BiXie's picture
Upload 204 files
252711e verified
import hashlib
import os
import urllib
import warnings
from typing import Dict, Union
from tqdm import tqdm
try:
from huggingface_hub import hf_hub_download
_has_hf_hub = True
except ImportError:
hf_hub_download = None
_has_hf_hub = False
def _pcfg(url="", hf_hub="", filename="", mean=None, std=None):
return dict(
url=url,
hf_hub=hf_hub,
mean=mean,
std=std,
)
_VITB32 = dict(
openai=_pcfg("https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
laion400m_e31=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
laion400m_e32=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
laion2b_e16=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth"),
laion2b_s34b_b79k=_pcfg(hf_hub="laion/CLIP-ViT-B-32-laion2B-s34B-b79K/"),
)
_VITB32_quickgelu = dict(
openai=_pcfg("https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
laion400m_e31=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
laion400m_e32=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
)
_VITB16 = dict(
openai=_pcfg("https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"),
laion400m_e31=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt"),
laion400m_e32=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt"),
laion2b_s34b_b88k=_pcfg(hf_hub="laion/CLIP-ViT-B-16-laion2B-s34B-b88K/"),
)
_EVAB16 = dict(
eva=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt"),
eva02=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt"),
eva_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt"),
eva02_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt"),
)
_VITB16_PLUS_240 = dict(
laion400m_e31=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt"),
laion400m_e32=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"),
)
_VITL14 = dict(
openai=_pcfg("https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt"),
laion400m_e31=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt"),
laion400m_e32=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt"),
laion2b_s32b_b82k=_pcfg(hf_hub="laion/CLIP-ViT-L-14-laion2B-s32B-b82K/", mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
)
_EVAL14 = dict(
eva=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_L_psz14.pt"),
eva02=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_L_psz14.pt"),
eva_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt"),
eva02_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt"),
)
_VITL14_336 = dict(
openai=_pcfg("https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"),
)
_EVAL14_336 = dict(
eva_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt"),
eva02_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt"),
eva_clip_224to336=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt"),
eva02_clip_224to336=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt"),
)
_VITH14 = dict(
laion2b_s32b_b79k=_pcfg(hf_hub="laion/CLIP-ViT-H-14-laion2B-s32B-b79K/"),
)
_VITg14 = dict(
laion2b_s12b_b42k=_pcfg(hf_hub="laion/CLIP-ViT-g-14-laion2B-s12B-b42K/"),
laion2b_s34b_b88k=_pcfg(hf_hub="laion/CLIP-ViT-g-14-laion2B-s34B-b88K/"),
)
_EVAg14 = dict(
eva=_pcfg(hf_hub="QuanSun/EVA-CLIP/"),
eva01=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_g_psz14.pt"),
eva_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt"),
eva01_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt"),
)
_EVAg14_PLUS = dict(
eva=_pcfg(hf_hub="QuanSun/EVA-CLIP/"),
eva01=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_g_psz14.pt"),
eva_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt"),
eva01_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt"),
)
_VITbigG14 = dict(
laion2b_s39b_b160k=_pcfg(hf_hub="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/"),
)
_EVAbigE14 = dict(
eva=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_E_psz14.pt"),
eva02=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_E_psz14.pt"),
eva_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt"),
eva02_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt"),
)
_EVAbigE14_PLUS = dict(
eva=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_E_psz14.pt"),
eva02=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_E_psz14.pt"),
eva_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt"),
eva02_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt"),
)
_EVA_8B = dict(
eva=_pcfg(hf_hub="BAAI/EVA-CLIP-8B/EVA_8B_psz14.bin"),
eva_clip=_pcfg(hf_hub="BAAI/EVA-CLIP-8B/EVA_CLIP_8B_psz14_s9B.pt"),
)
_EVA_8B_PLUS = dict(
eva_clip=_pcfg(hf_hub="BAAI/EVA-CLIP-8B-448/EVA_CLIP_8B_psz14_plus_s0.6B.pt"),
)
_PRETRAINED = {
# "ViT-B-32": _VITB32,
"OpenaiCLIP-B-32": _VITB32,
"OpenCLIP-B-32": _VITB32,
