cmrit
/
cmrithackathon-master
/.venv
/lib
/python3.11
/site-packages
/numpy
/ma
/tests
/test_extras.py
# pylint: disable-msg=W0611, W0612, W0511 | |
"""Tests suite for MaskedArray. | |
Adapted from the original test_ma by Pierre Gerard-Marchant | |
:author: Pierre Gerard-Marchant | |
:contact: pierregm_at_uga_dot_edu | |
:version: $Id: test_extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $ | |
""" | |
import warnings | |
import itertools | |
import pytest | |
import numpy as np | |
from numpy._core.numeric import normalize_axis_tuple | |
from numpy.testing import ( | |
assert_warns, suppress_warnings | |
) | |
from numpy.ma.testutils import ( | |
assert_, assert_array_equal, assert_equal, assert_almost_equal | |
) | |
from numpy.ma.core import ( | |
array, arange, masked, MaskedArray, masked_array, getmaskarray, shape, | |
nomask, ones, zeros, count | |
) | |
from numpy.ma.extras import ( | |
atleast_1d, atleast_2d, atleast_3d, mr_, dot, polyfit, cov, corrcoef, | |
median, average, unique, setxor1d, setdiff1d, union1d, intersect1d, in1d, | |
ediff1d, apply_over_axes, apply_along_axis, compress_nd, compress_rowcols, | |
mask_rowcols, clump_masked, clump_unmasked, flatnotmasked_contiguous, | |
notmasked_contiguous, notmasked_edges, masked_all, masked_all_like, isin, | |
diagflat, ndenumerate, stack, vstack, _covhelper | |
) | |
class TestGeneric: | |
# | |
def test_masked_all(self): | |
# Tests masked_all | |
# Standard dtype | |
test = masked_all((2,), dtype=float) | |
control = array([1, 1], mask=[1, 1], dtype=float) | |
assert_equal(test, control) | |
# Flexible dtype | |
dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']}) | |
test = masked_all((2,), dtype=dt) | |
control = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt) | |
assert_equal(test, control) | |
test = masked_all((2, 2), dtype=dt) | |
control = array([[(0, 0), (0, 0)], [(0, 0), (0, 0)]], | |
mask=[[(1, 1), (1, 1)], [(1, 1), (1, 1)]], | |
dtype=dt) | |
assert_equal(test, control) | |
# Nested dtype | |
dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])]) | |
test = masked_all((2,), dtype=dt) | |
control = array([(1, (1, 1)), (1, (1, 1))], | |
mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt) | |
assert_equal(test, control) | |
test = masked_all((2,), dtype=dt) | |
control = array([(1, (1, 1)), (1, (1, 1))], | |
mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt) | |
assert_equal(test, control) | |
test = masked_all((1, 1), dtype=dt) | |
control = array([[(1, (1, 1))]], mask=[[(1, (1, 1))]], dtype=dt) | |
assert_equal(test, control) | |
def test_masked_all_with_object_nested(self): | |
# Test masked_all works with nested array with dtype of an 'object' | |
# refers to issue #15895 | |
my_dtype = np.dtype([('b', ([('c', object)], (1,)))]) | |
masked_arr = np.ma.masked_all((1,), my_dtype) | |
assert_equal(type(masked_arr['b']), np.ma.core.MaskedArray) | |
assert_equal(type(masked_arr['b']['c']), np.ma.core.MaskedArray) | |
assert_equal(len(masked_arr['b']['c']), 1) | |
assert_equal(masked_arr['b']['c'].shape, (1, 1)) | |
assert_equal(masked_arr['b']['c']._fill_value.shape, ()) | |
def test_masked_all_with_object(self): | |
# same as above except that the array is not nested | |
my_dtype = np.dtype([('b', (object, (1,)))]) | |
masked_arr = np.ma.masked_all((1,), my_dtype) | |
assert_equal(type(masked_arr['b']), np.ma.core.MaskedArray) | |
assert_equal(len(masked_arr['b']), 1) | |
assert_equal(masked_arr['b'].shape, (1, 1)) | |
assert_equal(masked_arr['b']._fill_value.shape, ()) | |
def test_masked_all_like(self): | |
# Tests masked_all | |
# Standard dtype | |
base = array([1, 2], dtype=float) | |
test = masked_all_like(base) | |
control = array([1, 1], mask=[1, 1], dtype=float) | |
assert_equal(test, control) | |
# Flexible dtype | |
dt = np.dtype({'names': ['a', 'b'], 'formats': ['f', 'f']}) | |
base = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt) | |
test = masked_all_like(base) | |
control = array([(10, 10), (10, 10)], mask=[(1, 1), (1, 1)], dtype=dt) | |
assert_equal(test, control) | |
# Nested dtype | |
dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])]) | |
control = array([(1, (1, 1)), (1, (1, 1))], | |
mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt) | |
test = masked_all_like(control) | |
assert_equal(test, control) | |
def check_clump(self, f): | |
for i in range(1, 7): | |
for j in range(2**i): | |
k = np.arange(i, dtype=int) | |
ja = np.full(i, j, dtype=int) | |
a = masked_array(2**k) | |
a.mask = (ja & (2**k)) != 0 | |
s = 0 | |
for sl in f(a): | |
s += a.data[sl].sum() | |
if f == clump_unmasked: | |
assert_equal(a.compressed().sum(), s) | |
else: | |
a.mask = ~a.mask | |
assert_equal(a.compressed().sum(), s) | |
def test_clump_masked(self): | |
# Test clump_masked | |
a = masked_array(np.arange(10)) | |
a[[0, 1, 2, 6, 8, 9]] = masked | |
# | |
test = clump_masked(a) | |
control = [slice(0, 3), slice(6, 7), slice(8, 10)] | |
assert_equal(test, control) | |
self.check_clump(clump_masked) | |
def test_clump_unmasked(self): | |
# Test clump_unmasked | |
a = masked_array(np.arange(10)) | |
a[[0, 1, 2, 6, 8, 9]] = masked | |
test = clump_unmasked(a) | |
control = [slice(3, 6), slice(7, 8), ] | |
assert_equal(test, control) | |
self.check_clump(clump_unmasked) | |
def test_flatnotmasked_contiguous(self): | |
# Test flatnotmasked_contiguous | |
a = arange(10) | |
# No mask | |
test = flatnotmasked_contiguous(a) | |
assert_equal(test, [slice(0, a.size)]) | |
# mask of all false | |
a.mask = np.zeros(10, dtype=bool) | |
assert_equal(test, [slice(0, a.size)]) | |
# Some mask | |
a[(a < 3) | (a > 8) | (a == 5)] = masked | |
test = flatnotmasked_contiguous(a) | |
assert_equal(test, [slice(3, 5), slice(6, 9)]) | |
# | |
a[:] = masked | |
test = flatnotmasked_contiguous(a) | |
assert_equal(test, []) | |
class TestAverage: | |
# Several tests of average. Why so many ? Good point... | |
def test_testAverage1(self): | |
# Test of average. | |
ott = array([0., 1., 2., 3.], mask=[True, False, False, False]) | |
assert_equal(2.0, average(ott, axis=0)) | |
assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.])) | |
result, wts = average(ott, weights=[1., 1., 2., 1.], returned=True) | |
assert_equal(2.0, result) | |
assert_(wts == 4.0) | |
ott[:] = masked | |
assert_equal(average(ott, axis=0).mask, [True]) | |
ott = array([0., 1., 2., 3.], mask=[True, False, False, False]) | |
ott = ott.reshape(2, 2) | |
ott[:, 1] = masked | |
assert_equal(average(ott, axis=0), [2.0, 0.0]) | |
assert_equal(average(ott, axis=1).mask[0], [True]) | |
assert_equal([2., 0.], average(ott, axis=0)) | |
result, wts = average(ott, axis=0, returned=True) | |
assert_equal(wts, [1., 0.]) | |
def test_testAverage2(self): | |
# More tests of average. | |
w1 = [0, 1, 1, 1, 1, 0] | |
w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]] | |
x = arange(6, dtype=np.float64) | |
assert_equal(average(x, axis=0), 2.5) | |
assert_equal(average(x, axis=0, weights=w1), 2.5) | |
y = array([arange(6, dtype=np.float64), 2.0 * arange(6)]) | |
assert_equal(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.) | |
