cmrit
/
cmrithackathon-master
/.venv
/lib
/python3.11
/site-packages
/numpy
/matrixlib
/tests
/test_defmatrix.py
import collections.abc | |
import numpy as np | |
from numpy import matrix, asmatrix, bmat | |
from numpy.testing import ( | |
assert_, assert_equal, assert_almost_equal, assert_array_equal, | |
assert_array_almost_equal, assert_raises | |
) | |
from numpy.linalg import matrix_power | |
class TestCtor: | |
def test_basic(self): | |
A = np.array([[1, 2], [3, 4]]) | |
mA = matrix(A) | |
assert_(np.all(mA.A == A)) | |
B = bmat("A,A;A,A") | |
C = bmat([[A, A], [A, A]]) | |
D = np.array([[1, 2, 1, 2], | |
[3, 4, 3, 4], | |
[1, 2, 1, 2], | |
[3, 4, 3, 4]]) | |
assert_(np.all(B.A == D)) | |
assert_(np.all(C.A == D)) | |
E = np.array([[5, 6], [7, 8]]) | |
AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]]) | |
assert_(np.all(bmat([A, E]) == AEresult)) | |
vec = np.arange(5) | |
mvec = matrix(vec) | |
assert_(mvec.shape == (1, 5)) | |
def test_exceptions(self): | |
# Check for ValueError when called with invalid string data. | |
assert_raises(ValueError, matrix, "invalid") | |
def test_bmat_nondefault_str(self): | |
A = np.array([[1, 2], [3, 4]]) | |
B = np.array([[5, 6], [7, 8]]) | |
Aresult = np.array([[1, 2, 1, 2], | |
[3, 4, 3, 4], | |
[1, 2, 1, 2], | |
[3, 4, 3, 4]]) | |
mixresult = np.array([[1, 2, 5, 6], | |
[3, 4, 7, 8], | |
[5, 6, 1, 2], | |
[7, 8, 3, 4]]) | |
assert_(np.all(bmat("A,A;A,A") == Aresult)) | |
assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult)) | |
assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B}) | |
assert_( | |
np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult)) | |
b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A}) | |
assert_(np.all(b2 == mixresult)) | |
class TestProperties: | |
def test_sum(self): | |
"""Test whether matrix.sum(axis=1) preserves orientation. | |
Fails in NumPy <= 0.9.6.2127. | |
""" | |
M = matrix([[1, 2, 0, 0], | |
[3, 4, 0, 0], | |
[1, 2, 1, 2], | |
[3, 4, 3, 4]]) | |
sum0 = matrix([8, 12, 4, 6]) | |
sum1 = matrix([3, 7, 6, 14]).T | |
sumall = 30 | |
assert_array_equal(sum0, M.sum(axis=0)) | |
assert_array_equal(sum1, M.sum(axis=1)) | |
assert_equal(sumall, M.sum()) | |
assert_array_equal(sum0, np.sum(M, axis=0)) | |
assert_array_equal(sum1, np.sum(M, axis=1)) | |
assert_equal(sumall, np.sum(M)) | |
def test_prod(self): | |
x = matrix([[1, 2, 3], [4, 5, 6]]) | |
assert_equal(x.prod(), 720) | |
assert_equal(x.prod(0), matrix([[4, 10, 18]])) | |
assert_equal(x.prod(1), matrix([[6], [120]])) | |
assert_equal(np.prod(x), 720) | |
assert_equal(np.prod(x, axis=0), matrix([[4, 10, 18]])) | |
assert_equal(np.prod(x, axis=1), matrix([[6], [120]])) | |
y = matrix([0, 1, 3]) | |
assert_(y.prod() == 0) | |
def test_max(self): | |
x = matrix([[1, 2, 3], [4, 5, 6]]) | |
assert_equal(x.max(), 6) | |
assert_equal(x.max(0), matrix([[4, 5, 6]])) | |
assert_equal(x.max(1), matrix([[3], [6]])) | |
assert_equal(np.max(x), 6) | |
assert_equal(np.max(x, axis=0), matrix([[4, 5, 6]])) | |
assert_equal(np.max(x, axis=1), matrix([[3], [6]])) | |
def test_min(self): | |
x = matrix([[1, 2, 3], [4, 5, 6]]) | |
assert_equal(x.min(), 1) | |
assert_equal(x.min(0), matrix([[1, 2, 3]])) | |
assert_equal(x.min(1), matrix([[1], [4]])) | |
assert_equal(np.min(x), 1) | |
assert_equal(np.min(x, axis=0), matrix([[1, 2, 3]])) | |
