|
from io import BytesIO |
|
import os |
|
import sys |
|
import traceback |
|
from infer.lib import jit |
|
from infer.lib.jit.get_synthesizer import get_synthesizer |
|
from time import time as ttime |
|
import fairseq |
|
import faiss |
|
import numpy as np |
|
import parselmouth |
|
import pyworld |
|
import scipy.signal as signal |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torchcrepe |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(now_dir) |
|
from multiprocessing import Manager as M |
|
|
|
from configs.config import Config |
|
|
|
|
|
|
|
mm = M() |
|
|
|
|
|
def printt(strr, *args): |
|
if len(args) == 0: |
|
print(strr) |
|
else: |
|
print(strr % args) |
|
|
|
|
|
|
|
|
|
class RVC: |
|
def __init__( |
|
self, |
|
key, |
|
pth_path, |
|
index_path, |
|
index_rate, |
|
n_cpu, |
|
inp_q, |
|
opt_q, |
|
config: Config, |
|
last_rvc=None, |
|
) -> None: |
|
""" |
|
初始化 |
|
""" |
|
try: |
|
if config.dml == True: |
|
|
|
def forward_dml(ctx, x, scale): |
|
ctx.scale = scale |
|
res = x.clone().detach() |
|
return res |
|
|
|
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml |
|
|
|
self.config = config |
|
self.inp_q = inp_q |
|
self.opt_q = opt_q |
|
|
|
self.device = config.device |
|
self.f0_up_key = key |
|
self.f0_min = 50 |
|
self.f0_max = 1100 |
|
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) |
|
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) |
|
self.n_cpu = n_cpu |
|
self.use_jit = self.config.use_jit |
|
self.is_half = config.is_half |
|
|
|
if index_rate != 0: |
|
self.index = faiss.read_index(index_path) |
|
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal) |
|
printt("Index search enabled") |
|
self.pth_path: str = pth_path |
|
self.index_path = index_path |
|
self.index_rate = index_rate |
|
self.cache_pitch: torch.Tensor = torch.zeros( |
|
1024, device=self.device, dtype=torch.long |
|
) |
|
self.cache_pitchf = torch.zeros( |
|
1024, device=self.device, dtype=torch.float32 |
|
) |
|
|
|
if last_rvc is None: |
|
models, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( |
|
["assets/hubert/hubert_base.pt"], |
|
suffix="", |
|
) |
|
hubert_model = models[0] |
|
hubert_model = hubert_model.to(self.device) |
|
if self.is_half: |
|
hubert_model = hubert_model.half() |
|
else: |
|
hubert_model = hubert_model.float() |
|
hubert_model.eval() |
|
self.model = hubert_model |
|
else: |
|
self.model = last_rvc.model |
|
|
|
self.net_g: nn.Module = None |
|
|
|
def set_default_model(): |
|
self.net_g, cpt = get_synthesizer(self.pth_path, self.device) |
|
self.tgt_sr = cpt["config"][-1] |
|
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] |
|
self.if_f0 = cpt.get("f0", 1) |
|
self.version = cpt.get("version", "v1") |
|
if self.is_half: |
|
self.net_g = self.net_g.half() |
|
else: |
|
self.net_g = self.net_g.float() |
|
|
|
def set_jit_model(): |
|
jit_pth_path = self.pth_path.rstrip(".pth") |
|
jit_pth_path += ".half.jit" if self.is_half else ".jit" |
|
reload = False |
|
if str(self.device) == "cuda": |
|
self.device = torch.device("cuda:0") |