assert_equal(average(y, axis=0), np.arange(6) * 3. / 2.) | |
assert_equal(average(y, axis=1), | |
[average(x, axis=0), average(x, axis=0) * 2.0]) | |
assert_equal(average(y, None, weights=w2), 20. / 6.) | |
assert_equal(average(y, axis=0, weights=w2), | |
[0., 1., 2., 3., 4., 10.]) | |
assert_equal(average(y, axis=1), | |
[average(x, axis=0), average(x, axis=0) * 2.0]) | |
m1 = zeros(6) | |
m2 = [0, 0, 1, 1, 0, 0] | |
m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]] | |
m4 = ones(6) | |
m5 = [0, 1, 1, 1, 1, 1] | |
assert_equal(average(masked_array(x, m1), axis=0), 2.5) | |
assert_equal(average(masked_array(x, m2), axis=0), 2.5) | |
assert_equal(average(masked_array(x, m4), axis=0).mask, [True]) | |
assert_equal(average(masked_array(x, m5), axis=0), 0.0) | |
assert_equal(count(average(masked_array(x, m4), axis=0)), 0) | |
z = masked_array(y, m3) | |
assert_equal(average(z, None), 20. / 6.) | |
assert_equal(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5]) | |
assert_equal(average(z, axis=1), [2.5, 5.0]) | |
assert_equal(average(z, axis=0, weights=w2), | |
[0., 1., 99., 99., 4.0, 10.0]) | |
def test_testAverage3(self): | |
# Yet more tests of average! | |
a = arange(6) | |
b = arange(6) * 3 | |
r1, w1 = average([[a, b], [b, a]], axis=1, returned=True) | |
assert_equal(shape(r1), shape(w1)) | |
assert_equal(r1.shape, w1.shape) | |
r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=True) | |
assert_equal(shape(w2), shape(r2)) | |
r2, w2 = average(ones((2, 2, 3)), returned=True) | |
assert_equal(shape(w2), shape(r2)) | |
r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=True) | |
assert_equal(shape(w2), shape(r2)) | |
a2d = array([[1, 2], [0, 4]], float) | |
a2dm = masked_array(a2d, [[False, False], [True, False]]) | |
a2da = average(a2d, axis=0) | |
assert_equal(a2da, [0.5, 3.0]) | |
a2dma = average(a2dm, axis=0) | |
assert_equal(a2dma, [1.0, 3.0]) | |
a2dma = average(a2dm, axis=None) | |
assert_equal(a2dma, 7. / 3.) | |
a2dma = average(a2dm, axis=1) | |
assert_equal(a2dma, [1.5, 4.0]) | |
def test_testAverage4(self): | |
# Test that `keepdims` works with average | |
x = np.array([2, 3, 4]).reshape(3, 1) | |
b = np.ma.array(x, mask=[[False], [False], [True]]) | |
w = np.array([4, 5, 6]).reshape(3, 1) | |
actual = average(b, weights=w, axis=1, keepdims=True) | |
desired = masked_array([[2.], [3.], [4.]], [[False], [False], [True]]) | |
assert_equal(actual, desired) | |
def test_weight_and_input_dims_different(self): | |
# this test mirrors a test for np.average() | |
# in lib/test/test_function_base.py | |
y = np.arange(12).reshape(2, 2, 3) | |
w = np.array([0., 0., 1., .5, .5, 0., 0., .5, .5, 1., 0., 0.])\ | |
.reshape(2, 2, 3) | |
m = np.full((2, 2, 3), False) | |
yma = np.ma.array(y, mask=m) | |
subw0 = w[:, :, 0] | |
actual = average(yma, axis=(0, 1), weights=subw0) | |
desired = masked_array([7., 8., 9.], mask=[False, False, False]) | |
assert_almost_equal(actual, desired) | |
m = np.full((2, 2, 3), False) | |
m[:, :, 0] = True | |
m[0, 0, 1] = True | |
yma = np.ma.array(y, mask=m) | |
actual = average(yma, axis=(0, 1), weights=subw0) | |
desired = masked_array( | |
[np.nan, 8., 9.], | |
mask=[True, False, False]) | |
assert_almost_equal(actual, desired) | |
m = np.full((2, 2, 3), False) | |
yma = np.ma.array(y, mask=m) | |
subw1 = w[1, :, :] | |
actual = average(yma, axis=(1, 2), weights=subw1) | |
desired = masked_array([2.25, 8.25], mask=[False, False]) | |
assert_almost_equal(actual, desired) | |
# here the weights have the wrong shape for the specified axes | |
with pytest.raises( | |
ValueError, | |
match="Shape of weights must be consistent with " | |
"shape of a along specified axis"): | |
average(yma, axis=(0, 1, 2), weights=subw0) | |
with pytest.raises( | |
ValueError, | |
match="Shape of weights must be consistent with " | |
"shape of a along specified axis"): | |
average(yma, axis=(0, 1), weights=subw1) | |
# swapping the axes should be same as transposing weights | |
actual = average(yma, axis=(1, 0), weights=subw0) | |
desired = average(yma, axis=(0, 1), weights=subw0.T) | |
assert_almost_equal(actual, desired) | |
def test_onintegers_with_mask(self): | |
# Test average on integers with mask | |
a = average(array([1, 2])) | |
assert_equal(a, 1.5) | |
a = average(array([1, 2, 3, 4], mask=[False, False, True, True])) | |
assert_equal(a, 1.5) | |
def test_complex(self): | |
# Test with complex data. | |
# (Regression test for https://github.com/numpy/numpy/issues/2684) | |
mask = np.array([[0, 0, 0, 1, 0], | |
[0, 1, 0, 0, 0]], dtype=bool) | |
a = masked_array([[0, 1+2j, 3+4j, 5+6j, 7+8j], | |
[9j, 0+1j, 2+3j, 4+5j, 7+7j]], | |
mask=mask) | |
av = average(a) | |
expected = np.average(a.compressed()) | |
assert_almost_equal(av.real, expected.real) | |
assert_almost_equal(av.imag, expected.imag) | |
av0 = average(a, axis=0) | |
expected0 = average(a.real, axis=0) + average(a.imag, axis=0)*1j | |
assert_almost_equal(av0.real, expected0.real) | |
assert_almost_equal(av0.imag, expected0.imag) | |
av1 = average(a, axis=1) | |
expected1 = average(a.real, axis=1) + average(a.imag, axis=1)*1j | |
assert_almost_equal(av1.real, expected1.real) | |
assert_almost_equal(av1.imag, expected1.imag) | |
# Test with the 'weights' argument. | |
wts = np.array([[0.5, 1.0, 2.0, 1.0, 0.5], | |
[1.0, 1.0, 1.0, 1.0, 1.0]]) | |
wav = average(a, weights=wts) | |
expected = np.average(a.compressed(), weights=wts[~mask]) | |
assert_almost_equal(wav.real, expected.real) | |
assert_almost_equal(wav.imag, expected.imag) | |
wav0 = average(a, weights=wts, axis=0) | |
expected0 = (average(a.real, weights=wts, axis=0) + | |
average(a.imag, weights=wts, axis=0)*1j) | |
assert_almost_equal(wav0.real, expected0.real) | |
assert_almost_equal(wav0.imag, expected0.imag) | |
wav1 = average(a, weights=wts, axis=1) | |
expected1 = (average(a.real, weights=wts, axis=1) + | |
average(a.imag, weights=wts, axis=1)*1j) | |
assert_almost_equal(wav1.real, expected1.real) | |
assert_almost_equal(wav1.imag, expected1.imag) | |
def test_basic_keepdims(self, x, axis, expected_avg, | |
weights, expected_wavg, expected_wsum): | |
avg = np.ma.average(x, axis=axis, keepdims=True) | |
assert avg.shape == np.shape(expected_avg) | |
assert_array_equal(avg, expected_avg) | |
wavg = np.ma.average(x, axis=axis, weights=weights, keepdims=True) | |
assert wavg.shape == np.shape(expected_wavg) | |
assert_array_equal(wavg, expected_wavg) | |
wavg, wsum = np.ma.average(x, axis=axis, weights=weights, | |
returned=True, keepdims=True) | |
assert wavg.shape == np.shape(expected_wavg) | |
assert_array_equal(wavg, expected_wavg) | |
assert wsum.shape == np.shape(expected_wsum) | |
assert_array_equal(wsum, expected_wsum) | |
def test_masked_weights(self): | |
# Test with masked weights. | |
# (Regression test for https://github.com/numpy/numpy/issues/10438) | |
a = np.ma.array(np.arange(9).reshape(3, 3), | |
mask=[[1, 0, 0], [1, 0, 0], [0, 0, 0]]) | |
weights_unmasked = masked_array([5, 28, 31], mask=False) | |
weights_masked = masked_array([5, 28, 31], mask=[1, 0, 0]) | |
avg_unmasked = average(a, axis=0, | |
weights=weights_unmasked, returned=False) | |
