BlackBeenie commited on
Commit
19cf692
·
verified ·
1 Parent(s): fc7d389

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ 0_Transformer/tokenizer.json filter=lfs diff=lfs merge=lfs -text
0_Transformer/config.json ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/drive/MyDrive/Research/AIRetriever/bpr_output/jinaai/jina-embeddings-v3-v3-msmarco/0_Transformer",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "auto_map": {
8
+ "AutoConfig": "jinaai/xlm-roberta-flash-implementation--configuration_xlm_roberta.XLMRobertaFlashConfig",
9
+ "AutoModel": "jinaai/xlm-roberta-flash-implementation--modeling_lora.XLMRobertaLoRA",
10
+ "AutoModelForMaskedLM": "jinaai/xlm-roberta-flash-implementation--modeling_xlm_roberta.XLMRobertaForMaskedLM",
11
+ "AutoModelForPreTraining": "jinaai/xlm-roberta-flash-implementation--modeling_xlm_roberta.XLMRobertaForPreTraining"
12
+ },
13
+ "bos_token_id": 0,
14
+ "classifier_dropout": null,
15
+ "emb_pooler": null,
16
+ "eos_token_id": 2,
17
+ "hidden_act": "gelu",
18
+ "hidden_dropout_prob": 0.1,
19
+ "hidden_size": 1024,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 4096,
22
+ "layer_norm_eps": 1e-05,
23
+ "load_trained_adapters": true,
24
+ "lora_adaptations": [
25
+ "retrieval.query",
26
+ "retrieval.passage",
27
+ "separation",
28
+ "classification",
29
+ "text-matching"
30
+ ],
31
+ "lora_alpha": 1,
32
+ "lora_dropout_p": 0.0,
33
+ "lora_main_params_trainable": false,
34
+ "lora_rank": 4,
35
+ "matryoshka_dimensions": [
36
+ 32,
37
+ 64,
38
+ 128,
39
+ 256,
40
+ 512,
41
+ 768,
42
+ 1024
43
+ ],
44
+ "max_position_embeddings": 8194,
45
+ "model_type": "xlm-roberta",
46
+ "num_attention_heads": 16,
47
+ "num_hidden_layers": 24,
48
+ "output_past": true,
49
+ "pad_token_id": 1,
50
+ "position_embedding_type": "rotary",
51
+ "rotary_emb_base": 20000.0,
52
+ "task_instructions": {
53
+ "classification": "",
54
+ "retrieval.passage": "Represent the document for retrieval: ",
55
+ "retrieval.query": "Represent the query for retrieving evidence documents: ",
56
+ "separation": "",
57
+ "text-matching": ""
58
+ },
59
+ "torch_dtype": "float32",
60
+ "transformers_version": "4.44.2",
61
+ "truncate_dim": null,
62
+ "type_vocab_size": 1,
63
+ "use_cache": true,
64
+ "use_flash_attn": true,
65
+ "use_reentrant": false,
66
+ "vocab_size": 250002
67
+ }
0_Transformer/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:517d8a4c1839ac77a78ff7b0143c326ef1dd0d2dce1ebf51564a8084661d2dfd
3
+ size 2271064456
0_Transformer/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8194,
3
+ "do_lower_case": false
4
+ }
0_Transformer/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
0_Transformer/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e19cd8c08f528b481e909f73dbd1fd62b1e8b1117579ba205e477801237f9e0
3
+ size 17082988
0_Transformer/tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 8194,
50
+ "model_max_length": 8194,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "stride": 0,
57
+ "tokenizer_class": "XLMRobertaTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
+ "unk_token": "<unk>"
61
+ }
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,739 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: jinaai/jina-embeddings-v3
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:498970
11
+ - loss:BPRLoss
12
+ widget:
13
+ - source_sentence: meaning of the prefix em
14
+ sentences:
15
+ - Word Origin and History for em- Expand. from French assimilation of en- to following
16
+ labial (see en- (1)). Also a prefix used to form verbs from adjectives and nouns.
17
+ representing Latin ex- assimilated to following -m- (see ex-).
18
+ - 'Hawaii: Aloha! Whether you are hoping to travel to Hawaii for a tropical green
19
+ Christmas or you are hoping to make this island paradise your home, we can help
20
+ you find the information you need! The state of Hawaii, located in the middle
21
+ of the Pacific Ocean, is farther away from any other landmass than any other island
22
+ on the earth.'
23
+ - 'Prefixes: Un, Dis, Im, Mis. A prefix is placed at the beginning of a word to
24
+ change its meaning. For example, the suffix re- means either again or back as
25
+ in return, repeat or refurbish. The following 4 prefixes are easy to confuse because
26
+ they all have a negative meaning. un-.'
27
+ - source_sentence: how long does engine take to cool down
28
+ sentences:
29
+ - It takes roughly 30 minutes for the laptop to cool down to a normal state.Or if
30
+ you want to use it soon it could take I guess 10-15 minutes.
31
+ - "Turn off the engine. If you can pop the hood from the driverâ\x80\x99s seat,\
32
+ \ do so â\x80\x94 but donâ\x80\x99t risk opening it by hand until the engine has\
33
+ \ cooled, especially if you see steam wafting off the engine. It typically takes\
34
+ \ a solid 30 minutes for an engine to cool down enough for it to be safe to handle."