|
if os.path.exists(jit_pth_path): |
|
cpt = jit.load(jit_pth_path) |
|
model_device = cpt["device"] |
|
if model_device != str(self.device): |
|
reload = True |
|
else: |
|
reload = True |
|
|
|
if reload: |
|
cpt = jit.synthesizer_jit_export( |
|
self.pth_path, |
|
"script", |
|
None, |
|
device=self.device, |
|
is_half=self.is_half, |
|
) |
|
|
|
self.tgt_sr = cpt["config"][-1] |
|
self.if_f0 = cpt.get("f0", 1) |
|
self.version = cpt.get("version", "v1") |
|
self.net_g = torch.jit.load( |
|
BytesIO(cpt["model"]), map_location=self.device |
|
) |
|
self.net_g.infer = self.net_g.forward |
|
self.net_g.eval().to(self.device) |
|
|
|
def set_synthesizer(): |
|
if self.use_jit and not config.dml: |
|
if self.is_half and "cpu" in str(self.device): |
|
printt( |
|
"Use default Synthesizer model. \ |
|
Jit is not supported on the CPU for half floating point" |
|
) |
|
set_default_model() |
|
else: |
|
set_jit_model() |
|
else: |
|
set_default_model() |
|
|
|
if last_rvc is None or last_rvc.pth_path != self.pth_path: |
|
set_synthesizer() |
|
else: |
|
self.tgt_sr = last_rvc.tgt_sr |
|
self.if_f0 = last_rvc.if_f0 |
|
self.version = last_rvc.version |
|
self.is_half = last_rvc.is_half |
|
if last_rvc.use_jit != self.use_jit: |
|
set_synthesizer() |
|
else: |
|
self.net_g = last_rvc.net_g |
|
|
|
if last_rvc is not None and hasattr(last_rvc, "model_rmvpe"): |
|
self.model_rmvpe = last_rvc.model_rmvpe |
|
if last_rvc is not None and hasattr(last_rvc, "model_fcpe"): |
|
self.device_fcpe = last_rvc.device_fcpe |
|
self.model_fcpe = last_rvc.model_fcpe |
|
except: |
|
printt(traceback.format_exc()) |
|
|
|
def change_key(self, new_key): |
|
self.f0_up_key = new_key |
|
|
|
def change_index_rate(self, new_index_rate): |
|
if new_index_rate != 0 and self.index_rate == 0: |
|
self.index = faiss.read_index(self.index_path) |
|
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal) |
|
printt("Index search enabled") |
|
self.index_rate = new_index_rate |
|
|
|
def get_f0_post(self, f0): |
|
if not torch.is_tensor(f0): |
|
f0 = torch.from_numpy(f0) |
|
f0 = f0.float().to(self.device).squeeze() |
|
f0_mel = 1127 * torch.log(1 + f0 / 700) |
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / ( |
|
self.f0_mel_max - self.f0_mel_min |
|
) + 1 |
|
f0_mel[f0_mel <= 1] = 1 |
|
f0_mel[f0_mel > 255] = 255 |
|
f0_coarse = torch.round(f0_mel).long() |
|
return f0_coarse, f0 |
|
|
|
def get_f0(self, x, f0_up_key, n_cpu, method="harvest"): |
|
n_cpu = int(n_cpu) |
|
if method == "crepe": |
|
return self.get_f0_crepe(x, f0_up_key) |
|
if method == "rmvpe": |
|
return self.get_f0_rmvpe(x, f0_up_key) |
|
if method == "fcpe": |
|
return self.get_f0_fcpe(x, f0_up_key) |
|
x = x.cpu().numpy() |
|
if method == "pm": |
|
p_len = x.shape[0] // 160 + 1 |
|
f0_min = 65 |
|
l_pad = int(np.ceil(1.5 / f0_min * 16000)) |
|
r_pad = l_pad + 1 |
|
s = parselmouth.Sound(np.pad(x, (l_pad, r_pad)), 16000).to_pitch_ac( |
|
time_step=0.01, |
|
voicing_threshold=0.6, |
|
pitch_floor=f0_min, |
|
pitch_ceiling=1100, |
|
) |
|