expected_unmasked = np.array([6.0, 5.21875, 6.21875]) | |
assert_almost_equal(avg_unmasked, expected_unmasked) | |
avg_masked = average(a, axis=0, weights=weights_masked, returned=False) | |
expected_masked = np.array([6.0, 5.576271186440678, 6.576271186440678]) | |
assert_almost_equal(avg_masked, expected_masked) | |
# weights should be masked if needed | |
# depending on the array mask. This is to avoid summing | |
# masked nan or other values that are not cancelled by a zero | |
a = np.ma.array([1.0, 2.0, 3.0, 4.0], | |
mask=[False, False, True, True]) | |
avg_unmasked = average(a, weights=[1, 1, 1, np.nan]) | |
assert_almost_equal(avg_unmasked, 1.5) | |
a = np.ma.array([ | |
[1.0, 2.0, 3.0, 4.0], | |
[5.0, 6.0, 7.0, 8.0], | |
[9.0, 1.0, 2.0, 3.0], | |
], mask=[ | |
[False, True, True, False], | |
[True, False, True, True], | |
[True, False, True, False], | |
]) | |
avg_masked = np.ma.average(a, weights=[1, np.nan, 1], axis=0) | |
avg_expected = np.ma.array([1.0, np.nan, np.nan, 3.5], | |
mask=[False, True, True, False]) | |
assert_almost_equal(avg_masked, avg_expected) | |
assert_equal(avg_masked.mask, avg_expected.mask) | |
class TestConcatenator: | |
# Tests for mr_, the equivalent of r_ for masked arrays. | |
def test_1d(self): | |
# Tests mr_ on 1D arrays. | |
assert_array_equal(mr_[1, 2, 3, 4, 5, 6], array([1, 2, 3, 4, 5, 6])) | |
b = ones(5) | |
m = [1, 0, 0, 0, 0] | |
d = masked_array(b, mask=m) | |
c = mr_[d, 0, 0, d] | |
assert_(isinstance(c, MaskedArray)) | |
assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1]) | |
assert_array_equal(c.mask, mr_[m, 0, 0, m]) | |
def test_2d(self): | |
# Tests mr_ on 2D arrays. | |
a_1 = np.random.rand(5, 5) | |
a_2 = np.random.rand(5, 5) | |
m_1 = np.round(np.random.rand(5, 5), 0) | |
m_2 = np.round(np.random.rand(5, 5), 0) | |
b_1 = masked_array(a_1, mask=m_1) | |
b_2 = masked_array(a_2, mask=m_2) | |
# append columns | |
d = mr_['1', b_1, b_2] | |
assert_(d.shape == (5, 10)) | |
assert_array_equal(d[:, :5], b_1) | |
assert_array_equal(d[:, 5:], b_2) | |
assert_array_equal(d.mask, np.r_['1', m_1, m_2]) | |
d = mr_[b_1, b_2] | |
assert_(d.shape == (10, 5)) | |
assert_array_equal(d[:5,:], b_1) | |
assert_array_equal(d[5:,:], b_2) | |
assert_array_equal(d.mask, np.r_[m_1, m_2]) | |
def test_masked_constant(self): | |
actual = mr_[np.ma.masked, 1] | |
assert_equal(actual.mask, [True, False]) | |
assert_equal(actual.data[1], 1) | |
actual = mr_[[1, 2], np.ma.masked] | |
assert_equal(actual.mask, [False, False, True]) | |
assert_equal(actual.data[:2], [1, 2]) | |
class TestNotMasked: | |
# Tests notmasked_edges and notmasked_contiguous. | |
def test_edges(self): | |
# Tests unmasked_edges | |
data = masked_array(np.arange(25).reshape(5, 5), | |
mask=[[0, 0, 1, 0, 0], | |
[0, 0, 0, 1, 1], | |
[1, 1, 0, 0, 0], | |
[0, 0, 0, 0, 0], | |
[1, 1, 1, 0, 0]],) | |
test = notmasked_edges(data, None) | |
assert_equal(test, [0, 24]) | |
test = notmasked_edges(data, 0) | |
assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)]) | |
assert_equal(test[1], [(3, 3, 3, 4, 4), (0, 1, 2, 3, 4)]) | |
test = notmasked_edges(data, 1) | |
assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 2, 0, 3)]) | |
assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 2, 4, 4, 4)]) | |
# | |
test = notmasked_edges(data.data, None) | |
assert_equal(test, [0, 24]) | |
test = notmasked_edges(data.data, 0) | |
assert_equal(test[0], [(0, 0, 0, 0, 0), (0, 1, 2, 3, 4)]) | |
assert_equal(test[1], [(4, 4, 4, 4, 4), (0, 1, 2, 3, 4)]) | |
test = notmasked_edges(data.data, -1) | |
assert_equal(test[0], [(0, 1, 2, 3, 4), (0, 0, 0, 0, 0)]) | |
assert_equal(test[1], [(0, 1, 2, 3, 4), (4, 4, 4, 4, 4)]) | |
# | |
data[-2] = masked | |
test = notmasked_edges(data, 0) | |
assert_equal(test[0], [(0, 0, 1, 0, 0), (0, 1, 2, 3, 4)]) | |
assert_equal(test[1], [(1, 1, 2, 4, 4), (0, 1, 2, 3, 4)]) | |
test = notmasked_edges(data, -1) | |
assert_equal(test[0], [(0, 1, 2, 4), (0, 0, 2, 3)]) | |
assert_equal(test[1], [(0, 1, 2, 4), (4, 2, 4, 4)]) | |
def test_contiguous(self): | |
# Tests notmasked_contiguous | |
a = masked_array(np.arange(24).reshape(3, 8), | |
mask=[[0, 0, 0, 0, 1, 1, 1, 1], | |
[1, 1, 1, 1, 1, 1, 1, 1], | |
[0, 0, 0, 0, 0, 0, 1, 0]]) | |
tmp = notmasked_contiguous(a, None) | |
assert_equal(tmp, [ | |
slice(0, 4, None), | |
slice(16, 22, None), | |
slice(23, 24, None) | |
]) | |
tmp = notmasked_contiguous(a, 0) | |
assert_equal(tmp, [ | |
[slice(0, 1, None), slice(2, 3, None)], | |
[slice(0, 1, None), slice(2, 3, None)], | |
[slice(0, 1, None), slice(2, 3, None)], | |
[slice(0, 1, None), slice(2, 3, None)], | |
[slice(2, 3, None)], | |
[slice(2, 3, None)], | |
[], | |
[slice(2, 3, None)] | |
]) | |
# | |
tmp = notmasked_contiguous(a, 1) | |
assert_equal(tmp, [ | |
[slice(0, 4, None)], | |
[], | |
[slice(0, 6, None), slice(7, 8, None)] | |
]) | |
class TestCompressFunctions: | |
def test_compress_nd(self): | |
# Tests compress_nd | |
x = np.array(list(range(3*4*5))).reshape(3, 4, 5) | |
m = np.zeros((3,4,5)).astype(bool) | |
m[1,1,1] = True | |
x = array(x, mask=m) | |
# axis=None | |
a = compress_nd(x) | |
assert_equal(a, [[[ 0, 2, 3, 4], | |
[10, 12, 13, 14], | |
[15, 17, 18, 19]], | |
[[40, 42, 43, 44], | |
[50, 52, 53, 54], | |
[55, 57, 58, 59]]]) | |
# axis=0 | |
a = compress_nd(x, 0) | |
assert_equal(a, [[[ 0, 1, 2, 3, 4], | |
[ 5, 6, 7, 8, 9], | |
[10, 11, 12, 13, 14], | |
[15, 16, 17, 18, 19]], | |
[[40, 41, 42, 43, 44], | |
[45, 46, 47, 48, 49], | |
[50, 51, 52, 53, 54], | |
[55, 56, 57, 58, 59]]]) | |
# axis=1 | |
a = compress_nd(x, 1) | |
assert_equal(a, [[[ 0, 1, 2, 3, 4], | |
[10, 11, 12, 13, 14], | |
[15, 16, 17, 18, 19]], | |
[[20, 21, 22, 23, 24], | |
[30, 31, 32, 33, 34], | |
[35, 36, 37, 38, 39]], | |
[[40, 41, 42, 43, 44], | |
[50, 51, 52, 53, 54], | |
[55, 56, 57, 58, 59]]]) | |
a2 = compress_nd(x, (1,)) | |
a3 = compress_nd(x, -2) | |
a4 = compress_nd(x, (-2,)) | |
assert_equal(a, a2) | |
assert_equal(a, a3) | |
assert_equal(a, a4) | |
# axis=2 | |
a = compress_nd(x, 2) | |
assert_equal(a, [[[ 0, 2, 3, 4], | |
[ 5, 7, 8, 9], | |
[10, 12, 13, 14], | |
[15, 17, 18, 19]], | |
[[20, 22, 23, 24], | |
[25, 27, 28, 29], | |
[30, 32, 33, 34], | |
[35, 37, 38, 39]], | |
[[40, 42, 43, 44], | |
[45, 47, 48, 49], | |
[50, 52, 53, 54], | |
[55, 57, 58, 59]]]) | |
a2 = compress_nd(x, (2,)) | |
a3 = compress_nd(x, -1) | |
a4 = compress_nd(x, (-1,)) | |
assert_equal(a, a2) | |
assert_equal(a, a3) | |
assert_equal(a, a4) | |
# axis=(0, 1) | |
a = compress_nd(x, (0, 1)) | |
assert_equal(a, [[[ 0, 1, 2, 3, 4], | |
[10, 11, 12, 13, 14], | |
[15, 16, 17, 18, 19]], | |
[[40, 41, 42, 43, 44], | |
[50, 51, 52, 53, 54], | |
[55, 56, 57, 58, 59]]]) | |
a2 = compress_nd(x, (0, -2)) | |
assert_equal(a, a2) | |
# axis=(1, 2) | |
a = compress_nd(x, (1, 2)) | |
assert_equal(a, [[[ 0, 2, 3, 4], | |
[10, 12, 13, 14], | |
[15, 17, 18, 19]], | |
[[20, 22, 23, 24], | |
[30, 32, 33, 34], | |
[35, 37, 38, 39]], | |
[[40, 42, 43, 44], | |
[50, 52, 53, 54], | |
[55, 57, 58, 59]]]) | |
a2 = compress_nd(x, (-2, 2)) | |
a3 = compress_nd(x, (1, -1)) | |
a4 = compress_nd(x, (-2, -1)) | |