35
+ - Zeppelin was invented in 1900 by a military officer of German origin named Count
36
+ Ferdinand von Zeppelin.It was a stiff framed airship, LZ-I that flew on 2nd July,
37
+ 1900 carrying five passengers near Lake Constance in Germany. Zeppelins were used
38
+ in the times of peace as well as war.eppelin was invented in 1900 by a military
39
+ officer of German origin named Count Ferdinand von Zeppelin.
40
+ - source_sentence: how long does it take to get an undergraduate
41
+ sentences:
42
+ - How Long Does It Take To Become a Nurse Anesthetist (CRNA)? How Long Does It Take
43
+ To Become a Nurse Practitioner? How Long Does It Take To Become a Nutritionist?
44
+ How Long Does It Take To Become A Pharmacist? How Long Does It Take To Become
45
+ a Physician Assistant? How Long Does It Take To Become a Social Worker? (ANSWERED)
46
+ How Long Does It Take To Become a Vet Tech? How Long Does It Take To Become An
47
+ LPN? How Long Does It Take To Become an OB/GYN? How Long Does It Take To Become
48
+ an Ultrasound Technician? How Long Does It Take To Get a Medical Degree? How Long
49
+ Does It Take To Get a Nursing Degree? Your first stepping stone toward a rewarding
50
+ nursing career is completing the education and becoming registered. Ill answer
51
+ the age old question about how long it takes to get a registered nursing degree.
52
+ - A depositary receipt (DR) is a type of negotiable (transferable) financial security
53
+ that is traded on a local stock exchange but represents a security, usually in
54
+ the form of equity, that is issued by a foreign publicly listed company. U.S.
55
+ broker may also sell ADRs back into the local Russian market. This is known as
56
+ cross-border trading. When this happens, an amount of ADRs is canceled by the
57
+ depository and the local shares are released from the custodian bank and delivered
58
+ back to the Russian broker who bought them.
59
+ - Undergraduate Studies. To become a doctor, a student must first complete high
60
+ school, then go on to college. During the typical four-year undergraduate period,
61
+ the aspiring doctor will study topics such as anatomy, physiology, biology, chemistry
62
+ and other college courses necessary for a degree, such as English or math.
63
+ - source_sentence: fees definition
64
+ sentences:
65
+ - fees. 1 veterinarians' charges rendered to clients for services. 2 Justifiable
66
+ professional fees are based on the amount of time spent on the case, with a varying
67
+ fee per hour depending on the difficulty and complexity of the problem, and on
68
+ the specialist superiority of the veterinarian.
69
+ - 'Summary: The Catbird Seat by James Thurber is about Mr. Martin who has decided
70
+ he must kill Mrs Barrows because she is destroying the firm he works for, but
71
+ in the end he tricks his boss into thinking she has had a mental breakdown.'
72
+ - Cost, in common usage, the monetary value of goods and services that producers
73
+ and consumers purchase. In a basic economic sense, cost is the measure of the
74
+ alternative opportunities foregone in the choice of one good or activity over
75
+ others.
76
+ - source_sentence: what is a fermentation lock used for
77
+ sentences:
78
+ - "Remember, fermentation is a method of preserving food. Leaving it on your counter\
79
+ \ gives it more time for the LAB activity to increase â\x80\x94 which, in turn,\
80
+ \ lowers pH â\x80\x94 and prevents spoilage. As long as your jar can keep out\
81
+ \ the oxygen, you shouldnâ\x80\x99t be worried. Which leads me toâ\x80¦."
82
+ - The fermentation lock or airlock is a device used in beer brewing and wine making
83
+ that allows carbon dioxide released by the beer to escape the fermenter, while
84
+ not allowing air to enter the fermenter, thus avoiding oxidation. There are two
85
+ main designs for the fermentation lock, or airlock.
86
+ - The New River is formed by the confluence of the South Fork New River and the
87
+ North Fork New River in Ashe County, North Carolina. It then flows north into
88
+ southwestern Virginia, passing near Galax, Virginia and through a gorge in the
89
+ Iron Mountains. Continuing north, the river enters Pulaski County, Virginia, where
90
+ it is impounded by Claytor Dam, creating Claytor Lake.
