update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: distilbert-base-uncased-IMDB_distilbert
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# distilbert-base-uncased-IMDB_distilbert
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 2.6232
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 5e-05
|
37 |
+
- train_batch_size: 32
|
38 |
+
- eval_batch_size: 32
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- num_epochs: 16
|
43 |
+
|
44 |
+
### Training results
|
45 |
+
|
46 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
48 |
+
| 3.1531 | 1.0 | 1250 | 2.9545 |
|
49 |
+
| 2.9251 | 2.0 | 2500 | 2.8577 |
|
50 |
+
| 2.7865 | 3.0 | 3750 | 2.8460 |
|
51 |
+
| 2.692 | 4.0 | 5000 | 2.7769 |
|
52 |
+
| 2.611 | 5.0 | 6250 | 2.8373 |
|
53 |
+
| 2.5341 | 6.0 | 7500 | 2.7105 |
|
54 |
+
| 2.4887 | 7.0 | 8750 | 2.6864 |
|
55 |
+
| 2.4292 | 8.0 | 10000 | 2.6600 |
|
56 |
+
| 2.3524 | 9.0 | 11250 | 2.6872 |
|
57 |
+
| 2.3217 | 10.0 | 12500 | 2.6527 |
|
58 |
+
| 2.2961 | 11.0 | 13750 | 2.6659 |
|
59 |
+
| 2.2553 | 12.0 | 15000 | 2.6513 |
|
60 |
+
| 2.2066 | 13.0 | 16250 | 2.6443 |
|
61 |
+
| 2.1912 | 14.0 | 17500 | 2.5912 |
|
62 |
+
| 2.1703 | 15.0 | 18750 | 2.6312 |
|
63 |
+
| 2.1715 | 16.0 | 20000 | 2.6232 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.21.1
|
69 |
+
- Pytorch 1.12.0+cu113
|
70 |
+
- Datasets 2.4.0
|
71 |
+
- Tokenizers 0.12.1
|