assert_equal(a, a2) | |
assert_equal(a, a3) | |
assert_equal(a, a4) | |
# axis=(0, 2) | |
a = compress_nd(x, (0, 2)) | |
assert_equal(a, [[[ 0, 2, 3, 4], | |
[ 5, 7, 8, 9], | |
[10, 12, 13, 14], | |
[15, 17, 18, 19]], | |
[[40, 42, 43, 44], | |
[45, 47, 48, 49], | |
[50, 52, 53, 54], | |
[55, 57, 58, 59]]]) | |
a2 = compress_nd(x, (0, -1)) | |
assert_equal(a, a2) | |
def test_compress_rowcols(self): | |
# Tests compress_rowcols | |
x = array(np.arange(9).reshape(3, 3), | |
mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]]) | |
assert_equal(compress_rowcols(x), [[4, 5], [7, 8]]) | |
assert_equal(compress_rowcols(x, 0), [[3, 4, 5], [6, 7, 8]]) | |
assert_equal(compress_rowcols(x, 1), [[1, 2], [4, 5], [7, 8]]) | |
x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]]) | |
assert_equal(compress_rowcols(x), [[0, 2], [6, 8]]) | |
assert_equal(compress_rowcols(x, 0), [[0, 1, 2], [6, 7, 8]]) | |
assert_equal(compress_rowcols(x, 1), [[0, 2], [3, 5], [6, 8]]) | |
x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]]) | |
assert_equal(compress_rowcols(x), [[8]]) | |
assert_equal(compress_rowcols(x, 0), [[6, 7, 8]]) | |
assert_equal(compress_rowcols(x, 1,), [[2], [5], [8]]) | |
x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]]) | |
assert_equal(compress_rowcols(x).size, 0) | |
assert_equal(compress_rowcols(x, 0).size, 0) | |
assert_equal(compress_rowcols(x, 1).size, 0) | |
def test_mask_rowcols(self): | |
# Tests mask_rowcols. | |
x = array(np.arange(9).reshape(3, 3), | |
mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]]) | |
assert_equal(mask_rowcols(x).mask, | |
[[1, 1, 1], [1, 0, 0], [1, 0, 0]]) | |
assert_equal(mask_rowcols(x, 0).mask, | |
[[1, 1, 1], [0, 0, 0], [0, 0, 0]]) | |
assert_equal(mask_rowcols(x, 1).mask, | |
[[1, 0, 0], [1, 0, 0], [1, 0, 0]]) | |
x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]]) | |
assert_equal(mask_rowcols(x).mask, | |
[[0, 1, 0], [1, 1, 1], [0, 1, 0]]) | |
assert_equal(mask_rowcols(x, 0).mask, | |
[[0, 0, 0], [1, 1, 1], [0, 0, 0]]) | |
assert_equal(mask_rowcols(x, 1).mask, | |
[[0, 1, 0], [0, 1, 0], [0, 1, 0]]) | |
x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]]) | |
assert_equal(mask_rowcols(x).mask, | |
[[1, 1, 1], [1, 1, 1], [1, 1, 0]]) | |
assert_equal(mask_rowcols(x, 0).mask, | |
[[1, 1, 1], [1, 1, 1], [0, 0, 0]]) | |
assert_equal(mask_rowcols(x, 1,).mask, | |
[[1, 1, 0], [1, 1, 0], [1, 1, 0]]) | |
x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]]) | |
assert_(mask_rowcols(x).all() is masked) | |
assert_(mask_rowcols(x, 0).all() is masked) | |
assert_(mask_rowcols(x, 1).all() is masked) | |
assert_(mask_rowcols(x).mask.all()) | |
assert_(mask_rowcols(x, 0).mask.all()) | |
assert_(mask_rowcols(x, 1).mask.all()) | |
def test_mask_row_cols_axis_deprecation(self, axis, func, rowcols_axis): | |
# Test deprecation of the axis argument to `mask_rows` and `mask_cols` | |
x = array(np.arange(9).reshape(3, 3), | |
mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]]) | |
with assert_warns(DeprecationWarning): | |
res = func(x, axis=axis) | |
assert_equal(res, mask_rowcols(x, rowcols_axis)) | |
def test_dot(self): | |
# Tests dot product | |
n = np.arange(1, 7) | |
# | |
m = [1, 0, 0, 0, 0, 0] | |
a = masked_array(n, mask=m).reshape(2, 3) | |
b = masked_array(n, mask=m).reshape(3, 2) | |
c = dot(a, b, strict=True) | |
assert_equal(c.mask, [[1, 1], [1, 0]]) | |
c = dot(b, a, strict=True) | |
assert_equal(c.mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]]) | |
c = dot(a, b, strict=False) | |
assert_equal(c, np.dot(a.filled(0), b.filled(0))) | |
c = dot(b, a, strict=False) | |
assert_equal(c, np.dot(b.filled(0), a.filled(0))) | |
# | |
m = [0, 0, 0, 0, 0, 1] | |
a = masked_array(n, mask=m).reshape(2, 3) | |
b = masked_array(n, mask=m).reshape(3, 2) | |
c = dot(a, b, strict=True) | |
assert_equal(c.mask, [[0, 1], [1, 1]]) | |
c = dot(b, a, strict=True) | |
assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [1, 1, 1]]) | |
c = dot(a, b, strict=False) | |
assert_equal(c, np.dot(a.filled(0), b.filled(0))) | |
assert_equal(c, dot(a, b)) | |
c = dot(b, a, strict=False) | |
assert_equal(c, np.dot(b.filled(0), a.filled(0))) | |
# | |
m = [0, 0, 0, 0, 0, 0] | |
a = masked_array(n, mask=m).reshape(2, 3) | |
b = masked_array(n, mask=m).reshape(3, 2) | |
c = dot(a, b) | |
assert_equal(c.mask, nomask) | |
c = dot(b, a) | |
assert_equal(c.mask, nomask) | |
# | |
a = masked_array(n, mask=[1, 0, 0, 0, 0, 0]).reshape(2, 3) | |
b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2) | |
c = dot(a, b, strict=True) | |
assert_equal(c.mask, [[1, 1], [0, 0]]) | |
c = dot(a, b, strict=False) | |
assert_equal(c, np.dot(a.filled(0), b.filled(0))) | |
c = dot(b, a, strict=True) | |
assert_equal(c.mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]]) | |
c = dot(b, a, strict=False) | |
assert_equal(c, np.dot(b.filled(0), a.filled(0))) | |
# | |
a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3) | |
b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2) | |
c = dot(a, b, strict=True) | |
assert_equal(c.mask, [[0, 0], [1, 1]]) | |
c = dot(a, b) | |
assert_equal(c, np.dot(a.filled(0), b.filled(0))) | |
c = dot(b, a, strict=True) | |
assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [0, 0, 1]]) | |
c = dot(b, a, strict=False) | |
assert_equal(c, np.dot(b.filled(0), a.filled(0))) | |
# | |
a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3) | |
b = masked_array(n, mask=[0, 0, 1, 0, 0, 0]).reshape(3, 2) | |
c = dot(a, b, strict=True) | |
assert_equal(c.mask, [[1, 0], [1, 1]]) | |
c = dot(a, b, strict=False) | |
assert_equal(c, np.dot(a.filled(0), b.filled(0))) | |
c = dot(b, a, strict=True) | |
assert_equal(c.mask, [[0, 0, 1], [1, 1, 1], [0, 0, 1]]) | |
c = dot(b, a, strict=False) | |
assert_equal(c, np.dot(b.filled(0), a.filled(0))) | |
# | |
a = masked_array(np.arange(8).reshape(2, 2, 2), | |
mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) | |
b = masked_array(np.arange(8).reshape(2, 2, 2), | |
mask=[[[0, 0], [0, 0]], [[0, 0], [0, 1]]]) | |
c = dot(a, b, strict=True) | |
assert_equal(c.mask, | |
[[[[1, 1], [1, 1]], [[0, 0], [0, 1]]], | |
[[[0, 0], [0, 1]], [[0, 0], [0, 1]]]]) | |
c = dot(a, b, strict=False) | |
assert_equal(c.mask, | |
[[[[0, 0], [0, 1]], [[0, 0], [0, 0]]], | |
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]]) | |
c = dot(b, a, strict=True) | |
assert_equal(c.mask, | |
[[[[1, 0], [0, 0]], [[1, 0], [0, 0]]], | |
[[[1, 0], [0, 0]], [[1, 1], [1, 1]]]]) | |
c = dot(b, a, strict=False) | |
assert_equal(c.mask, | |
[[[[0, 0], [0, 0]], [[0, 0], [0, 0]]], | |
[[[0, 0], [0, 0]], [[1, 0], [0, 0]]]]) | |
# | |
a = masked_array(np.arange(8).reshape(2, 2, 2), | |
mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) | |
b = 5. | |
c = dot(a, b, strict=True) | |
assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) | |
c = dot(a, b, strict=False) | |
assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) | |
c = dot(b, a, strict=True) | |
assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) | |
c = dot(b, a, strict=False) | |
assert_equal(c.mask, [[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) | |