91
+ ---
92
+
93
+ # SentenceTransformer based on jinaai/jina-embeddings-v3
94
+
95
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
96
+
97
+ ## Model Details
98
+
99
+ ### Model Description
100
+ - **Model Type:** Sentence Transformer
101
+ - **Base model:** [jinaai/jina-embeddings-v3](https://huggingface.co/jinaai/jina-embeddings-v3) <!-- at revision 4be32c2f5d65b95e4bcce473545b7883ec8d2edd -->
102
+ - **Maximum Sequence Length:** 8194 tokens
103
+ - **Output Dimensionality:** 1024 tokens
104
+ - **Similarity Function:** Cosine Similarity
105
+ <!-- - **Training Dataset:** Unknown -->
106
+ <!-- - **Language:** Unknown -->
107
+ <!-- - **License:** Unknown -->
108
+
109
+ ### Model Sources
110
+
111
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
112
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
113
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
114
+
115
+ ### Full Model Architecture
116
+
117
+ ```
118
+ SentenceTransformer(
119
+ (transformer): Transformer(
120
+ (auto_model): XLMRobertaLoRA(
121
+ (roberta): XLMRobertaModel(
122
+ (embeddings): XLMRobertaEmbeddings(
123
+ (word_embeddings): ParametrizedEmbedding(
124
+ 250002, 1024, padding_idx=1
125
+ (parametrizations): ModuleDict(
126
+ (weight): ParametrizationList(
127
+ (0): LoRAParametrization()
128
+ )
129
+ )
130
+ )
131
+ (token_type_embeddings): ParametrizedEmbedding(
132
+ 1, 1024
133
+ (parametrizations): ModuleDict(
134
+ (weight): ParametrizationList(
135
+ (0): LoRAParametrization()
136
+ )
137
+ )
138
+ )
139
+ )
140
+ (emb_drop): Dropout(p=0.1, inplace=False)
141
+ (emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
142
+ (encoder): XLMRobertaEncoder(
143
+ (layers): ModuleList(
144
+ (0-23): 24 x Block(
145
+ (mixer): MHA(
146
+ (rotary_emb): RotaryEmbedding()
147
+ (Wqkv): ParametrizedLinearResidual(
148
+ in_features=1024, out_features=3072, bias=True
149
+ (parametrizations): ModuleDict(
150
+ (weight): ParametrizationList(
151
+ (0): LoRAParametrization()
152
+ )
153
+ )
154
+ )
155
+ (inner_attn): FlashSelfAttention(
156
+ (drop): Dropout(p=0.1, inplace=False)
157
+ )
158
+ (inner_cross_attn): FlashCrossAttention(
159
+ (drop): Dropout(p=0.1, inplace=False)
160
+ )
161
+ (out_proj): ParametrizedLinear(
162
+ in_features=1024, out_features=1024, bias=True
163
+ (parametrizations): ModuleDict(
164
+ (weight): ParametrizationList(
165
+ (0): LoRAParametrization()
166
+ )
167
+ )
168
+ )
169
+ )
170
+ (dropout1): Dropout(p=0.1, inplace=False)
171
+ (drop_path1): StochasticDepth(p=0.0, mode=row)
172
+ (norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
173
+ (mlp): Mlp(
174
+ (fc1): ParametrizedLinear(
175
+ in_features=1024, out_features=4096, bias=True
176
+ (parametrizations): ModuleDict(
177
+ (weight): ParametrizationList(
178
+ (0): LoRAParametrization()
179
+ )
180
+ )
181
+ )
182
+ (fc2): ParametrizedLinear(
183
+ in_features=4096, out_features=1024, bias=True
184
+ (parametrizations): ModuleDict(
185
+ (weight): ParametrizationList(
186
+ (0): LoRAParametrization()
187
+ )
188
+ )
189
+ )
190
+ )
191
+ (dropout2): Dropout(p=0.1, inplace=False)
192
+ (drop_path2): StochasticDepth(p=0.0, mode=row)
193
+ (norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
194
+ )
195
+ )
196
+ )
197
+ (pooler): XLMRobertaPooler(
198
+ (dense): ParametrizedLinear(
199
+ in_features=1024, out_features=1024, bias=True
200
+ (parametrizations): ModuleDict(
201
+ (weight): ParametrizationList(
202
+ (0): LoRAParametrization()
203
+ )
204
+ )
205
+ )
206
+ (activation): Tanh()
207
+ )
208
+ )
209
+ )
210
+ )
211
+ (pooler): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
212
+ (normalizer): Normalize()
213
+ )
214
+ ```
215
+
216
+ ## Usage
217
+
218
+ ### Direct Usage (Sentence Transformers)
219
+
220
+ First install the Sentence Transformers library:
221
+
222
+ ```bash
223
+ pip install -U sentence-transformers
224
+ ```
225
+
226
+ Then you can load this model and run inference.
227
+ ```python
228
+ from sentence_transformers import SentenceTransformer
229
+
230
+ # Download from the 🤗 Hub
231
+ model = SentenceTransformer("BlackBeenie/jina-embeddings-v3-msmarco-v3-bpr")
232
+ # Run inference
233
+ sentences = [
234
+ 'what is a fermentation lock used for',
235
+ 'The fermentation lock or airlock is a device used in beer brewing and wine making that allows carbon dioxide released by the beer to escape the fermenter, while not allowing air to enter the fermenter, thus avoiding oxidation. There are two main designs for the fermentation lock, or airlock.',
236
+ 'Remember, fermentation is a method of preserving food. Leaving it on your counter gives it more time for the LAB activity to increase â\x80\x94 which, in turn, lowers pH â\x80\x94 and prevents spoilage. As long as your jar can keep out the oxygen, you shouldnâ\x80\x99t be worried. Which leads me toâ\x80¦.',
237
+ ]
238
+ embeddings = model.encode(sentences)
239
+ print(embeddings.shape)
240
+ # [3, 1024]
241
+
242
+ # Get the similarity scores for the embeddings
243
+ similarities = model.similarity(embeddings, embeddings)
244
+ print(similarities.shape)
245
+ # [3, 3]
246
+ ```
247
+
248
+ <!--
249
+ ### Direct Usage (Transformers)
250
+
251
+ <details><summary>Click to see the direct usage in Transformers</summary>
252
+
253
+ </details>
254
+ -->
255
+
256
+ <!--
257
+ ### Downstream Usage (Sentence Transformers)
258
+
259
+ You can finetune this model on your own dataset.
