|
import hashlib
|
|
import os
|
|
import urllib
|
|
import warnings
|
|
from typing import Dict, Union
|
|
|
|
from tqdm import tqdm
|
|
|
|
try:
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
_has_hf_hub = True
|
|
except ImportError:
|
|
hf_hub_download = None
|
|
_has_hf_hub = False
|
|
|
|
|
|
def _pcfg(url="", hf_hub="", filename="", mean=None, std=None):
|
|
return dict(
|
|
url=url,
|
|
hf_hub=hf_hub,
|
|
mean=mean,
|
|
std=std,
|
|
)
|
|
|
|
|
|
_VITB32 = dict(
|
|
openai=_pcfg("https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
|
|
laion400m_e31=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
|
|
laion400m_e32=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
|
|
laion2b_e16=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-laion2b_e16-af8dbd0c.pth"),
|
|
laion2b_s34b_b79k=_pcfg(hf_hub="laion/CLIP-ViT-B-32-laion2B-s34B-b79K/"),
|
|
)
|
|
|
|
_VITB32_quickgelu = dict(
|
|
openai=_pcfg("https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt"),
|
|
laion400m_e31=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e31-d867053b.pt"),
|
|
laion400m_e32=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_32-quickgelu-laion400m_e32-46683a32.pt"),
|
|
)
|
|
|
|
_VITB16 = dict(
|
|
openai=_pcfg("https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt"),
|
|
laion400m_e31=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e31-00efa78f.pt"),
|
|
laion400m_e32=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16-laion400m_e32-55e67d44.pt"),
|
|
laion2b_s34b_b88k=_pcfg(hf_hub="laion/CLIP-ViT-B-16-laion2B-s34B-b88K/"),
|
|
)
|
|
|
|
_EVAB16 = dict(
|
|
eva=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt"),
|
|
eva02=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_B_psz14to16.pt"),
|
|
eva_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt"),
|
|
eva02_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_B_psz16_s8B.pt"),
|
|
)
|
|
|
|
_VITB16_PLUS_240 = dict(
|
|
laion400m_e31=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e31-8fb26589.pt"),
|
|
laion400m_e32=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_b_16_plus_240-laion400m_e32-699c4b84.pt"),
|
|
)
|
|
|
|
_VITL14 = dict(
|
|
openai=_pcfg("https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt"),
|
|
laion400m_e31=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e31-69988bb6.pt"),
|
|
laion400m_e32=_pcfg("https://github.com/mlfoundations/open_clip/releases/download/v0.2-weights/vit_l_14-laion400m_e32-3d133497.pt"),
|
|
laion2b_s32b_b82k=_pcfg(hf_hub="laion/CLIP-ViT-L-14-laion2B-s32B-b82K/", mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
|
|
)
|
|
|
|
_EVAL14 = dict(
|
|
eva=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_L_psz14.pt"),
|
|
eva02=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_L_psz14.pt"),
|
|
eva_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt"),
|
|
eva02_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_s4B.pt"),
|
|
)
|
|
|
|
_VITL14_336 = dict(
|
|
openai=_pcfg("https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt"),
|
|
)
|
|
|
|
_EVAL14_336 = dict(
|
|
eva_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt"),
|
|
eva02_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt"),
|
|
eva_clip_224to336=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt"),
|
|
eva02_clip_224to336=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_L_psz14_224to336.pt"),
|
|
)
|
|
|
|
_VITH14 = dict(
|
|
