Billsfriend commited on
Commit
1bd4f52
1 Parent(s): 09e72f3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md CHANGED
@@ -1,3 +1,74 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+
5
+ This model is converted from `decapoda-research/llama-7b-hf` to `ziqingyang/chinese-alpaca-plus-lora-7b` and quantized for use with `ggerganov/llama.cpp`.
6
+
7
+ The convertion and quantization is done on Google Colab following Wiki article of `ymcui/Chinese-LLaMA-Alpaca`.
8
+
9
+ The quantization methods have been updated for llama.cpp, so please cloning the latest repo and re-compile before loading the model.
10
+
11
+ The q8_0 and q5_1 indicate for different quantization method, the former one occupies larger space and theoratically produces better response.
12
+
13
+ Example of q8_0 model on llama.cpp (acceptable responses but very short):
14
+
15
+ ```
16
+ > ./main -m ./models/chinese-Alpaca-7b-plus-ggml-q8_0.bin \
17
+ -t 8 \
18
+ -c 2048 \
19
+ -n 2048 \
20
+ --color \
21
+ --interactive-first \
22
+ --reverse-prompt '## 人类:' \
23
+ -f ./prompts/chat-with-vicuna-chs.txt
24
+ main: build = 0 (unknown)
25
+ main: seed = 1683883289
26
+ llama.cpp: loading model from ./models/chinese-Alpaca-7b-plus-ggml-q8_0.bin
27
+ llama_model_load_internal: format = ggjt v1 (latest)
28
+ llama_model_load_internal: n_vocab = 49954
29
+ llama_model_load_internal: n_ctx = 2048
30
+ llama_model_load_internal: n_embd = 4096
31
+ llama_model_load_internal: n_mult = 256
32
+ llama_model_load_internal: n_head = 32
33
+ llama_model_load_internal: n_layer = 32
34
+ llama_model_load_internal: n_rot = 128
35
+ llama_model_load_internal: ftype = 7 (mostly Q8_0)
36
+ llama_model_load_internal: n_ff = 11008
37
+ llama_model_load_internal: n_parts = 1
38
+ llama_model_load_internal: model size = 7B
39
+ llama_model_load_internal: ggml ctx size = 68.20 KB
40
+ llama_model_load_internal: mem required = 9180.13 MB (+ 1026.00 MB per state)
41
+ llama_init_from_file: kv self size = 1024.00 MB
42
+
43
+ system_info: n_threads = 8 / 12 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 |
44
+ main: interactive mode on.
45
+ Reverse prompt: '## 人类:'
46
+ sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000
47
+ generate: n_ctx = 2048, n_batch = 512, n_predict = 2048, n_keep = 0
48
+
49
+
50
+ == Running in interactive mode. ==
51
+ - Press Ctrl+C to interject at any time.
52
+ - Press Return to return control to LLaMa.
53
+ - To return control without starting a new line, end your input with '/'.
54
+ - If you want to submit another line, end your input with '\'.
55
+
56
+ 这是一段人类和人工智能助理的对话。人工智能助理会对人类的问题给出详细、准确、礼貌的回答。
57
+
58
+ ## 人类:你好,助理。
59
+ ## 助理:你好,有什么需要帮助的吗?
60
+ ## 人类:天空为什么是蓝色的?
61
+ 助理:天空之所以呈现蓝色,是因为太阳光在大气层中发生散射作用。
62
+ ## 人类:请再详细地解释一下。
63
+ 助理:太阳光穿过大气层时,一部分被散射到不同波长的角度上,其中蓝色光的波长比其他颜色短。
64
+ ## 人类:你真是惜字如金啊。
65
+ 助理:谢谢你的夸奖,但我只是根据我学到的知识和算法来回答你的问题。
66
+ ## 人类:
67
+
68
+ llama_print_timings: load time = 9418.31 ms
69
+ llama_print_timings: sample time = 107.95 ms / 73 runs ( 1.48 ms per run)
70
+ llama_print_timings: prompt eval time = 8645.76 ms / 85 tokens ( 101.71 ms per token)
71
+ llama_print_timings: eval time = 16303.43 ms / 73 runs ( 223.33 ms per run)
72
+ llama_print_timings: total time = 987546.29 ms
73
+ ```
74
+