260
+
261
+ <details><summary>Click to expand</summary>
262
+
263
+ </details>
264
+ -->
265
+
266
+ <!--
267
+ ### Out-of-Scope Use
268
+
269
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
270
+ -->
271
+
272
+ <!--
273
+ ## Bias, Risks and Limitations
274
+
275
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
276
+ -->
277
+
278
+ <!--
279
+ ### Recommendations
280
+
281
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
282
+ -->
283
+
284
+ ## Training Details
285
+
286
+ ### Training Dataset
287
+
288
+ #### Unnamed Dataset
289
+
290
+
291
+ * Size: 498,970 training samples
292
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
293
+ * Approximate statistics based on the first 1000 samples:
294
+ | | sentence_0 | sentence_1 | sentence_2 |
295
+ |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
296
+ | type | string | string | string |
297
+ | details | <ul><li>min: 4 tokens</li><li>mean: 9.93 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 90.01 tokens</li><li>max: 239 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 88.24 tokens</li><li>max: 258 tokens</li></ul> |
298
+ * Samples:
299
+ | sentence_0 | sentence_1 | sentence_2 |
300
+ |:-------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
301
+ | <code>how much does it cost to paint a interior house</code> | <code>Interior House Painting Cost Factors. Generally, it will take a minimum of two gallons of paint to cover a room. At the highest end, paint will cost anywhere between $30 and $60 per gallon and come in three different finishes: flat, semi-gloss or high-gloss.Flat finishes are the least shiny and are best suited for areas requiring frequent cleaning.rovide a few details about your project and receive competitive quotes from local pros. The average national cost to paint a home interior is $1,671, with most homeowners spending between $966 and $2,426.</code> | <code>Question DetailsAsked on 3/12/2014. Guest_... How much does it cost per square foot to paint the interior of a house? We just bought roughly a 1500 sg ft townhouse and want to get the entire house, including ceilings painted (including a roughly 400 sq ft finished basement not included in square footage).</code> |
302
+ | <code>when is s corp taxes due</code> | <code>If you form a corporate entity for your small business, regardless of whether it's taxed as a C or S corporation, a tax return must be filed with the Internal Revenue Service on its due date each year. Corporate tax returns are always due on the 15th day of the third month following the close of the tax year. The actual day that the tax return filing deadline falls on, however, isn't the same for every corporation.</code> | <code>Before Jan. 1, 2026 After Dec. 31, 2025 Starting with 2016 tax returns, all. other C corps besides Dec. 31 and. June 30 year-ends (including those with. other fiscal year-ends) will be due on. the 15th of the 4th month after the.</code> |
303
+ | <code>what are disaccharides</code> | <code>Disaccharides are formed when two monosaccharides are joined together and a molecule of water is removed, a process known as dehydration reaction. For example; milk sugar (lactose) is made from glucose and galactose whereas the sugar from sugar cane and sugar beets (sucrose) is made from glucose and fructose.altose, another notable disaccharide, is made up of two glucose molecules. The two monosaccharides are bonded via a dehydration reaction (also called a condensation reaction or dehydration synthesis) that leads to the loss of a molecule of water and formation of a glycosidic bond.</code> | <code>Disaccharides- Another type of carbohydrate. How many sugar units are disaccharides composed of?_____ What elements make up disaccharides? _____ How does the body use disaccharides? _____ There is no chemical test for disaccharides. Table sugar (white granulated sugar) is an example of a disaccharide. List some foods that contain a lot of disaccharides: _____</code> |
