|
import tensorflow as tf |
|
from tensorflow.keras.models import load_model |
|
import json |
|
import keras_nlp |
|
|
|
fnet_classifier = load_model("Sentiments classifier.keras") |
|
|
|
review_example = input("Input your review: ") |
|
|
|
with open("vocab.json", "r") as f: |
|
vocab = json.load(f) |
|
|
|
seq_max_length = 512 |
|
tokenizer = keras_nlp.tokenizers.WordPieceTokenizer( |
|
vocabulary=vocab, |
|
lowercase=False, |
|
sequence_length=seq_max_length, |
|
) |
|
|
|
def make_prediction(sentence): |
|
tokens = tokenizer(review_example) |
|
tokens = tf.expand_dims(tokens, 0) |
|
prediction = fnet_classifier.predict(tokens, verbose=0) |
|
|
|
if prediction[0][0] > 0.5: |
|
result = "The review is POSITIVE" |
|
else: |
|
result = "The review is NEGATIVE" |
|
return result |
|
result = make_prediction(review_example) |
|
print(result) |