assert_equal(np.min(x, axis=1), matrix([[1], [4]])) | |
def test_ptp(self): | |
x = np.arange(4).reshape((2, 2)) | |
mx = x.view(np.matrix) | |
assert_(mx.ptp() == 3) | |
assert_(np.all(mx.ptp(0) == np.array([2, 2]))) | |
assert_(np.all(mx.ptp(1) == np.array([1, 1]))) | |
def test_var(self): | |
x = np.arange(9).reshape((3, 3)) | |
mx = x.view(np.matrix) | |
assert_equal(x.var(ddof=0), mx.var(ddof=0)) | |
assert_equal(x.var(ddof=1), mx.var(ddof=1)) | |
def test_basic(self): | |
import numpy.linalg as linalg | |
A = np.array([[1., 2.], | |
[3., 4.]]) | |
mA = matrix(A) | |
assert_(np.allclose(linalg.inv(A), mA.I)) | |
assert_(np.all(np.array(np.transpose(A) == mA.T))) | |
assert_(np.all(np.array(np.transpose(A) == mA.H))) | |
assert_(np.all(A == mA.A)) | |
B = A + 2j*A | |
mB = matrix(B) | |
assert_(np.allclose(linalg.inv(B), mB.I)) | |
assert_(np.all(np.array(np.transpose(B) == mB.T))) | |
assert_(np.all(np.array(np.transpose(B).conj() == mB.H))) | |
def test_pinv(self): | |
x = matrix(np.arange(6).reshape(2, 3)) | |
xpinv = matrix([[-0.77777778, 0.27777778], | |
[-0.11111111, 0.11111111], | |
[ 0.55555556, -0.05555556]]) | |
assert_almost_equal(x.I, xpinv) | |
def test_comparisons(self): | |
A = np.arange(100).reshape(10, 10) | |
mA = matrix(A) | |
mB = matrix(A) + 0.1 | |
assert_(np.all(mB == A+0.1)) | |
assert_(np.all(mB == matrix(A+0.1))) | |
assert_(not np.any(mB == matrix(A-0.1))) | |
assert_(np.all(mA < mB)) | |
assert_(np.all(mA <= mB)) | |
assert_(np.all(mA <= mA)) | |
assert_(not np.any(mA < mA)) | |
assert_(not np.any(mB < mA)) | |
assert_(np.all(mB >= mA)) | |
assert_(np.all(mB >= mB)) | |
assert_(not np.any(mB > mB)) | |
assert_(np.all(mA == mA)) | |
assert_(not np.any(mA == mB)) | |
assert_(np.all(mB != mA)) | |
assert_(not np.all(abs(mA) > 0)) | |
assert_(np.all(abs(mB > 0))) | |
def test_asmatrix(self): | |
A = np.arange(100).reshape(10, 10) | |
mA = asmatrix(A) | |
A[0, 0] = -10 | |
assert_(A[0, 0] == mA[0, 0]) | |
def test_noaxis(self): | |
A = matrix([[1, 0], [0, 1]]) | |
assert_(A.sum() == matrix(2)) | |
assert_(A.mean() == matrix(0.5)) | |
def test_repr(self): | |
A = matrix([[1, 0], [0, 1]]) | |
assert_(repr(A) == "matrix([[1, 0],\n [0, 1]])") | |
def test_make_bool_matrix_from_str(self): | |
A = matrix('True; True; False') | |
B = matrix([[True], [True], [False]]) | |
assert_array_equal(A, B) | |
class TestCasting: | |
def test_basic(self): | |
A = np.arange(100).reshape(10, 10) | |
mA = matrix(A) | |
mB = mA.copy() | |
O = np.ones((10, 10), np.float64) * 0.1 | |
mB = mB + O | |
assert_(mB.dtype.type == np.float64) | |
assert_(np.all(mA != mB)) | |
assert_(np.all(mB == mA+0.1)) | |
mC = mA.copy() | |
O = np.ones((10, 10), np.complex128) | |
mC = mC * O | |
assert_(mC.dtype.type == np.complex128) | |
assert_(np.all(mA != mB)) | |
class TestAlgebra: | |
def test_basic(self): | |
import numpy.linalg as linalg | |
A = np.array([[1., 2.], [3., 4.]]) | |
mA = matrix(A) | |
B = np.identity(2) | |
for i in range(6): | |
assert_(np.allclose((mA ** i).A, B)) | |
B = np.dot(B, A) | |
Ainv = linalg.inv(A) | |
B = np.identity(2) | |
for i in range(6): | |
assert_(np.allclose((mA ** -i).A, B)) | |
B = np.dot(B, Ainv) | |
assert_(np.allclose((mA * mA).A, np.dot(A, A))) | |
assert_(np.allclose((mA + mA).A, (A + A))) | |
assert_(np.allclose((3*mA).A, (3*A))) | |
mA2 = matrix(A) | |
mA2 *= 3 | |
assert_(np.allclose(mA2.A, 3*A)) | |