# | |
a = masked_array(np.arange(8).reshape(2, 2, 2), | |
mask=[[[1, 0], [0, 0]], [[0, 0], [0, 0]]]) | |
b = masked_array(np.arange(2), mask=[0, 1]) | |
c = dot(a, b, strict=True) | |
assert_equal(c.mask, [[1, 1], [1, 1]]) | |
c = dot(a, b, strict=False) | |
assert_equal(c.mask, [[1, 0], [0, 0]]) | |
def test_dot_returns_maskedarray(self): | |
# See gh-6611 | |
a = np.eye(3) | |
b = array(a) | |
assert_(type(dot(a, a)) is MaskedArray) | |
assert_(type(dot(a, b)) is MaskedArray) | |
assert_(type(dot(b, a)) is MaskedArray) | |
assert_(type(dot(b, b)) is MaskedArray) | |
def test_dot_out(self): | |
a = array(np.eye(3)) | |
out = array(np.zeros((3, 3))) | |
res = dot(a, a, out=out) | |
assert_(res is out) | |
assert_equal(a, res) | |
class TestApplyAlongAxis: | |
# Tests 2D functions | |
def test_3d(self): | |
a = arange(12.).reshape(2, 2, 3) | |
def myfunc(b): | |
return b[1] | |
xa = apply_along_axis(myfunc, 2, a) | |
assert_equal(xa, [[1, 4], [7, 10]]) | |
# Tests kwargs functions | |
def test_3d_kwargs(self): | |
a = arange(12).reshape(2, 2, 3) | |
def myfunc(b, offset=0): | |
return b[1+offset] | |
xa = apply_along_axis(myfunc, 2, a, offset=1) | |
assert_equal(xa, [[2, 5], [8, 11]]) | |
class TestApplyOverAxes: | |
# Tests apply_over_axes | |
def test_basic(self): | |
a = arange(24).reshape(2, 3, 4) | |
test = apply_over_axes(np.sum, a, [0, 2]) | |
ctrl = np.array([[[60], [92], [124]]]) | |
assert_equal(test, ctrl) | |
a[(a % 2).astype(bool)] = masked | |
test = apply_over_axes(np.sum, a, [0, 2]) | |
ctrl = np.array([[[28], [44], [60]]]) | |
assert_equal(test, ctrl) | |
class TestMedian: | |
def test_pytype(self): | |
r = np.ma.median([[np.inf, np.inf], [np.inf, np.inf]], axis=-1) | |
assert_equal(r, np.inf) | |
def test_inf(self): | |
# test that even which computes handles inf / x = masked | |
r = np.ma.median(np.ma.masked_array([[np.inf, np.inf], | |
[np.inf, np.inf]]), axis=-1) | |
assert_equal(r, np.inf) | |
r = np.ma.median(np.ma.masked_array([[np.inf, np.inf], | |
[np.inf, np.inf]]), axis=None) | |
assert_equal(r, np.inf) | |
# all masked | |
r = np.ma.median(np.ma.masked_array([[np.inf, np.inf], | |
[np.inf, np.inf]], mask=True), | |
axis=-1) | |
assert_equal(r.mask, True) | |
r = np.ma.median(np.ma.masked_array([[np.inf, np.inf], | |
[np.inf, np.inf]], mask=True), | |
axis=None) | |
assert_equal(r.mask, True) | |
def test_non_masked(self): | |
x = np.arange(9) | |
assert_equal(np.ma.median(x), 4.) | |
assert_(type(np.ma.median(x)) is not MaskedArray) | |
x = range(8) | |
assert_equal(np.ma.median(x), 3.5) | |
assert_(type(np.ma.median(x)) is not MaskedArray) | |
x = 5 | |
assert_equal(np.ma.median(x), 5.) | |
assert_(type(np.ma.median(x)) is not MaskedArray) | |
# integer | |
x = np.arange(9 * 8).reshape(9, 8) | |
assert_equal(np.ma.median(x, axis=0), np.median(x, axis=0)) | |
assert_equal(np.ma.median(x, axis=1), np.median(x, axis=1)) | |
assert_(np.ma.median(x, axis=1) is not MaskedArray) | |
# float | |
x = np.arange(9 * 8.).reshape(9, 8) | |
assert_equal(np.ma.median(x, axis=0), np.median(x, axis=0)) | |
assert_equal(np.ma.median(x, axis=1), np.median(x, axis=1)) | |
assert_(np.ma.median(x, axis=1) is not MaskedArray) | |
def test_docstring_examples(self): | |
"test the examples given in the docstring of ma.median" | |
x = array(np.arange(8), mask=[0]*4 + [1]*4) | |
assert_equal(np.ma.median(x), 1.5) | |
assert_equal(np.ma.median(x).shape, (), "shape mismatch") | |
assert_(type(np.ma.median(x)) is not MaskedArray) | |
x = array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4) | |
assert_equal(np.ma.median(x), 2.5) | |
assert_equal(np.ma.median(x).shape, (), "shape mismatch") | |
assert_(type(np.ma.median(x)) is not MaskedArray) | |
ma_x = np.ma.median(x, axis=-1, overwrite_input=True) | |
assert_equal(ma_x, [2., 5.]) | |
assert_equal(ma_x.shape, (2,), "shape mismatch") | |
assert_(type(ma_x) is MaskedArray) | |
def test_axis_argument_errors(self): | |
msg = "mask = %s, ndim = %s, axis = %s, overwrite_input = %s" | |
for ndmin in range(5): | |
for mask in [False, True]: | |
x = array(1, ndmin=ndmin, mask=mask) | |
# Valid axis values should not raise exception | |
args = itertools.product(range(-ndmin, ndmin), [False, True]) | |
for axis, over in args: | |
try: | |
np.ma.median(x, axis=axis, overwrite_input=over) | |
except Exception: | |
raise AssertionError(msg % (mask, ndmin, axis, over)) | |
# Invalid axis values should raise exception | |
args = itertools.product([-(ndmin + 1), ndmin], [False, True]) | |
for axis, over in args: | |
try: | |
np.ma.median(x, axis=axis, overwrite_input=over) | |
except np.exceptions.AxisError: | |
pass | |
else: | |
raise AssertionError(msg % (mask, ndmin, axis, over)) | |
def test_masked_0d(self): | |
# Check values | |
x = array(1, mask=False) | |
assert_equal(np.ma.median(x), 1) | |
x = array(1, mask=True) | |
assert_equal(np.ma.median(x), np.ma.masked) | |
def test_masked_1d(self): | |
x = array(np.arange(5), mask=True) | |
assert_equal(np.ma.median(x), np.ma.masked) | |
assert_equal(np.ma.median(x).shape, (), "shape mismatch") | |
assert_(type(np.ma.median(x)) is np.ma.core.MaskedConstant) | |
x = array(np.arange(5), mask=False) | |
assert_equal(np.ma.median(x), 2.) | |
assert_equal(np.ma.median(x).shape, (), "shape mismatch") | |
assert_(type(np.ma.median(x)) is not MaskedArray) | |
x = array(np.arange(5), mask=[0,1,0,0,0]) | |
assert_equal(np.ma.median(x), 2.5) | |
assert_equal(np.ma.median(x).shape, (), "shape mismatch") | |
assert_(type(np.ma.median(x)) is not MaskedArray) | |
x = array(np.arange(5), mask=[0,1,1,1,1]) | |
assert_equal(np.ma.median(x), 0.) | |
assert_equal(np.ma.median(x).shape, (), "shape mismatch") | |
assert_(type(np.ma.median(x)) is not MaskedArray) | |
# integer | |
x = array(np.arange(5), mask=[0,1,1,0,0]) | |
assert_equal(np.ma.median(x), 3.) | |
assert_equal(np.ma.median(x).shape, (), "shape mismatch") | |
assert_(type(np.ma.median(x)) is not MaskedArray) | |
# float | |
x = array(np.arange(5.), mask=[0,1,1,0,0]) | |
assert_equal(np.ma.median(x), 3.) | |
assert_equal(np.ma.median(x).shape, (), "shape mismatch") | |
assert_(type(np.ma.median(x)) is not MaskedArray) | |
# integer | |
x = array(np.arange(6), mask=[0,1,1,1,1,0]) | |
assert_equal(np.ma.median(x), 2.5) | |
assert_equal(np.ma.median(x).shape, (), "shape mismatch") | |
assert_(type(np.ma.median(x)) is not MaskedArray) | |
# float | |
x = array(np.arange(6.), mask=[0,1,1,1,1,0]) | |
assert_equal(np.ma.median(x), 2.5) | |
assert_equal(np.ma.median(x).shape, (), "shape mismatch") | |
assert_(type(np.ma.median(x)) is not MaskedArray) | |
def test_1d_shape_consistency(self): | |
assert_equal(np.ma.median(array([1,2,3],mask=[0,0,0])).shape, | |
np.ma.median(array([1,2,3],mask=[0,1,0])).shape ) | |
def test_2d(self): | |
# Tests median w/ 2D | |
(n, p) = (101, 30) | |
x = masked_array(np.linspace(-1., 1., n),) | |
x[:10] = x[-10:] = masked | |
z = masked_array(np.empty((n, p), dtype=float)) | |
z[:, 0] = x[:] | |
idx = np.arange(len(x)) | |
for i in range(1, p): | |
np.random.shuffle(idx) | |
z[:, i] = x[idx] | |