304
+ * Loss: <code>beir.losses.bpr_loss.BPRLoss</code>
305
+
306
+ ### Training Hyperparameters
307
+ #### Non-Default Hyperparameters
308
+
309
+ - `eval_strategy`: steps
310
+ - `per_device_train_batch_size`: 32
311
+ - `per_device_eval_batch_size`: 32
312
+ - `num_train_epochs`: 8
313
+ - `multi_dataset_batch_sampler`: round_robin
314
+
315
+ #### All Hyperparameters
316
+ <details><summary>Click to expand</summary>
317
+
318
+ - `overwrite_output_dir`: False
319
+ - `do_predict`: False
320
+ - `eval_strategy`: steps
321
+ - `prediction_loss_only`: True
322
+ - `per_device_train_batch_size`: 32
323
+ - `per_device_eval_batch_size`: 32
324
+ - `per_gpu_train_batch_size`: None
325
+ - `per_gpu_eval_batch_size`: None
326
+ - `gradient_accumulation_steps`: 1
327
+ - `eval_accumulation_steps`: None
328
+ - `torch_empty_cache_steps`: None
329
+ - `learning_rate`: 5e-05
330
+ - `weight_decay`: 0.0
331
+ - `adam_beta1`: 0.9
332
+ - `adam_beta2`: 0.999
333
+ - `adam_epsilon`: 1e-08
334
+ - `max_grad_norm`: 1
335
+ - `num_train_epochs`: 8
336
+ - `max_steps`: -1
337
+ - `lr_scheduler_type`: linear
338
+ - `lr_scheduler_kwargs`: {}
339
+ - `warmup_ratio`: 0.0
340
+ - `warmup_steps`: 0
341
+ - `log_level`: passive
342
+ - `log_level_replica`: warning
343
+ - `log_on_each_node`: True
344
+ - `logging_nan_inf_filter`: True
345
+ - `save_safetensors`: True
346
+ - `save_on_each_node`: False
347
+ - `save_only_model`: False
348
+ - `restore_callback_states_from_checkpoint`: False
349
+ - `no_cuda`: False
350
+ - `use_cpu`: False
351
+ - `use_mps_device`: False
352
+ - `seed`: 42
353
+ - `data_seed`: None
354
+ - `jit_mode_eval`: False
355
+ - `use_ipex`: False
356
+ - `bf16`: False
357
+ - `fp16`: False
358
+ - `fp16_opt_level`: O1
359
+ - `half_precision_backend`: auto
360
+ - `bf16_full_eval`: False
361
+ - `fp16_full_eval`: False
362
+ - `tf32`: None
363
+ - `local_rank`: 0
364
+ - `ddp_backend`: None
365
+ - `tpu_num_cores`: None
366
+ - `tpu_metrics_debug`: False
367
+ - `debug`: []
368
+ - `dataloader_drop_last`: False
369
+ - `dataloader_num_workers`: 0
370
+ - `dataloader_prefetch_factor`: None
371
+ - `past_index`: -1
372
+ - `disable_tqdm`: False
373
+ - `remove_unused_columns`: True
374
+ - `label_names`: None
375
+ - `load_best_model_at_end`: False
376
+ - `ignore_data_skip`: False
377
+ - `fsdp`: []
378
+ - `fsdp_min_num_params`: 0
379
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
380
+ - `fsdp_transformer_layer_cls_to_wrap`: None
381
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
382
+ - `deepspeed`: None
383
+ - `label_smoothing_factor`: 0.0
384
+ - `optim`: adamw_torch
385
+ - `optim_args`: None
386
+ - `adafactor`: False
387
+ - `group_by_length`: False
388
+ - `length_column_name`: length
389
+ - `ddp_find_unused_parameters`: None
390
+ - `ddp_bucket_cap_mb`: None
391
+ - `ddp_broadcast_buffers`: False
392
+ - `dataloader_pin_memory`: True
393
+ - `dataloader_persistent_workers`: False
394
+ - `skip_memory_metrics`: True
395
+ - `use_legacy_prediction_loop`: False
396
+ - `push_to_hub`: False
397
+ - `resume_from_checkpoint`: None
398
+ - `hub_model_id`: None
399
+ - `hub_strategy`: every_save
400
+ - `hub_private_repo`: False
401
+ - `hub_always_push`: False
402
+ - `gradient_checkpointing`: False
403
+ - `gradient_checkpointing_kwargs`: None
404
+ - `include_inputs_for_metrics`: False
405
+ - `eval_do_concat_batches`: True
406
+ - `fp16_backend`: auto
407
+ - `push_to_hub_model_id`: None
408
+ - `push_to_hub_organization`: None
409
+ - `mp_parameters`:
410
+ - `auto_find_batch_size`: False
