-224-13bit-OB32x0.5-2487-E.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bf1bdeff4ebf39e4a96044f91da4cba9e525fc29ac3effd64b349637c7caf93
|
3 |
+
size 99704585
|