laion2b_s32b_b79k=_pcfg(hf_hub="laion/CLIP-ViT-H-14-laion2B-s32B-b79K/"),
|
|
)
|
|
|
|
_VITg14 = dict(
|
|
laion2b_s12b_b42k=_pcfg(hf_hub="laion/CLIP-ViT-g-14-laion2B-s12B-b42K/"),
|
|
laion2b_s34b_b88k=_pcfg(hf_hub="laion/CLIP-ViT-g-14-laion2B-s34B-b88K/"),
|
|
)
|
|
|
|
_EVAg14 = dict(
|
|
eva=_pcfg(hf_hub="QuanSun/EVA-CLIP/"),
|
|
eva01=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_g_psz14.pt"),
|
|
eva_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt"),
|
|
eva01_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_CLIP_g_14_psz14_s11B.pt"),
|
|
)
|
|
|
|
_EVAg14_PLUS = dict(
|
|
eva=_pcfg(hf_hub="QuanSun/EVA-CLIP/"),
|
|
eva01=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_g_psz14.pt"),
|
|
eva_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt"),
|
|
eva01_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt"),
|
|
)
|
|
|
|
_VITbigG14 = dict(
|
|
laion2b_s39b_b160k=_pcfg(hf_hub="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/"),
|
|
)
|
|
|
|
_EVAbigE14 = dict(
|
|
eva=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_E_psz14.pt"),
|
|
eva02=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_E_psz14.pt"),
|
|
eva_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt"),
|
|
eva02_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_s4B.pt"),
|
|
)
|
|
|
|
_EVAbigE14_PLUS = dict(
|
|
eva=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_E_psz14.pt"),
|
|
eva02=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_E_psz14.pt"),
|
|
eva_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt"),
|
|
eva02_clip=_pcfg(hf_hub="QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt"),
|
|
)
|
|
|
|
_EVA_8B = dict(
|
|
eva=_pcfg(hf_hub="BAAI/EVA-CLIP-8B/EVA_8B_psz14.bin"),
|
|
eva_clip=_pcfg(hf_hub="BAAI/EVA-CLIP-8B/EVA_CLIP_8B_psz14_s9B.pt"),
|
|
)
|
|
|
|
_EVA_8B_PLUS = dict(
|
|
eva_clip=_pcfg(hf_hub="BAAI/EVA-CLIP-8B-448/EVA_CLIP_8B_psz14_plus_s0.6B.pt"),
|
|
)
|
|
|
|
|
|
_PRETRAINED = {
|
|
|
|
"OpenaiCLIP-B-32": _VITB32,
|
|
"OpenCLIP-B-32": _VITB32,
|
|
|
|
"OpenaiCLIP-B-32-quickgelu": _VITB32_quickgelu,
|
|
"OpenCLIP-B-32-quickgelu": _VITB32_quickgelu,
|
|
|
|
"OpenaiCLIP-B-16": _VITB16,
|
|
"OpenCLIP-B-16": _VITB16,
|
|
"EVA02-B-16": _EVAB16,
|
|
"EVA02-CLIP-B-16": _EVAB16,
|
|
|
|
"OpenCLIP-B-16-plus-240": _VITB16_PLUS_240,
|
|
|
|
"OpenaiCLIP-L-14": _VITL14,
|
|
"OpenCLIP-L-14": _VITL14,
|
|
"EVA02-L-14": _EVAL14,
|
|
"EVA02-CLIP-L-14": _EVAL14,
|
|
|
|
"OpenaiCLIP-L-14-336": _VITL14_336,
|
|
"EVA02-CLIP-L-14-336": _EVAL14_336,
|
|
|
|
|
|
"OpenCLIP-H-14": _VITH14,
|
|
"OpenCLIP-g-14": _VITg14,
|
|
"EVA01-CLIP-g-14": _EVAg14,
|
|
"EVA01-CLIP-g-14-plus": _EVAg14_PLUS,
|
|
|
|
"OpenCLIP-bigG-14": _VITbigG14,
|
|
"EVA02-CLIP-bigE-14": _EVAbigE14,
|
|
"EVA02-CLIP-bigE-14-plus": _EVAbigE14_PLUS,
|
|
"EVA-CLIP-8B": _EVA_8B,
|
|
"EVA-CLIP-8B-448": _EVA_8B_PLUS,
|
|
"EVA-CLIP-8B-plus": _EVA_8B_PLUS,
|
|
}
|
|
|
|
|
|
def _clean_tag(tag: str):
|
|
|
|
return tag.lower().replace("-", "_")
|
|
|
|
|
|
def list_pretrained(as_str: bool = False):
|
|
"""returns list of pretrained models
|
|
Returns a tuple (model_name, pretrain_tag) by default or 'name:tag' if as_str == True
|
|
"""
|
|
return [":".join([k, t]) if as_str else (k, t) for k in _PRETRAINED.keys() for t in _PRETRAINED[k].keys()]
|
|
|
|
|
|
def list_pretrained_models_by_tag(tag: str):
|
|
"""return all models having the specified pretrain tag"""
|
|
models = []
|
|
tag = _clean_tag(tag)
|
|
for k in _PRETRAINED.keys():