def test_pow(self): | |
"""Test raising a matrix to an integer power works as expected.""" | |
m = matrix("1. 2.; 3. 4.") | |
m2 = m.copy() | |
m2 **= 2 | |
mi = m.copy() | |
mi **= -1 | |
m4 = m2.copy() | |
m4 **= 2 | |
assert_array_almost_equal(m2, m**2) | |
assert_array_almost_equal(m4, np.dot(m2, m2)) | |
assert_array_almost_equal(np.dot(mi, m), np.eye(2)) | |
def test_scalar_type_pow(self): | |
m = matrix([[1, 2], [3, 4]]) | |
for scalar_t in [np.int8, np.uint8]: | |
two = scalar_t(2) | |
assert_array_almost_equal(m ** 2, m ** two) | |
def test_notimplemented(self): | |
'''Check that 'not implemented' operations produce a failure.''' | |
A = matrix([[1., 2.], | |
[3., 4.]]) | |
# __rpow__ | |
with assert_raises(TypeError): | |
1.0**A | |
# __mul__ with something not a list, ndarray, tuple, or scalar | |
with assert_raises(TypeError): | |
A*object() | |
class TestMatrixReturn: | |
def test_instance_methods(self): | |
a = matrix([1.0], dtype='f8') | |
methodargs = { | |
'astype': ('intc',), | |
'clip': (0.0, 1.0), | |
'compress': ([1],), | |
'repeat': (1,), | |
'reshape': (1,), | |
'swapaxes': (0, 0), | |
'dot': np.array([1.0]), | |
} | |
excluded_methods = [ | |
'argmin', 'choose', 'dump', 'dumps', 'fill', 'getfield', | |
'getA', 'getA1', 'item', 'nonzero', 'put', 'putmask', 'resize', | |
'searchsorted', 'setflags', 'setfield', 'sort', | |
'partition', 'argpartition', 'newbyteorder', 'to_device', | |
'take', 'tofile', 'tolist', 'tostring', 'tobytes', 'all', 'any', | |
'sum', 'argmax', 'argmin', 'min', 'max', 'mean', 'var', 'ptp', | |
'prod', 'std', 'ctypes', 'itemset', 'bitwise_count', | |
] | |
for attrib in dir(a): | |
if attrib.startswith('_') or attrib in excluded_methods: | |
continue | |
f = getattr(a, attrib) | |
if isinstance(f, collections.abc.Callable): | |
# reset contents of a | |
a.astype('f8') | |
a.fill(1.0) | |
if attrib in methodargs: | |
args = methodargs[attrib] | |
else: | |
args = () | |
b = f(*args) | |
assert_(type(b) is matrix, "%s" % attrib) | |
assert_(type(a.real) is matrix) | |
assert_(type(a.imag) is matrix) | |
c, d = matrix([0.0]).nonzero() | |
assert_(type(c) is np.ndarray) | |
assert_(type(d) is np.ndarray) | |
class TestIndexing: | |
def test_basic(self): | |
x = asmatrix(np.zeros((3, 2), float)) | |
y = np.zeros((3, 1), float) | |
y[:, 0] = [0.8, 0.2, 0.3] | |
x[:, 1] = y > 0.5 | |
assert_equal(x, [[0, 1], [0, 0], [0, 0]]) | |
class TestNewScalarIndexing: | |
a = matrix([[1, 2], [3, 4]]) | |
def test_dimesions(self): | |
a = self.a | |
x = a[0] | |
assert_equal(x.ndim, 2) | |
def test_array_from_matrix_list(self): | |
a = self.a | |
x = np.array([a, a]) | |
assert_equal(x.shape, [2, 2, 2]) | |
def test_array_to_list(self): | |
a = self.a | |
assert_equal(a.tolist(), [[1, 2], [3, 4]]) | |
def test_fancy_indexing(self): | |
a = self.a | |
x = a[1, [0, 1, 0]] | |
assert_(isinstance(x, matrix)) | |
assert_equal(x, matrix([[3, 4, 3]])) | |
x = a[[1, 0]] | |
assert_(isinstance(x, matrix)) | |
assert_equal(x, matrix([[3, 4], [1, 2]])) | |
x = a[[[1], [0]], [[1, 0], [0, 1]]] | |
assert_(isinstance(x, matrix)) | |
assert_equal(x, matrix([[4, 3], [1, 2]])) | |
def test_matrix_element(self): | |
x = matrix([[1, 2, 3], [4, 5, 6]]) | |
assert_equal(x[0][0], matrix([[1, 2, 3]])) | |
assert_equal(x[0][0].shape, (1, 3)) | |
assert_equal(x[0].shape, (1, 3)) | |