# "ViT-B-32-quickgelu": _VITB32_quickgelu,
"OpenaiCLIP-B-32-quickgelu": _VITB32_quickgelu,
"OpenCLIP-B-32-quickgelu": _VITB32_quickgelu,
# "ViT-B-16": _VITB16,
"OpenaiCLIP-B-16": _VITB16,
"OpenCLIP-B-16": _VITB16,
"EVA02-B-16": _EVAB16,
"EVA02-CLIP-B-16": _EVAB16,
# "ViT-B-16-plus-240": _VITB16_PLUS_240,
"OpenCLIP-B-16-plus-240": _VITB16_PLUS_240,
# "ViT-L-14": _VITL14,
"OpenaiCLIP-L-14": _VITL14,
"OpenCLIP-L-14": _VITL14,
"EVA02-L-14": _EVAL14,
"EVA02-CLIP-L-14": _EVAL14,
# "ViT-L-14-336": _VITL14_336,
"OpenaiCLIP-L-14-336": _VITL14_336,
"EVA02-CLIP-L-14-336": _EVAL14_336,
# "ViT-H-14": _VITH14,
# "ViT-g-14": _VITg14,
"OpenCLIP-H-14": _VITH14,
"OpenCLIP-g-14": _VITg14,
"EVA01-CLIP-g-14": _EVAg14,
"EVA01-CLIP-g-14-plus": _EVAg14_PLUS,
# "ViT-bigG-14": _VITbigG14,
"OpenCLIP-bigG-14": _VITbigG14,
"EVA02-CLIP-bigE-14": _EVAbigE14,
"EVA02-CLIP-bigE-14-plus": _EVAbigE14_PLUS,
"EVA-CLIP-8B": _EVA_8B,
"EVA-CLIP-8B-448": _EVA_8B_PLUS,
"EVA-CLIP-8B-plus": _EVA_8B_PLUS,
}
def _clean_tag(tag: str):
# normalize pretrained tags
return tag.lower().replace("-", "_")
def list_pretrained(as_str: bool = False):
"""returns list of pretrained models
Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
"""
return [":".join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()]
def list_pretrained_models_by_tag(tag: str):
"""return all models having the specified pretrain tag"""
models = []
tag = _clean_tag(tag)
for k in _PRETRAINED.keys():
if tag in _PRETRAINED[k]:
models.append(k)
return models
def list_pretrained_tags_by_model(model: str):
"""return all pretrain tags for the specified model architecture"""
tags = []
if model in _PRETRAINED:
tags.extend(_PRETRAINED[model].keys())
return tags
def is_pretrained_cfg(model: str, tag: str):
if model not in _PRETRAINED:
return False
return _clean_tag(tag) in _PRETRAINED[model]
def get_pretrained_cfg(model: str, tag: str):
if model not in _PRETRAINED:
return {}
model_pretrained = _PRETRAINED[model]
return model_pretrained.get(_clean_tag(tag), {})
def get_pretrained_url(model: str, tag: str):
cfg = get_pretrained_cfg(model, _clean_tag(tag))
return cfg.get("url", "")
def download_pretrained_from_url(
url: str,
cache_dir: Union[str, None] = None,
):
if not cache_dir:
cache_dir = os.path.expanduser("~/.cache/clip")
os.makedirs(cache_dir, exist_ok=True)
filename = os.path.basename(url)
if "openaipublic" in url:
expected_sha256 = url.split("/")[-2]
elif "mlfoundations" in url:
expected_sha256 = os.path.splitext(filename)[0].split("-")[-1]
else:
expected_sha256 = ""
download_target = os.path.join(cache_dir, filename)
if os.path.exists(download_target) and not os.path.isfile(download_target):
raise RuntimeError(f"{download_target} exists and is not a regular file")
if os.path.isfile(download_target):
if expected_sha256:
if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
return download_target
else:
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
else:
return download_target
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit="iB", unit_scale=True) as loop:
while True:
buffer = source.read(8192)
if not buffer:
break
output.write(buffer)
loop.update(len(buffer))
if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
return download_target
def has_hf_hub(necessary=False):
if not _has_hf_hub and necessary:
# if no HF Hub module installed, and it is necessary to continue, raise error
raise RuntimeError("Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.")
return _has_hf_hub
def download_pretrained_from_hf(
model_id: str,
filename: str = "open_clip_pytorch_model.bin",
revision=None,
cache_dir: Union[str, None] = None,
):
has_hf_hub(True)
cached_file = hf_hub_download(model_id, filename, revision=revision, cache_dir=cache_dir)
return cached_file
def download_pretrained(
cfg: Dict,
force_hf_hub: bool = False,
cache_dir: Union[str, None] = None,
):
target = ""
if not cfg:
return target
download_url = cfg.get("url", "")
download_hf_hub = cfg.get("hf_hub", "")
if download_hf_hub and force_hf_hub:
# use HF hub even if url exists
download_url = ""
if download_url:
target = download_pretrained_from_url(download_url, cache_dir=cache_dir)
elif download_hf_hub:
has_hf_hub(True)
# we assume the hf_hub entries in pretrained config combine model_id + filename in
# 'org/model_name/filename.pt' form. To specify just the model id w/o filename and
# use 'open_clip_pytorch_model.bin' default, there must be a trailing slash 'org/model_name/'.
model_id, filename = os.path.split(download_hf_hub)
if filename:
target = download_pretrained_from_hf(model_id, filename=filename, cache_dir=cache_dir)
else:
target = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
return target