411
+ - `full_determinism`: False
412
+ - `torchdynamo`: None
413
+ - `ray_scope`: last
414
+ - `ddp_timeout`: 1800
415
+ - `torch_compile`: False
416
+ - `torch_compile_backend`: None
417
+ - `torch_compile_mode`: None
418
+ - `dispatch_batches`: None
419
+ - `split_batches`: None
420
+ - `include_tokens_per_second`: False
421
+ - `include_num_input_tokens_seen`: False
422
+ - `neftune_noise_alpha`: None
423
+ - `optim_target_modules`: None
424
+ - `batch_eval_metrics`: False
425
+ - `eval_on_start`: False
426
+ - `eval_use_gather_object`: False
427
+ - `batch_sampler`: batch_sampler
428
+ - `multi_dataset_batch_sampler`: round_robin
429
+
430
+ </details>
431
+
432
+ ### Training Logs
433
+ <details><summary>Click to expand</summary>
434
+
435
+ | Epoch | Step | Training Loss |
436
+ |:------:|:------:|:-------------:|
437
+ | 0.0321 | 500 | 1.7204 |
438
+ | 0.0641 | 1000 | 0.6847 |
439
+ | 0.0962 | 1500 | 0.4782 |
440
+ | 0.1283 | 2000 | 0.4001 |
441
+ | 0.1603 | 2500 | 0.3773 |
442
+ | 0.1924 | 3000 | 0.3538 |
443
+ | 0.2245 | 3500 | 0.3424 |
444
+ | 0.2565 | 4000 | 0.3375 |
445
+ | 0.2886 | 4500 | 0.3286 |
446
+ | 0.3207 | 5000 | 0.3289 |
447
+ | 0.3527 | 5500 | 0.3266 |
448
+ | 0.3848 | 6000 | 0.3226 |
449
+ | 0.4169 | 6500 | 0.3266 |
450
+ | 0.4489 | 7000 | 0.3262 |
451
+ | 0.4810 | 7500 | 0.3241 |
452
+ | 0.5131 | 8000 | 0.3216 |
453
+ | 0.5451 | 8500 | 0.3232 |
454
+ | 0.5772 | 9000 | 0.3186 |
455
+ | 0.6092 | 9500 | 0.3194 |
456
+ | 0.6413 | 10000 | 0.314 |
457
+ | 0.6734 | 10500 | 0.3217 |
458
+ | 0.7054 | 11000 | 0.3156 |
459
+ | 0.7375 | 11500 | 0.3244 |
460
+ | 0.7696 | 12000 | 0.3189 |
461
+ | 0.8016 | 12500 | 0.3235 |
462
+ | 0.8337 | 13000 | 0.3305 |
463
+ | 0.8658 | 13500 | 0.3284 |
464
+ | 0.8978 | 14000 | 0.3213 |
465
+ | 0.9299 | 14500 | 0.3283 |
466
+ | 0.9620 | 15000 | 0.3219 |
467
+ | 0.9940 | 15500 | 0.3247 |
468
+ | 1.0 | 15593 | - |
469
+ | 1.0261 | 16000 | 0.3287 |
470
+ | 1.0582 | 16500 | 0.3346 |
471
+ | 1.0902 | 17000 | 0.3245 |
472
+ | 1.1223 | 17500 | 0.3202 |
473
+ | 1.1544 | 18000 | 0.332 |
474
+ | 1.1864 | 18500 | 0.3298 |
475
+ | 1.2185 | 19000 | 0.332 |
476
+ | 1.2506 | 19500 | 0.3258 |
477
+ | 1.2826 | 20000 | 0.3291 |
478
+ | 1.3147 | 20500 | 0.334 |
479
+ | 1.3468 | 21000 | 0.3328 |
480
+ | 1.3788 | 21500 | 0.3362 |
481
+ | 1.4109 | 22000 | 0.3348 |
482
+ | 1.4430 | 22500 | 0.3402 |
483
+ | 1.4750 | 23000 | 0.3346 |
484
+ | 1.5071 | 23500 | 0.339 |
485
+ | 1.5392 | 24000 | 0.3406 |
486
+ | 1.5712 | 24500 | 0.3239 |
487
+ | 1.6033 | 25000 | 0.3275 |
488
+ | 1.6353 | 25500 | 0.3287 |
489
+ | 1.6674 | 26000 | 0.3271 |
490
+ | 1.6995 | 26500 | 0.3337 |
491
+ | 1.7315 | 27000 | 0.3352 |
492
+ | 1.7636 | 27500 | 0.3244 |
493
+ | 1.7957 | 28000 | 0.3418 |
494
+ | 1.8277 | 28500 | 0.349 |
495
+ | 1.8598 | 29000 | 0.3395 |
496
+ | 1.8919 | 29500 | 0.3386 |
497
+ | 1.9239 | 30000 | 0.3379 |
498
+ | 1.9560 | 30500 | 0.3412 |
499
+ | 1.9881 | 31000 | 0.3364 |
500
+ | 2.0 | 31186 | - |
501
+ | 2.0201 | 31500 | 0.3386 |
502
+ | 2.0522 | 32000 | 0.3417 |
503
+ | 2.0843 | 32500 | 0.3362 |
504
+ | 2.1163 | 33000 | 0.3251 |
505
+ | 2.1484 | 33500 | 0.3563 |
506
+ | 2.1805 | 34000 | 0.3341 |
507
+ | 2.2125 | 34500 | 0.3478 |
508
+ | 2.2446 | 35000 | 0.3389 |
509
+ | 2.2767 | 35500 | 0.342 |
510
+ | 2.3087 | 36000 | 0.3467 |
511
+ | 2.3408 | 36500 | 0.3419 |
512
+ | 2.3729 | 37000 | 0.3513 |
513
+ | 2.4049 | 37500 | 0.3441 |
514
+ | 2.4370 | 38000 | 0.3484 |
515
+ | 2.4691 | 38500 | 0.3457 |
516
+ | 2.5011 | 39000 | 0.3503 |
517
+ | 2.5332 | 39500 | 0.3446 |
518
+ | 2.5653 | 40000 | 0.3461 |
519
+ | 2.5973 | 40500 | 0.3399 |
520
+ | 2.6294 | 41000 | 0.3405 |
521
+ | 2.6615 | 41500 | 0.3382 |
522
+ | 2.6935 | 42000 | 0.3388 |
523
+ | 2.7256 | 42500 | 0.3378 |
524
