Sentiment-Analysis / inference.py
BilalHasan's picture
Create inference.py
d620d23 verified
raw
history blame contribute delete
793 Bytes
import tensorflow as tf
from tensorflow.keras.models import load_model
import json
import keras_nlp
fnet_classifier = load_model("Sentiments classifier.keras")
review_example = input("Input your review: ")
with open("vocab.json", "r") as f:
vocab = json.load(f)
seq_max_length = 512
tokenizer = keras_nlp.tokenizers.WordPieceTokenizer(
vocabulary=vocab,
lowercase=False,
sequence_length=seq_max_length,
)
def make_prediction(sentence):
tokens = tokenizer(review_example)
tokens = tf.expand_dims(tokens, 0)
prediction = fnet_classifier.predict(tokens, verbose=0)
if prediction[0][0] > 0.5:
result = "The review is POSITIVE"
else:
result = "The review is NEGATIVE"
return result
result = make_prediction(review_example)
print(result)