assert_equal(median(z[:, 0]), 0) | |
assert_equal(median(z), 0) | |
assert_equal(median(z, axis=0), np.zeros(p)) | |
assert_equal(median(z.T, axis=1), np.zeros(p)) | |
def test_2d_waxis(self): | |
# Tests median w/ 2D arrays and different axis. | |
x = masked_array(np.arange(30).reshape(10, 3)) | |
x[:3] = x[-3:] = masked | |
assert_equal(median(x), 14.5) | |
assert_(type(np.ma.median(x)) is not MaskedArray) | |
assert_equal(median(x, axis=0), [13.5, 14.5, 15.5]) | |
assert_(type(np.ma.median(x, axis=0)) is MaskedArray) | |
assert_equal(median(x, axis=1), [0, 0, 0, 10, 13, 16, 19, 0, 0, 0]) | |
assert_(type(np.ma.median(x, axis=1)) is MaskedArray) | |
assert_equal(median(x, axis=1).mask, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1]) | |
def test_3d(self): | |
# Tests median w/ 3D | |
x = np.ma.arange(24).reshape(3, 4, 2) | |
x[x % 3 == 0] = masked | |
assert_equal(median(x, 0), [[12, 9], [6, 15], [12, 9], [18, 15]]) | |
x.shape = (4, 3, 2) | |
assert_equal(median(x, 0), [[99, 10], [11, 99], [13, 14]]) | |
x = np.ma.arange(24).reshape(4, 3, 2) | |
x[x % 5 == 0] = masked | |
assert_equal(median(x, 0), [[12, 10], [8, 9], [16, 17]]) | |
def test_neg_axis(self): | |
x = masked_array(np.arange(30).reshape(10, 3)) | |
x[:3] = x[-3:] = masked | |
assert_equal(median(x, axis=-1), median(x, axis=1)) | |
def test_out_1d(self): | |
# integer float even odd | |
for v in (30, 30., 31, 31.): | |
x = masked_array(np.arange(v)) | |
x[:3] = x[-3:] = masked | |
out = masked_array(np.ones(())) | |
r = median(x, out=out) | |
if v == 30: | |
assert_equal(out, 14.5) | |
else: | |
assert_equal(out, 15.) | |
assert_(r is out) | |
assert_(type(r) is MaskedArray) | |
def test_out(self): | |
# integer float even odd | |
for v in (40, 40., 30, 30.): | |
x = masked_array(np.arange(v).reshape(10, -1)) | |
x[:3] = x[-3:] = masked | |
out = masked_array(np.ones(10)) | |
r = median(x, axis=1, out=out) | |
if v == 30: | |
e = masked_array([0.]*3 + [10, 13, 16, 19] + [0.]*3, | |
mask=[True] * 3 + [False] * 4 + [True] * 3) | |
else: | |
e = masked_array([0.]*3 + [13.5, 17.5, 21.5, 25.5] + [0.]*3, | |
mask=[True]*3 + [False]*4 + [True]*3) | |
assert_equal(r, e) | |
assert_(r is out) | |
assert_(type(r) is MaskedArray) | |
def test_keepdims_out(self, axis): | |
mask = np.zeros((3, 5, 7, 11), dtype=bool) | |
# Randomly set some elements to True: | |
w = np.random.random((4, 200)) * np.array(mask.shape)[:, None] | |
w = w.astype(np.intp) | |
mask[tuple(w)] = np.nan | |
d = masked_array(np.ones(mask.shape), mask=mask) | |
if axis is None: | |
shape_out = (1,) * d.ndim | |
else: | |
axis_norm = normalize_axis_tuple(axis, d.ndim) | |
shape_out = tuple( | |
1 if i in axis_norm else d.shape[i] for i in range(d.ndim)) | |
out = masked_array(np.empty(shape_out)) | |
result = median(d, axis=axis, keepdims=True, out=out) | |
assert result is out | |
assert_equal(result.shape, shape_out) | |
def test_single_non_masked_value_on_axis(self): | |
data = [[1., 0.], | |
[0., 3.], | |
[0., 0.]] | |
masked_arr = np.ma.masked_equal(data, 0) | |
expected = [1., 3.] | |
assert_array_equal(np.ma.median(masked_arr, axis=0), | |
expected) | |
def test_nan(self): | |
for mask in (False, np.zeros(6, dtype=bool)): | |
dm = np.ma.array([[1, np.nan, 3], [1, 2, 3]]) | |
dm.mask = mask | |
# scalar result | |
r = np.ma.median(dm, axis=None) | |
assert_(np.isscalar(r)) | |
assert_array_equal(r, np.nan) | |
r = np.ma.median(dm.ravel(), axis=0) | |
assert_(np.isscalar(r)) | |
assert_array_equal(r, np.nan) | |
r = np.ma.median(dm, axis=0) | |
assert_equal(type(r), MaskedArray) | |
assert_array_equal(r, [1, np.nan, 3]) | |
r = np.ma.median(dm, axis=1) | |
assert_equal(type(r), MaskedArray) | |
assert_array_equal(r, [np.nan, 2]) | |
r = np.ma.median(dm, axis=-1) | |
assert_equal(type(r), MaskedArray) | |
assert_array_equal(r, [np.nan, 2]) | |
dm = np.ma.array([[1, np.nan, 3], [1, 2, 3]]) | |
dm[:, 2] = np.ma.masked | |
assert_array_equal(np.ma.median(dm, axis=None), np.nan) | |
assert_array_equal(np.ma.median(dm, axis=0), [1, np.nan, 3]) | |
assert_array_equal(np.ma.median(dm, axis=1), [np.nan, 1.5]) | |
def test_out_nan(self): | |
o = np.ma.masked_array(np.zeros((4,))) | |
d = np.ma.masked_array(np.ones((3, 4))) | |
d[2, 1] = np.nan | |
d[2, 2] = np.ma.masked | |
assert_equal(np.ma.median(d, 0, out=o), o) | |
o = np.ma.masked_array(np.zeros((3,))) | |
assert_equal(np.ma.median(d, 1, out=o), o) | |
o = np.ma.masked_array(np.zeros(())) | |
assert_equal(np.ma.median(d, out=o), o) | |
def test_nan_behavior(self): | |
a = np.ma.masked_array(np.arange(24, dtype=float)) | |
a[::3] = np.ma.masked | |
a[2] = np.nan | |
assert_array_equal(np.ma.median(a), np.nan) | |
assert_array_equal(np.ma.median(a, axis=0), np.nan) | |
a = np.ma.masked_array(np.arange(24, dtype=float).reshape(2, 3, 4)) | |
a.mask = np.arange(a.size) % 2 == 1 | |
aorig = a.copy() | |
a[1, 2, 3] = np.nan | |
a[1, 1, 2] = np.nan | |
# no axis | |
assert_array_equal(np.ma.median(a), np.nan) | |
assert_(np.isscalar(np.ma.median(a))) | |
# axis0 | |
b = np.ma.median(aorig, axis=0) | |
b[2, 3] = np.nan | |
b[1, 2] = np.nan | |
assert_equal(np.ma.median(a, 0), b) | |
# axis1 | |
b = np.ma.median(aorig, axis=1) | |
b[1, 3] = np.nan | |
b[1, 2] = np.nan | |
assert_equal(np.ma.median(a, 1), b) | |
# axis02 | |
b = np.ma.median(aorig, axis=(0, 2)) | |
b[1] = np.nan | |
b[2] = np.nan | |
assert_equal(np.ma.median(a, (0, 2)), b) | |
def test_ambigous_fill(self): | |
# 255 is max value, used as filler for sort | |
a = np.array([[3, 3, 255], [3, 3, 255]], dtype=np.uint8) | |
a = np.ma.masked_array(a, mask=a == 3) | |
assert_array_equal(np.ma.median(a, axis=1), 255) | |
assert_array_equal(np.ma.median(a, axis=1).mask, False) | |
assert_array_equal(np.ma.median(a, axis=0), a[0]) | |
assert_array_equal(np.ma.median(a), 255) | |
def test_special(self): | |
for inf in [np.inf, -np.inf]: | |
a = np.array([[inf, np.nan], [np.nan, np.nan]]) | |
a = np.ma.masked_array(a, mask=np.isnan(a)) | |
assert_equal(np.ma.median(a, axis=0), [inf, np.nan]) | |
assert_equal(np.ma.median(a, axis=1), [inf, np.nan]) | |
assert_equal(np.ma.median(a), inf) | |
a = np.array([[np.nan, np.nan, inf], [np.nan, np.nan, inf]]) | |
a = np.ma.masked_array(a, mask=np.isnan(a)) | |
assert_array_equal(np.ma.median(a, axis=1), inf) | |
assert_array_equal(np.ma.median(a, axis=1).mask, False) | |
assert_array_equal(np.ma.median(a, axis=0), a[0]) | |
assert_array_equal(np.ma.median(a), inf) | |
# no mask | |
a = np.array([[inf, inf], [inf, inf]]) | |
assert_equal(np.ma.median(a), inf) | |
assert_equal(np.ma.median(a, axis=0), inf) | |
assert_equal(np.ma.median(a, axis=1), inf) | |
a = np.array([[inf, 7, -inf, -9], | |
[-10, np.nan, np.nan, 5], | |
[4, np.nan, np.nan, inf]], | |
dtype=np.float32) | |
a = np.ma.masked_array(a, mask=np.isnan(a)) | |
if inf > 0: | |
assert_equal(np.ma.median(a, axis=0), [4., 7., -inf, 5.]) | |
assert_equal(np.ma.median(a), 4.5) | |
else: | |
assert_equal(np.ma.median(a, axis=0), [-10., 7., -inf, -9.]) | |
assert_equal(np.ma.median(a), -2.5) | |
assert_equal(np.ma.median(a, axis=1), [-1., -2.5, inf]) | |
for i in range(0, 10): | |