+ | 2.7576 | 43000 | 0.336 |
525
+ | 2.7897 | 43500 | 0.3471 |
526
+ | 2.8218 | 44000 | 0.3563 |
527
+ | 2.8538 | 44500 | 0.3465 |
528
+ | 2.8859 | 45000 | 0.3501 |
529
+ | 2.9180 | 45500 | 0.3439 |
530
+ | 2.9500 | 46000 | 0.3546 |
531
+ | 2.9821 | 46500 | 0.3414 |
532
+ | 3.0 | 46779 | - |
533
+ | 3.0142 | 47000 | 0.3498 |
534
+ | 3.0462 | 47500 | 0.3484 |
535
+ | 3.0783 | 48000 | 0.3496 |
536
+ | 3.1104 | 48500 | 0.3392 |
537
+ | 3.1424 | 49000 | 0.3583 |
538
+ | 3.1745 | 49500 | 0.3505 |
539
+ | 3.2066 | 50000 | 0.3547 |
540
+ | 3.2386 | 50500 | 0.3469 |
541
+ | 3.2707 | 51000 | 0.3489 |
542
+ | 3.3028 | 51500 | 0.3473 |
543
+ | 3.3348 | 52000 | 0.3579 |
544
+ | 3.3669 | 52500 | 0.3523 |
545
+ | 3.3990 | 53000 | 0.3427 |
546
+ | 3.4310 | 53500 | 0.3685 |
547
+ | 3.4631 | 54000 | 0.3479 |
548
+ | 3.4952 | 54500 | 0.355 |
549
+ | 3.5272 | 55000 | 0.3464 |
550
+ | 3.5593 | 55500 | 0.3473 |
551
+ | 3.5914 | 56000 | 0.348 |
552
+ | 3.6234 | 56500 | 0.3426 |
553
+ | 3.6555 | 57000 | 0.3394 |
554
+ | 3.6876 | 57500 | 0.3454 |
555
+ | 3.7196 | 58000 | 0.345 |
556
+ | 3.7517 | 58500 | 0.3411 |
557
+ | 3.7837 | 59000 | 0.3557 |
558
+ | 3.8158 | 59500 | 0.3505 |
559
+ | 3.8479 | 60000 | 0.3605 |
560
+ | 3.8799 | 60500 | 0.3554 |
561
+ | 3.9120 | 61000 | 0.349 |
562
+ | 3.9441 | 61500 | 0.3629 |
563
+ | 3.9761 | 62000 | 0.3456 |
564
+ | 4.0 | 62372 | - |
565
+ | 4.0082 | 62500 | 0.3562 |
566
+ | 4.0403 | 63000 | 0.3531 |
567
+ | 4.0723 | 63500 | 0.3569 |
568
+ | 4.1044 | 64000 | 0.3494 |
569
+ | 4.1365 | 64500 | 0.3513 |
570
+ | 4.1685 | 65000 | 0.3599 |
571
+ | 4.2006 | 65500 | 0.3487 |
572
+ | 4.2327 | 66000 | 0.3561 |
573
+ | 4.2647 | 66500 | 0.3583 |
574
+ | 4.2968 | 67000 | 0.3539 |
575
+ | 4.3289 | 67500 | 0.3614 |
576
+ | 4.3609 | 68000 | 0.3558 |
577
+ | 4.3930 | 68500 | 0.3485 |
578
+ | 4.4251 | 69000 | 0.3715 |
579
+ | 4.4571 | 69500 | 0.3585 |
580
+ | 4.4892 | 70000 | 0.3571 |
581
+ | 4.5213 | 70500 | 0.3498 |
582
+ | 4.5533 | 71000 | 0.3576 |
583
+ | 4.5854 | 71500 | 0.3498 |
584
+ | 4.6175 | 72000 | 0.3507 |
585
+ | 4.6495 | 72500 | 0.3436 |
586
+ | 4.6816 | 73000 | 0.3461 |
587
+ | 4.7137 | 73500 | 0.3451 |
588
+ | 4.7457 | 74000 | 0.3554 |
589
+ | 4.7778 | 74500 | 0.354 |
590
+ | 4.8099 | 75000 | 0.3514 |
591
+ | 4.8419 | 75500 | 0.3688 |
592
+ | 4.8740 | 76000 | 0.3573 |
593
+ | 4.9060 | 76500 | 0.3557 |
594
+ | 4.9381 | 77000 | 0.3607 |
595
+ | 4.9702 | 77500 | 0.3488 |
596
+ | 5.0 | 77965 | - |
597
+ | 5.0022 | 78000 | 0.3555 |
598
+ | 5.0343 | 78500 | 0.3596 |
599
+ | 5.0664 | 79000 | 0.3572 |
600
+ | 5.0984 | 79500 | 0.355 |
601
+ | 5.1305 | 80000 | 0.3427 |
602
+ | 5.1626 | 80500 | 0.3669 |
603
+ | 5.1946 | 81000 | 0.3578 |
604
+ | 5.2267 | 81500 | 0.3589 |
605
+ | 5.2588 | 82000 | 0.3586 |
606
+ | 5.2908 | 82500 | 0.3581 |
607
+ | 5.3229 | 83000 | 0.3607 |
608
+ | 5.3550 | 83500 | 0.3563 |
609
+ | 5.3870 | 84000 | 0.3597 |
610
+ | 5.4191 | 84500 | 0.3712 |
611
+ | 5.4512 | 85000 | 0.3574 |
612
+ | 5.4832 | 85500 | 0.359 |
613
+ | 5.5153 | 86000 | 0.3598 |
614
+ | 5.5474 | 86500 | 0.3604 |
615
+ | 5.5794 | 87000 | 0.3535 |
616
+ | 5.6115 | 87500 | 0.3606 |
617
+ | 5.6436 | 88000 | 0.3469 |
618
+ | 5.6756 | 88500 | 0.3568 |
619
+ | 5.7077 | 89000 | 0.3497 |
620
+ | 5.7398 | 89500 | 0.3597 |
621
+ | 5.7718 | 90000 | 0.3582 |
622
+ | 5.8039 | 90500 | 0.3556 |
623
+ | 5.8360 | 91000 | 0.3716 |
624
+ | 5.8680 | 91500 | 0.3615 |
625
+ | 5.9001 | 92000 | 0.3532 |
626
+ | 5.9321 | 92500 | 0.3747 |
627
+ | 5.9642 | 93000 | 0.3521 |
628
+ | 5.9963 | 93500 | 0.362 |
629
+ | 6.0 | 93558 | - |
630
+ | 6.0283 | 94000 | 0.3701 |
631
+ | 6.0604 | 94500 | 0.3636 |
632
+ | 6.0925 | 95000 | 0.3556 |
633
+ | 6.1245 | 95500 | 0.3508 |
634
+ | 6.1566 | 96000 | 0.3626 |
635
+ | 6.1887 | 96500 | 0.3618 |
636
+ | 6.2207 | 97000 | 0.3683 |