|
|
if tag in _PRETRAINED[k]:
|
|
models.append(k)
|
|
return models
|
|
|
|
|
|
def list_pretrained_tags_by_model(model: str):
|
|
"""return all pretrain tags for the specified model architecture"""
|
|
tags = []
|
|
if model in _PRETRAINED:
|
|
tags.extend(_PRETRAINED[model].keys())
|
|
return tags
|
|
|
|
|
|
def is_pretrained_cfg(model: str, tag: str):
|
|
if model not in _PRETRAINED:
|
|
return False
|
|
return _clean_tag(tag) in _PRETRAINED[model]
|
|
|
|
|
|
def get_pretrained_cfg(model: str, tag: str):
|
|
if model not in _PRETRAINED:
|
|
return {}
|
|
model_pretrained = _PRETRAINED[model]
|
|
return model_pretrained.get(_clean_tag(tag), {})
|
|
|
|
|
|
def get_pretrained_url(model: str, tag: str):
|
|
cfg = get_pretrained_cfg(model, _clean_tag(tag))
|
|
return cfg.get("url", "")
|
|
|
|
|
|
def download_pretrained_from_url(
|
|
url: str,
|
|
cache_dir: Union[str, None] = None,
|
|
):
|
|
if not cache_dir:
|
|
cache_dir = os.path.expanduser("~/.cache/clip")
|
|
os.makedirs(cache_dir, exist_ok=True)
|
|
filename = os.path.basename(url)
|
|
|
|
if "openaipublic" in url:
|
|
expected_sha256 = url.split("/")[-2]
|
|
elif "mlfoundations" in url:
|
|
expected_sha256 = os.path.splitext(filename)[0].split("-")[-1]
|
|
else:
|
|
expected_sha256 = ""
|
|
|
|
download_target = os.path.join(cache_dir, filename)
|
|
|
|
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
|
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
|
|
|
if os.path.isfile(download_target):
|
|
if expected_sha256:
|
|
if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
|
|
return download_target
|
|
else:
|
|
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
|
else:
|
|
return download_target
|
|
|
|
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
|
with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit="iB", unit_scale=True) as loop:
|
|
while True:
|
|
buffer = source.read(8192)
|
|
if not buffer:
|
|
break
|
|
|
|
output.write(buffer)
|
|
loop.update(len(buffer))
|
|
|
|
if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256):
|
|
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
|
|
|
return download_target
|
|
|
|
|
|
def has_hf_hub(necessary=False):
|
|
if not _has_hf_hub and necessary:
|
|
|
|
raise RuntimeError("Hugging Face hub model specified but package not installed. Run `pip install huggingface_hub`.")
|
|
return _has_hf_hub
|
|
|
|
|
|
def download_pretrained_from_hf(
|
|
model_id: str,
|
|
filename: str = "open_clip_pytorch_model.bin",
|
|
revision=None,
|
|
cache_dir: Union[str, None] = None,
|
|
):
|
|
has_hf_hub(True)
|
|
cached_file = hf_hub_download(model_id, filename, revision=revision, cache_dir=cache_dir)
|
|
return cached_file
|
|
|
|
|
|
def download_pretrained(
|
|
cfg: Dict,
|
|
force_hf_hub: bool = False,
|
|
cache_dir: Union[str, None] = None,
|
|
):
|
|
target = ""
|
|
if not cfg:
|
|
return target
|
|
|
|
download_url = cfg.get("url", "")
|
|
download_hf_hub = cfg.get("hf_hub", "")
|
|
if download_hf_hub and force_hf_hub:
|
|
|
|
download_url = ""
|
|
|
|
if download_url:
|
|
target = download_pretrained_from_url(download_url, cache_dir=cache_dir)
|
|
elif download_hf_hub:
|
|
has_hf_hub(True)
|
|
|
|
|
|
|
|
model_id, filename = os.path.split(download_hf_hub)
|
|
if filename:
|
|
target = download_pretrained_from_hf(model_id, filename=filename, cache_dir=cache_dir)
|
|
else:
|
|
target = download_pretrained_from_hf(model_id, cache_dir=cache_dir)
|
|
|
|
return target
|
|
|