for j in range(1, 10): | |
a = np.array([([np.nan] * i) + ([inf] * j)] * 2) | |
a = np.ma.masked_array(a, mask=np.isnan(a)) | |
assert_equal(np.ma.median(a), inf) | |
assert_equal(np.ma.median(a, axis=1), inf) | |
assert_equal(np.ma.median(a, axis=0), | |
([np.nan] * i) + [inf] * j) | |
def test_empty(self): | |
# empty arrays | |
a = np.ma.masked_array(np.array([], dtype=float)) | |
with suppress_warnings() as w: | |
w.record(RuntimeWarning) | |
assert_array_equal(np.ma.median(a), np.nan) | |
assert_(w.log[0].category is RuntimeWarning) | |
# multiple dimensions | |
a = np.ma.masked_array(np.array([], dtype=float, ndmin=3)) | |
# no axis | |
with suppress_warnings() as w: | |
w.record(RuntimeWarning) | |
warnings.filterwarnings('always', '', RuntimeWarning) | |
assert_array_equal(np.ma.median(a), np.nan) | |
assert_(w.log[0].category is RuntimeWarning) | |
# axis 0 and 1 | |
b = np.ma.masked_array(np.array([], dtype=float, ndmin=2)) | |
assert_equal(np.ma.median(a, axis=0), b) | |
assert_equal(np.ma.median(a, axis=1), b) | |
# axis 2 | |
b = np.ma.masked_array(np.array(np.nan, dtype=float, ndmin=2)) | |
with warnings.catch_warnings(record=True) as w: | |
warnings.filterwarnings('always', '', RuntimeWarning) | |
assert_equal(np.ma.median(a, axis=2), b) | |
assert_(w[0].category is RuntimeWarning) | |
def test_object(self): | |
o = np.ma.masked_array(np.arange(7.)) | |
assert_(type(np.ma.median(o.astype(object))), float) | |
o[2] = np.nan | |
assert_(type(np.ma.median(o.astype(object))), float) | |
class TestCov: | |
def setup_method(self): | |
self.data = array(np.random.rand(12)) | |
def test_covhelper(self): | |
x = self.data | |
# Test not mask output type is a float. | |
assert_(_covhelper(x, rowvar=True)[1].dtype, np.float32) | |
assert_(_covhelper(x, y=x, rowvar=False)[1].dtype, np.float32) | |
# Test not mask output is equal after casting to float. | |
mask = x > 0.5 | |
assert_array_equal( | |
_covhelper( | |
np.ma.masked_array(x, mask), rowvar=True | |
)[1].astype(bool), | |
~mask.reshape(1, -1), | |
) | |
assert_array_equal( | |
_covhelper( | |
np.ma.masked_array(x, mask), y=x, rowvar=False | |
)[1].astype(bool), | |
np.vstack((~mask, ~mask)), | |
) | |
def test_1d_without_missing(self): | |
# Test cov on 1D variable w/o missing values | |
x = self.data | |
assert_almost_equal(np.cov(x), cov(x)) | |
assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False)) | |
assert_almost_equal(np.cov(x, rowvar=False, bias=True), | |
cov(x, rowvar=False, bias=True)) | |
def test_2d_without_missing(self): | |
# Test cov on 1 2D variable w/o missing values | |
x = self.data.reshape(3, 4) | |
assert_almost_equal(np.cov(x), cov(x)) | |
assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False)) | |
assert_almost_equal(np.cov(x, rowvar=False, bias=True), | |
cov(x, rowvar=False, bias=True)) | |
def test_1d_with_missing(self): | |
# Test cov 1 1D variable w/missing values | |
x = self.data | |
x[-1] = masked | |
x -= x.mean() | |
nx = x.compressed() | |
assert_almost_equal(np.cov(nx), cov(x)) | |
assert_almost_equal(np.cov(nx, rowvar=False), cov(x, rowvar=False)) | |
assert_almost_equal(np.cov(nx, rowvar=False, bias=True), | |
cov(x, rowvar=False, bias=True)) | |
# | |
try: | |
cov(x, allow_masked=False) | |
except ValueError: | |
pass | |
# | |
# 2 1D variables w/ missing values | |
nx = x[1:-1] | |
assert_almost_equal(np.cov(nx, nx[::-1]), cov(x, x[::-1])) | |
assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False), | |
cov(x, x[::-1], rowvar=False)) | |
assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False, bias=True), | |
cov(x, x[::-1], rowvar=False, bias=True)) | |
def test_2d_with_missing(self): | |
# Test cov on 2D variable w/ missing value | |
x = self.data | |
x[-1] = masked | |
x = x.reshape(3, 4) | |
valid = np.logical_not(getmaskarray(x)).astype(int) | |
frac = np.dot(valid, valid.T) | |
xf = (x - x.mean(1)[:, None]).filled(0) | |
assert_almost_equal(cov(x), | |
np.cov(xf) * (x.shape[1] - 1) / (frac - 1.)) | |
assert_almost_equal(cov(x, bias=True), | |
np.cov(xf, bias=True) * x.shape[1] / frac) | |
frac = np.dot(valid.T, valid) | |
xf = (x - x.mean(0)).filled(0) | |
assert_almost_equal(cov(x, rowvar=False), | |
(np.cov(xf, rowvar=False) * | |
(x.shape[0] - 1) / (frac - 1.))) | |
assert_almost_equal(cov(x, rowvar=False, bias=True), | |
(np.cov(xf, rowvar=False, bias=True) * | |
x.shape[0] / frac)) | |
class TestCorrcoef: | |
def setup_method(self): | |
self.data = array(np.random.rand(12)) | |
self.data2 = array(np.random.rand(12)) | |
def test_ddof(self): | |
# ddof raises DeprecationWarning | |
x, y = self.data, self.data2 | |
expected = np.corrcoef(x) | |
expected2 = np.corrcoef(x, y) | |
with suppress_warnings() as sup: | |
warnings.simplefilter("always") | |
assert_warns(DeprecationWarning, corrcoef, x, ddof=-1) | |
sup.filter(DeprecationWarning, "bias and ddof have no effect") | |
# ddof has no or negligible effect on the function | |
assert_almost_equal(np.corrcoef(x, ddof=0), corrcoef(x, ddof=0)) | |
assert_almost_equal(corrcoef(x, ddof=-1), expected) | |
assert_almost_equal(corrcoef(x, y, ddof=-1), expected2) | |
assert_almost_equal(corrcoef(x, ddof=3), expected) | |
assert_almost_equal(corrcoef(x, y, ddof=3), expected2) | |
def test_bias(self): | |
x, y = self.data, self.data2 | |
expected = np.corrcoef(x) | |
# bias raises DeprecationWarning | |
with suppress_warnings() as sup: | |
warnings.simplefilter("always") | |
assert_warns(DeprecationWarning, corrcoef, x, y, True, False) | |
assert_warns(DeprecationWarning, corrcoef, x, y, True, True) | |
assert_warns(DeprecationWarning, corrcoef, x, bias=False) | |
sup.filter(DeprecationWarning, "bias and ddof have no effect") | |
# bias has no or negligible effect on the function | |
assert_almost_equal(corrcoef(x, bias=1), expected) | |
def test_1d_without_missing(self): | |
# Test cov on 1D variable w/o missing values | |
x = self.data | |
assert_almost_equal(np.corrcoef(x), corrcoef(x)) | |
assert_almost_equal(np.corrcoef(x, rowvar=False), | |
corrcoef(x, rowvar=False)) | |
with suppress_warnings() as sup: | |
sup.filter(DeprecationWarning, "bias and ddof have no effect") | |
assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True), | |
corrcoef(x, rowvar=False, bias=True)) | |
def test_2d_without_missing(self): | |
# Test corrcoef on 1 2D variable w/o missing values | |
x = self.data.reshape(3, 4) | |
assert_almost_equal(np.corrcoef(x), corrcoef(x)) | |
assert_almost_equal(np.corrcoef(x, rowvar=False), | |
corrcoef(x, rowvar=False)) | |
with suppress_warnings() as sup: | |
sup.filter(DeprecationWarning, "bias and ddof have no effect") | |
assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True), | |
corrcoef(x, rowvar=False, bias=True)) | |
def test_1d_with_missing(self): | |
# Test corrcoef 1 1D variable w/missing values | |
x = self.data | |
x[-1] = masked | |
x -= x.mean() | |
nx = x.compressed() | |
assert_almost_equal(np.corrcoef(nx), corrcoef(x)) | |
assert_almost_equal(np.corrcoef(nx, rowvar=False), | |
corrcoef(x, rowvar=False)) | |
with suppress_warnings() as sup: | |
sup.filter(DeprecationWarning, "bias and ddof have no effect") | |