assert np.abs(s.t1 - 1.5 / f0_min) < 0.001 |
|
f0 = s.selected_array["frequency"] |
|
if len(f0) < p_len: |
|
f0 = np.pad(f0, (0, p_len - len(f0))) |
|
f0 = f0[:p_len] |
|
f0 *= pow(2, f0_up_key / 12) |
|
return self.get_f0_post(f0) |
|
if n_cpu == 1: |
|
f0, t = pyworld.harvest( |
|
x.astype(np.double), |
|
fs=16000, |
|
f0_ceil=1100, |
|
f0_floor=50, |
|
frame_period=10, |
|
) |
|
f0 = signal.medfilt(f0, 3) |
|
f0 *= pow(2, f0_up_key / 12) |
|
return self.get_f0_post(f0) |
|
f0bak = np.zeros(x.shape[0] // 160 + 1, dtype=np.float64) |
|
length = len(x) |
|
part_length = 160 * ((length // 160 - 1) // n_cpu + 1) |
|
n_cpu = (length // 160 - 1) // (part_length // 160) + 1 |
|
ts = ttime() |
|
res_f0 = mm.dict() |
|
for idx in range(n_cpu): |
|
tail = part_length * (idx + 1) + 320 |
|
if idx == 0: |
|
self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts)) |
|
else: |
|
self.inp_q.put( |
|
(idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts) |
|
) |
|
while 1: |
|
res_ts = self.opt_q.get() |
|
if res_ts == ts: |
|
break |
|
f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])] |
|
for idx, f0 in enumerate(f0s): |
|
if idx == 0: |
|
f0 = f0[:-3] |
|
elif idx != n_cpu - 1: |
|
f0 = f0[2:-3] |
|
else: |
|
f0 = f0[2:] |
|
f0bak[part_length * idx // 160 : part_length * idx // 160 + f0.shape[0]] = ( |
|
f0 |
|
) |
|
f0bak = signal.medfilt(f0bak, 3) |
|
f0bak *= pow(2, f0_up_key / 12) |
|
return self.get_f0_post(f0bak) |
|
|
|
def get_f0_crepe(self, x, f0_up_key): |
|
if "privateuseone" in str( |
|
self.device |
|
): |
|
return self.get_f0(x, f0_up_key, 1, "fcpe") |
|
|
|
f0, pd = torchcrepe.predict( |
|
x.unsqueeze(0).float(), |
|
16000, |
|
160, |
|
self.f0_min, |
|
self.f0_max, |
|
"full", |
|
batch_size=512, |
|
|
|
device=self.device, |
|
return_periodicity=True, |
|
) |
|
pd = torchcrepe.filter.median(pd, 3) |
|
f0 = torchcrepe.filter.mean(f0, 3) |
|
f0[pd < 0.1] = 0 |
|
f0 *= pow(2, f0_up_key / 12) |
|
return self.get_f0_post(f0) |
|
|
|
def get_f0_rmvpe(self, x, f0_up_key): |
|
if hasattr(self, "model_rmvpe") == False: |
|
from infer.lib.rmvpe import RMVPE |
|
|
|
printt("Loading rmvpe model") |
|
self.model_rmvpe = RMVPE( |
|
"assets/rmvpe/rmvpe.pt", |
|
is_half=self.is_half, |
|
device=self.device, |
|
use_jit=self.config.use_jit, |
|
) |
|
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03) |
|
f0 *= pow(2, f0_up_key / 12) |
|
return self.get_f0_post(f0) |
|
|
|
def get_f0_fcpe(self, x, f0_up_key): |
|
if hasattr(self, "model_fcpe") == False: |
|
from torchfcpe import spawn_bundled_infer_model |
|
|
|
printt("Loading fcpe model") |
|
if "privateuseone" in str(self.device): |
|
self.device_fcpe = "cpu" |
|
else: |
|
self.device_fcpe = self.device |
|
self.model_fcpe = spawn_bundled_infer_model(self.device_fcpe) |
|
f0 = self.model_fcpe.infer( |
|
x.to(self.device_fcpe).unsqueeze(0).float(), |
|
sr=16000, |
|
decoder_mode="local_argmax", |
|
threshold=0.006, |
|
) |
|
f0 *= pow(2, f0_up_key / 12) |
|
return self.get_f0_post(f0) |
|
|
|
def infer( |
|
self, |
|
input_wav: torch.Tensor, |
|