assert_equal(x[:, 0].shape, (2, 1)) | |
x = matrix(0) | |
assert_equal(x[0, 0], 0) | |
assert_equal(x[0], 0) | |
assert_equal(x[:, 0].shape, x.shape) | |
def test_scalar_indexing(self): | |
x = asmatrix(np.zeros((3, 2), float)) | |
assert_equal(x[0, 0], x[0][0]) | |
def test_row_column_indexing(self): | |
x = asmatrix(np.eye(2)) | |
assert_array_equal(x[0,:], [[1, 0]]) | |
assert_array_equal(x[1,:], [[0, 1]]) | |
assert_array_equal(x[:, 0], [[1], [0]]) | |
assert_array_equal(x[:, 1], [[0], [1]]) | |
def test_boolean_indexing(self): | |
A = np.arange(6) | |
A.shape = (3, 2) | |
x = asmatrix(A) | |
assert_array_equal(x[:, np.array([True, False])], x[:, 0]) | |
assert_array_equal(x[np.array([True, False, False]),:], x[0,:]) | |
def test_list_indexing(self): | |
A = np.arange(6) | |
A.shape = (3, 2) | |
x = asmatrix(A) | |
assert_array_equal(x[:, [1, 0]], x[:, ::-1]) | |
assert_array_equal(x[[2, 1, 0],:], x[::-1,:]) | |
class TestPower: | |
def test_returntype(self): | |
a = np.array([[0, 1], [0, 0]]) | |
assert_(type(matrix_power(a, 2)) is np.ndarray) | |
a = asmatrix(a) | |
assert_(type(matrix_power(a, 2)) is matrix) | |
def test_list(self): | |
assert_array_equal(matrix_power([[0, 1], [0, 0]], 2), [[0, 0], [0, 0]]) | |
class TestShape: | |
a = np.array([[1], [2]]) | |
m = matrix([[1], [2]]) | |
def test_shape(self): | |
assert_equal(self.a.shape, (2, 1)) | |
assert_equal(self.m.shape, (2, 1)) | |
def test_numpy_ravel(self): | |
assert_equal(np.ravel(self.a).shape, (2,)) | |
assert_equal(np.ravel(self.m).shape, (2,)) | |
def test_member_ravel(self): | |
assert_equal(self.a.ravel().shape, (2,)) | |
assert_equal(self.m.ravel().shape, (1, 2)) | |
def test_member_flatten(self): | |
assert_equal(self.a.flatten().shape, (2,)) | |
assert_equal(self.m.flatten().shape, (1, 2)) | |
def test_numpy_ravel_order(self): | |
x = np.array([[1, 2, 3], [4, 5, 6]]) | |
assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6]) | |
assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6]) | |
assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6]) | |
assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6]) | |
x = matrix([[1, 2, 3], [4, 5, 6]]) | |
assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6]) | |
assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6]) | |
assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6]) | |
assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6]) | |
def test_matrix_ravel_order(self): | |
x = matrix([[1, 2, 3], [4, 5, 6]]) | |
assert_equal(x.ravel(), [[1, 2, 3, 4, 5, 6]]) | |
assert_equal(x.ravel(order='F'), [[1, 4, 2, 5, 3, 6]]) | |
assert_equal(x.T.ravel(), [[1, 4, 2, 5, 3, 6]]) | |
assert_equal(x.T.ravel(order='A'), [[1, 2, 3, 4, 5, 6]]) | |
def test_array_memory_sharing(self): | |
assert_(np.may_share_memory(self.a, self.a.ravel())) | |
assert_(not np.may_share_memory(self.a, self.a.flatten())) | |
def test_matrix_memory_sharing(self): | |
assert_(np.may_share_memory(self.m, self.m.ravel())) | |
assert_(not np.may_share_memory(self.m, self.m.flatten())) | |
def test_expand_dims_matrix(self): | |
# matrices are always 2d - so expand_dims only makes sense when the | |
# type is changed away from matrix. | |
a = np.arange(10).reshape((2, 5)).view(np.matrix) | |
expanded = np.expand_dims(a, axis=1) | |
assert_equal(expanded.ndim, 3) | |
assert_(not isinstance(expanded, np.matrix)) | |