637
+ | 6.2528 | 97500 | 0.362 |
638
+ | 6.2849 | 98000 | 0.3534 |
639
+ | 6.3169 | 98500 | 0.3643 |
640
+ | 6.3490 | 99000 | 0.36 |
641
+ | 6.3811 | 99500 | 0.3592 |
642
+ | 6.4131 | 100000 | 0.3606 |
643
+ | 6.4452 | 100500 | 0.369 |
644
+ | 6.4773 | 101000 | 0.3607 |
645
+ | 6.5093 | 101500 | 0.3683 |
646
+ | 6.5414 | 102000 | 0.3648 |
647
+ | 6.5735 | 102500 | 0.3481 |
648
+ | 6.6055 | 103000 | 0.3565 |
649
+ | 6.6376 | 103500 | 0.3555 |
650
+ | 6.6697 | 104000 | 0.347 |
651
+ | 6.7017 | 104500 | 0.3585 |
652
+ | 6.7338 | 105000 | 0.3553 |
653
+ | 6.7659 | 105500 | 0.3539 |
654
+ | 6.7979 | 106000 | 0.3638 |
655
+ | 6.8300 | 106500 | 0.3674 |
656
+ | 6.8621 | 107000 | 0.3674 |
657
+ | 6.8941 | 107500 | 0.3617 |
658
+ | 6.9262 | 108000 | 0.3655 |
659
+ | 6.9583 | 108500 | 0.3593 |
660
+ | 6.9903 | 109000 | 0.3603 |
661
+ | 7.0 | 109151 | - |
662
+ | 7.0224 | 109500 | 0.3614 |
663
+ | 7.0544 | 110000 | 0.3655 |
664
+ | 7.0865 | 110500 | 0.3597 |
665
+ | 7.1186 | 111000 | 0.3443 |
666
+ | 7.1506 | 111500 | 0.3781 |
667
+ | 7.1827 | 112000 | 0.3587 |
668
+ | 7.2148 | 112500 | 0.3676 |
669
+ | 7.2468 | 113000 | 0.357 |
670
+ | 7.2789 | 113500 | 0.3639 |
671
+ | 7.3110 | 114000 | 0.3691 |
672
+ | 7.3430 | 114500 | 0.3606 |
673
+ | 7.3751 | 115000 | 0.3679 |
674
+ | 7.4072 | 115500 | 0.3697 |
675
+ | 7.4392 | 116000 | 0.3726 |
676
+ | 7.4713 | 116500 | 0.3603 |
677
+ | 7.5034 | 117000 | 0.3655 |
678
+ | 7.5354 | 117500 | 0.3639 |
679
+ | 7.5675 | 118000 | 0.3557 |
680
+ | 7.5996 | 118500 | 0.358 |
681
+ | 7.6316 | 119000 | 0.3526 |
682
+ | 7.6637 | 119500 | 0.3579 |
683
+ | 7.6958 | 120000 | 0.3584 |
684
+ | 7.7278 | 120500 | 0.3507 |
685
+ | 7.7599 | 121000 | 0.3472 |
686
+ | 7.7920 | 121500 | 0.3757 |
687
+ | 7.8240 | 122000 | 0.3717 |
688
+ | 7.8561 | 122500 | 0.3646 |
689
+ | 7.8882 | 123000 | 0.3662 |
690
+ | 7.9202 | 123500 | 0.3668 |
691
+ | 7.9523 | 124000 | 0.3677 |
692
+ | 7.9844 | 124500 | 0.3588 |
693
+ | 8.0 | 124744 | - |
694
+
695
+ </details>
696
+
697
+ ### Framework Versions
698
+ - Python: 3.10.12
699
+ - Sentence Transformers: 3.2.0
700
+ - Transformers: 4.44.2
701
+ - PyTorch: 2.4.1+cu121
702
+ - Accelerate: 0.34.2
703
+ - Datasets: 3.0.1
704
+ - Tokenizers: 0.19.1
705
+
706
+ ## Citation
707
+
708
+ ### BibTeX
709
+
710
+ #### Sentence Transformers
711
+ ```bibtex
712
+ @inproceedings{reimers-2019-sentence-bert,
713
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
714
+ author = "Reimers, Nils and Gurevych, Iryna",
715
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
716
+ month = "11",
717
+ year = "2019",
718
+ publisher = "Association for Computational Linguistics",
719
+ url = "https://arxiv.org/abs/1908.10084",
720
+ }
721
+ ```
722
+
723
+ <!--
724
+ ## Glossary
725
+
726
+ *Clearly define terms in order to be accessible across audiences.*
727
+ -->
728
+
729
+ <!--
730
+ ## Model Card Authors
731
+
732
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
733
+ -->
734
+
735
+ <!--
736
+ ## Model Card Contact
737
+
738
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
739
+ -->
config_sentence_transformers.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "retrieval.query": "Represent the query for retrieving evidence documents: ",
9
+ "retrieval.passage": "Represent the document for retrieval: ",
10
+ "separation": "",
11
+ "classification": "",
12
+ "text-matching": ""
13
+ },
14
+ "default_prompt_name": null,
15
+ "similarity_fn_name": "cosine"
16
+ }
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "transformer",
5
+ "path": "0_Transformer",
6
+ "type": "custom_st.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "pooler",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "normalizer",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]