Bisher commited on
Commit
b3ee567
·
verified ·
1 Parent(s): 7e85995

Model save

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: Bisher/wav2vec2_ASV_deepfake_audio_detection
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: short_name
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # short_name
15
+
16
+ This model is a fine-tuned version of [Bisher/wav2vec2_ASV_deepfake_audio_detection](https://huggingface.co/Bisher/wav2vec2_ASV_deepfake_audio_detection) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - eval_loss: 0.5552
19
+ - eval_accuracy: 0.895
20
+ - eval_precision: 0.9061
21
+ - eval_recall: 0.895
22
+ - eval_f1: 0.8500
23
+ - eval_TP: 1
24
+ - eval_TN: 178
25
+ - eval_FN: 21
26
+ - eval_FP: 0
27
+ - eval_EER: 0.2727
28
+ - eval_min_tDCF: 0.0281
29
+ - eval_auc_roc: 0.7296
30
+ - eval_runtime: 66.7052
31
+ - eval_samples_per_second: 2.998
32
+ - eval_steps_per_second: 2.998
33
+ - epoch: 0.04
34
+ - step: 1
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 3e-05
54
+ - train_batch_size: 1
55
+ - eval_batch_size: 1
56
+ - seed: 42
57
+ - gradient_accumulation_steps: 4
58
+ - total_train_batch_size: 4
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 2
63
+ - mixed_precision_training: Native AMP
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.44.0
68
+ - Pytorch 2.4.0+cpu
69
+ - Datasets 2.21.0
70
+ - Tokenizers 0.19.1