block_frame_16k, |
|
skip_head, |
|
return_length, |
|
f0method, |
|
) -> np.ndarray: |
|
t1 = ttime() |
|
with torch.no_grad(): |
|
if self.config.is_half: |
|
feats = input_wav.half().view(1, -1) |
|
else: |
|
feats = input_wav.float().view(1, -1) |
|
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) |
|
inputs = { |
|
"source": feats, |
|
"padding_mask": padding_mask, |
|
"output_layer": 9 if self.version == "v1" else 12, |
|
} |
|
logits = self.model.extract_features(**inputs) |
|
feats = ( |
|
self.model.final_proj(logits[0]) if self.version == "v1" else logits[0] |
|
) |
|
feats = torch.cat((feats, feats[:, -1:, :]), 1) |
|
t2 = ttime() |
|
try: |
|
if hasattr(self, "index") and self.index_rate != 0: |
|
npy = feats[0][skip_head // 2 :].cpu().numpy().astype("float32") |
|
score, ix = self.index.search(npy, k=8) |
|
if (ix >= 0).all(): |
|
weight = np.square(1 / score) |
|
weight /= weight.sum(axis=1, keepdims=True) |
|
npy = np.sum( |
|
self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1 |
|
) |
|
if self.config.is_half: |
|
npy = npy.astype("float16") |
|
feats[0][skip_head // 2 :] = ( |
|
torch.from_numpy(npy).unsqueeze(0).to(self.device) |
|
* self.index_rate |
|
+ (1 - self.index_rate) * feats[0][skip_head // 2 :] |
|
) |
|
else: |
|
printt( |
|
"Invalid index. You MUST use added_xxxx.index but not trained_xxxx.index!" |
|
) |
|
else: |
|
printt("Index search FAILED or disabled") |
|
except: |
|
traceback.print_exc() |
|
printt("Index search FAILED") |
|
t3 = ttime() |
|
p_len = input_wav.shape[0] // 160 |
|
if self.if_f0 == 1: |
|
f0_extractor_frame = block_frame_16k + 800 |
|
if f0method == "rmvpe": |
|
f0_extractor_frame = 5120 * ((f0_extractor_frame - 1) // 5120 + 1) - 160 |
|
pitch, pitchf = self.get_f0( |
|
input_wav[-f0_extractor_frame:], self.f0_up_key, self.n_cpu, f0method |
|
) |
|
shift = block_frame_16k // 160 |
|
self.cache_pitch[:-shift] = self.cache_pitch[shift:].clone() |
|
self.cache_pitchf[:-shift] = self.cache_pitchf[shift:].clone() |
|
self.cache_pitch[4 - pitch.shape[0] :] = pitch[3:-1] |
|
self.cache_pitchf[4 - pitch.shape[0] :] = pitchf[3:-1] |
|
cache_pitch = self.cache_pitch[None, -p_len:] |
|
cache_pitchf = self.cache_pitchf[None, -p_len:] |
|
t4 = ttime() |
|
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) |
|
feats = feats[:, :p_len, :] |
|
p_len = torch.LongTensor([p_len]).to(self.device) |
|
sid = torch.LongTensor([0]).to(self.device) |
|
skip_head = torch.LongTensor([skip_head]) |
|
return_length = torch.LongTensor([return_length]) |
|
with torch.no_grad(): |
|
if self.if_f0 == 1: |
|
infered_audio, _, _ = self.net_g.infer( |
|
feats, |
|
p_len, |
|
cache_pitch, |
|
cache_pitchf, |
|
sid, |
|
skip_head, |
|
return_length, |
|
) |
|
else: |
|
infered_audio, _, _ = self.net_g.infer( |
|
feats, p_len, sid, skip_head, return_length |
|
) |
|
t5 = ttime() |
|
printt( |
|
"Spent time: fea = %.3fs, index = %.3fs, f0 = %.3fs, model = %.3fs", |
|
t2 - t1, |
|
t3 - t2, |
|
t4 - t3, |
|
t5 - t4, |
|
) |
|
return infered_audio.squeeze().float() |
|
|