|
from __future__ import annotations |
|
|
|
import os |
|
import warnings |
|
|
|
__docformat__ = "restructuredtext" |
|
|
|
|
|
_hard_dependencies = ("numpy", "pytz", "dateutil") |
|
_missing_dependencies = [] |
|
|
|
for _dependency in _hard_dependencies: |
|
try: |
|
__import__(_dependency) |
|
except ImportError as _e: |
|
_missing_dependencies.append(f"{_dependency}: {_e}") |
|
|
|
if _missing_dependencies: |
|
raise ImportError( |
|
"Unable to import required dependencies:\n" + "\n".join(_missing_dependencies) |
|
) |
|
del _hard_dependencies, _dependency, _missing_dependencies |
|
|
|
try: |
|
|
|
from pandas.compat import ( |
|
is_numpy_dev as _is_numpy_dev, |
|
) |
|
except ImportError as _err: |
|
_module = _err.name |
|
raise ImportError( |
|
f"C extension: {_module} not built. If you want to import " |
|
"pandas from the source directory, you may need to run " |
|
"'python setup.py build_ext' to build the C extensions first." |
|
) from _err |
|
|
|
from pandas._config import ( |
|
get_option, |
|
set_option, |
|
reset_option, |
|
describe_option, |
|
option_context, |
|
options, |
|
) |
|
|
|
|
|
import pandas.core.config_init |
|
|
|
from pandas.core.api import ( |
|
|
|
ArrowDtype, |
|
Int8Dtype, |
|
Int16Dtype, |
|
Int32Dtype, |
|
Int64Dtype, |
|
UInt8Dtype, |
|
UInt16Dtype, |
|
UInt32Dtype, |
|
UInt64Dtype, |
|
Float32Dtype, |
|
Float64Dtype, |
|
CategoricalDtype, |
|
PeriodDtype, |
|
IntervalDtype, |
|
DatetimeTZDtype, |
|
StringDtype, |
|
BooleanDtype, |
|
|
|
NA, |
|
isna, |
|
isnull, |
|
notna, |
|
notnull, |
|
|
|
Index, |
|
CategoricalIndex, |
|
RangeIndex, |
|
MultiIndex, |
|
IntervalIndex, |
|
TimedeltaIndex, |
|
DatetimeIndex, |
|
PeriodIndex, |
|
IndexSlice, |
|
|
|
NaT, |
|
Period, |
|
period_range, |
|
Timedelta, |
|
timedelta_range, |
|
Timestamp, |
|
date_range, |
|
bdate_range, |
|
Interval, |
|
interval_range, |
|
DateOffset, |
|
|
|
to_numeric, |
|
to_datetime, |
|
to_timedelta, |
|
|
|
Flags, |
|
Grouper, |
|
factorize, |
|
unique, |
|
value_counts, |
|
NamedAgg, |
|
array, |
|
Categorical, |
|
set_eng_float_format, |
|
Series, |
|
DataFrame, |
|
) |
|
|
|
from pandas.core.dtypes.dtypes import SparseDtype |
|
|
|
from pandas.tseries.api import infer_freq |
|
from pandas.tseries import offsets |
|
|
|
from pandas.core.computation.api import eval |
|
|
|
from pandas.core.reshape.api import ( |
|
concat, |
|
lreshape, |
|
melt, |
|
wide_to_long, |
|
merge, |
|
merge_asof, |
|
merge_ordered, |
|
crosstab, |
|
pivot, |
|
pivot_table, |
|
get_dummies, |
|
from_dummies, |
|
cut, |
|
qcut, |
|
) |
|
|
|
from pandas import api, arrays, errors, io, plotting, tseries |
|
from pandas import testing |
|
from pandas.util._print_versions import show_versions |
|
|
|
from pandas.io.api import ( |
|
|
|
ExcelFile, |
|
ExcelWriter, |
|
read_excel, |
|
|
|
read_csv, |
|
read_fwf, |
|
read_table, |
|
|
|
read_pickle, |
|
to_pickle, |
|
|
|
HDFStore, |
|
read_hdf, |
|
|
|
read_sql, |
|
read_sql_query, |
|
read_sql_table, |
|
|
|
read_clipboard, |
|
read_parquet, |
|
read_orc, |
|
read_feather, |
|
read_gbq, |
|
read_html, |
|
read_xml, |
|
read_json, |
|
read_stata, |
|
read_sas, |
|
read_spss, |
|
) |
|
|
|
from pandas.io.json._normalize import json_normalize |
|
|
|
from pandas.util._tester import test |
|
|
|
|
|
_built_with_meson = False |
|
try: |
|
from pandas._version_meson import ( |
|
__version__, |
|
__git_version__, |
|
) |
|
|
|
_built_with_meson = True |
|
except ImportError: |
|
from pandas._version import get_versions |
|
|
|
v = get_versions() |
|
__version__ = v.get("closest-tag", v["version"]) |
|
__git_version__ = v.get("full-revisionid") |
|
del get_versions, v |
|
|
|
|
|
if "PANDAS_DATA_MANAGER" in os.environ: |
|
warnings.warn( |
|
"The env variable PANDAS_DATA_MANAGER is set. The data_manager option is " |
|
"deprecated and will be removed in a future version. Only the BlockManager " |
|
"will be available. Unset this environment variable to silence this warning.", |
|
FutureWarning, |
|
stacklevel=2, |
|
) |
|
|
|
del warnings, os |
|
|
|
|
|
__doc__ = """ |
|
pandas - a powerful data analysis and manipulation library for Python |
|
===================================================================== |
|
|
|
**pandas** is a Python package providing fast, flexible, and expressive data |
|
structures designed to make working with "relational" or "labeled" data both |
|
easy and intuitive. It aims to be the fundamental high-level building block for |
|
doing practical, **real world** data analysis in Python. Additionally, it has |
|
the broader goal of becoming **the most powerful and flexible open source data |
|
analysis / manipulation tool available in any language**. It is already well on |
|
its way toward this goal. |
|
|
|
Main Features |
|
------------- |
|
Here are just a few of the things that pandas does well: |
|
|
|
- Easy handling of missing data in floating point as well as non-floating |
|
point data. |
|
- Size mutability: columns can be inserted and deleted from DataFrame and |
|
higher dimensional objects |
|
- Automatic and explicit data alignment: objects can be explicitly aligned |
|
to a set of labels, or the user can simply ignore the labels and let |
|
`Series`, `DataFrame`, etc. automatically align the data for you in |
|
computations. |
|
- Powerful, flexible group by functionality to perform split-apply-combine |
|
operations on data sets, for both aggregating and transforming data. |
|
- Make it easy to convert ragged, differently-indexed data in other Python |
|
and NumPy data structures into DataFrame objects. |
|
- Intelligent label-based slicing, fancy indexing, and subsetting of large |
|
data sets. |
|
- Intuitive merging and joining data sets. |
|
- Flexible reshaping and pivoting of data sets. |
|
- Hierarchical labeling of axes (possible to have multiple labels per tick). |
|
- Robust IO tools for loading data from flat files (CSV and delimited), |
|
Excel files, databases, and saving/loading data from the ultrafast HDF5 |
|
format. |
|
- Time series-specific functionality: date range generation and frequency |
|
conversion, moving window statistics, date shifting and lagging. |
|
""" |
|
|
|
|
|
|
|
|
|
__all__ = [ |
|
"ArrowDtype", |
|
"BooleanDtype", |
|
"Categorical", |
|
"CategoricalDtype", |
|
"CategoricalIndex", |
|
"DataFrame", |
|
"DateOffset", |
|
"DatetimeIndex", |
|
"DatetimeTZDtype", |
|
"ExcelFile", |
|
"ExcelWriter", |
|
"Flags", |
|
"Float32Dtype", |
|
"Float64Dtype", |
|
"Grouper", |
|
"HDFStore", |
|
"Index", |
|
"IndexSlice", |
|
"Int16Dtype", |
|
"Int32Dtype", |
|
"Int64Dtype", |
|
"Int8Dtype", |
|
"Interval", |
|
"IntervalDtype", |
|
"IntervalIndex", |
|
"MultiIndex", |
|
"NA", |
|
"NaT", |
|
"NamedAgg", |
|
"Period", |
|
"PeriodDtype", |
|
"PeriodIndex", |
|
"RangeIndex", |
|
"Series", |
|
"SparseDtype", |
|
"StringDtype", |
|
"Timedelta", |
|
"TimedeltaIndex", |
|
"Timestamp", |
|
"UInt16Dtype", |
|
"UInt32Dtype", |
|
"UInt64Dtype", |
|
"UInt8Dtype", |
|
"api", |
|
"array", |
|
"arrays", |
|
"bdate_range", |
|
"concat", |
|
"crosstab", |
|
"cut", |
|
"date_range", |
|
"describe_option", |
|
"errors", |
|
"eval", |
|
"factorize", |
|
"get_dummies", |
|
"from_dummies", |
|
"get_option", |
|
"infer_freq", |
|
"interval_range", |
|
"io", |
|
"isna", |
|
"isnull", |
|
"json_normalize", |
|
"lreshape", |
|
"melt", |
|
"merge", |
|
"merge_asof", |
|
"merge_ordered", |
|
"notna", |
|
"notnull", |
|
"offsets", |
|
"option_context", |
|
"options", |
|
"period_range", |
|
"pivot", |
|
"pivot_table", |
|
"plotting", |
|
"qcut", |
|
"read_clipboard", |
|
"read_csv", |
|
"read_excel", |
|
"read_feather", |
|
"read_fwf", |
|
"read_gbq", |
|
"read_hdf", |
|
"read_html", |
|
"read_json", |
|
"read_orc", |
|
"read_parquet", |
|
"read_pickle", |
|
"read_sas", |
|
"read_spss", |
|
"read_sql", |
|
"read_sql_query", |
|
"read_sql_table", |
|
"read_stata", |
|
"read_table", |
|
"read_xml", |
|
"reset_option", |
|
"set_eng_float_format", |
|
"set_option", |
|
"show_versions", |
|
"test", |
|
"testing", |
|
"timedelta_range", |
|
"to_datetime", |
|
"to_numeric", |
|
"to_pickle", |
|
"to_timedelta", |
|
"tseries", |
|
"unique", |
|
"value_counts", |
|
"wide_to_long", |
|
] |
|
|