assert_almost_equal(np.corrcoef(nx, rowvar=False, bias=True), | |
corrcoef(x, rowvar=False, bias=True)) | |
try: | |
corrcoef(x, allow_masked=False) | |
except ValueError: | |
pass | |
# 2 1D variables w/ missing values | |
nx = x[1:-1] | |
assert_almost_equal(np.corrcoef(nx, nx[::-1]), corrcoef(x, x[::-1])) | |
assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False), | |
corrcoef(x, x[::-1], rowvar=False)) | |
with suppress_warnings() as sup: | |
sup.filter(DeprecationWarning, "bias and ddof have no effect") | |
# ddof and bias have no or negligible effect on the function | |
assert_almost_equal(np.corrcoef(nx, nx[::-1]), | |
corrcoef(x, x[::-1], bias=1)) | |
assert_almost_equal(np.corrcoef(nx, nx[::-1]), | |
corrcoef(x, x[::-1], ddof=2)) | |
def test_2d_with_missing(self): | |
# Test corrcoef on 2D variable w/ missing value | |
x = self.data | |
x[-1] = masked | |
x = x.reshape(3, 4) | |
test = corrcoef(x) | |
control = np.corrcoef(x) | |
assert_almost_equal(test[:-1, :-1], control[:-1, :-1]) | |
with suppress_warnings() as sup: | |
sup.filter(DeprecationWarning, "bias and ddof have no effect") | |
# ddof and bias have no or negligible effect on the function | |
assert_almost_equal(corrcoef(x, ddof=-2)[:-1, :-1], | |
control[:-1, :-1]) | |
assert_almost_equal(corrcoef(x, ddof=3)[:-1, :-1], | |
control[:-1, :-1]) | |
assert_almost_equal(corrcoef(x, bias=1)[:-1, :-1], | |
control[:-1, :-1]) | |
class TestPolynomial: | |
# | |
def test_polyfit(self): | |
# Tests polyfit | |
# On ndarrays | |
x = np.random.rand(10) | |
y = np.random.rand(20).reshape(-1, 2) | |
assert_almost_equal(polyfit(x, y, 3), np.polyfit(x, y, 3)) | |
# ON 1D maskedarrays | |
x = x.view(MaskedArray) | |
x[0] = masked | |
y = y.view(MaskedArray) | |
y[0, 0] = y[-1, -1] = masked | |
# | |
(C, R, K, S, D) = polyfit(x, y[:, 0], 3, full=True) | |
(c, r, k, s, d) = np.polyfit(x[1:], y[1:, 0].compressed(), 3, | |
full=True) | |
for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): | |
assert_almost_equal(a, a_) | |
# | |
(C, R, K, S, D) = polyfit(x, y[:, -1], 3, full=True) | |
(c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, -1], 3, full=True) | |
for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): | |
assert_almost_equal(a, a_) | |
# | |
(C, R, K, S, D) = polyfit(x, y, 3, full=True) | |
(c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1,:], 3, full=True) | |
for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): | |
assert_almost_equal(a, a_) | |
# | |
w = np.random.rand(10) + 1 | |
wo = w.copy() | |
xs = x[1:-1] | |
ys = y[1:-1] | |
ws = w[1:-1] | |
(C, R, K, S, D) = polyfit(x, y, 3, full=True, w=w) | |
(c, r, k, s, d) = np.polyfit(xs, ys, 3, full=True, w=ws) | |
assert_equal(w, wo) | |
for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): | |
assert_almost_equal(a, a_) | |
def test_polyfit_with_masked_NaNs(self): | |
x = np.random.rand(10) | |
y = np.random.rand(20).reshape(-1, 2) | |
x[0] = np.nan | |
y[-1,-1] = np.nan | |
x = x.view(MaskedArray) | |
y = y.view(MaskedArray) | |
x[0] = masked | |
y[-1,-1] = masked | |
(C, R, K, S, D) = polyfit(x, y, 3, full=True) | |
(c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1,:], 3, full=True) | |
for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): | |
assert_almost_equal(a, a_) | |
class TestArraySetOps: | |
def test_unique_onlist(self): | |
# Test unique on list | |
data = [1, 1, 1, 2, 2, 3] | |
test = unique(data, return_index=True, return_inverse=True) | |
assert_(isinstance(test[0], MaskedArray)) | |
assert_equal(test[0], masked_array([1, 2, 3], mask=[0, 0, 0])) | |
assert_equal(test[1], [0, 3, 5]) | |
assert_equal(test[2], [0, 0, 0, 1, 1, 2]) | |
def test_unique_onmaskedarray(self): | |
# Test unique on masked data w/use_mask=True | |
data = masked_array([1, 1, 1, 2, 2, 3], mask=[0, 0, 1, 0, 1, 0]) | |
test = unique(data, return_index=True, return_inverse=True) | |
assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1])) | |
assert_equal(test[1], [0, 3, 5, 2]) | |
assert_equal(test[2], [0, 0, 3, 1, 3, 2]) | |
# | |
data.fill_value = 3 | |
data = masked_array(data=[1, 1, 1, 2, 2, 3], | |
mask=[0, 0, 1, 0, 1, 0], fill_value=3) | |
test = unique(data, return_index=True, return_inverse=True) | |
assert_equal(test[0], masked_array([1, 2, 3, -1], mask=[0, 0, 0, 1])) | |
assert_equal(test[1], [0, 3, 5, 2]) | |
assert_equal(test[2], [0, 0, 3, 1, 3, 2]) | |
def test_unique_allmasked(self): | |
# Test all masked | |
data = masked_array([1, 1, 1], mask=True) | |
test = unique(data, return_index=True, return_inverse=True) | |
assert_equal(test[0], masked_array([1, ], mask=[True])) | |
assert_equal(test[1], [0]) | |
assert_equal(test[2], [0, 0, 0]) | |
# | |
# Test masked | |
data = masked | |
test = unique(data, return_index=True, return_inverse=True) | |
assert_equal(test[0], masked_array(masked)) | |
assert_equal(test[1], [0]) | |
assert_equal(test[2], [0]) | |
def test_ediff1d(self): | |
# Tests mediff1d | |
x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) | |
control = array([1, 1, 1, 4], mask=[1, 0, 0, 1]) | |
test = ediff1d(x) | |
assert_equal(test, control) | |
assert_equal(test.filled(0), control.filled(0)) | |
assert_equal(test.mask, control.mask) | |
def test_ediff1d_tobegin(self): | |
# Test ediff1d w/ to_begin | |
x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) | |
test = ediff1d(x, to_begin=masked) | |
control = array([0, 1, 1, 1, 4], mask=[1, 1, 0, 0, 1]) | |
assert_equal(test, control) | |
assert_equal(test.filled(0), control.filled(0)) | |
assert_equal(test.mask, control.mask) | |
# | |
test = ediff1d(x, to_begin=[1, 2, 3]) | |
control = array([1, 2, 3, 1, 1, 1, 4], mask=[0, 0, 0, 1, 0, 0, 1]) | |
assert_equal(test, control) | |
assert_equal(test.filled(0), control.filled(0)) | |
assert_equal(test.mask, control.mask) | |
def test_ediff1d_toend(self): | |
# Test ediff1d w/ to_end | |
x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) | |
test = ediff1d(x, to_end=masked) | |
control = array([1, 1, 1, 4, 0], mask=[1, 0, 0, 1, 1]) | |
assert_equal(test, control) | |
assert_equal(test.filled(0), control.filled(0)) | |
assert_equal(test.mask, control.mask) | |
# | |
test = ediff1d(x, to_end=[1, 2, 3]) | |
control = array([1, 1, 1, 4, 1, 2, 3], mask=[1, 0, 0, 1, 0, 0, 0]) | |
assert_equal(test, control) | |
assert_equal(test.filled(0), control.filled(0)) | |
assert_equal(test.mask, control.mask) | |
def test_ediff1d_tobegin_toend(self): | |
# Test ediff1d w/ to_begin and to_end | |
x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) | |
test = ediff1d(x, to_end=masked, to_begin=masked) | |
control = array([0, 1, 1, 1, 4, 0], mask=[1, 1, 0, 0, 1, 1]) | |
assert_equal(test, control) | |
assert_equal(test.filled(0), control.filled(0)) | |
assert_equal(test.mask, control.mask) | |
# | |
test = ediff1d(x, to_end=[1, 2, 3], to_begin=masked) | |
control = array([0, 1, 1, 1, 4, 1, 2, 3], | |
mask=[1, 1, 0, 0, 1, 0, 0, 0]) | |
assert_equal(test, control) | |
assert_equal(test.filled(0), control.filled(0)) | |
assert_equal(test.mask, control.mask) | |
def test_ediff1d_ndarray(self): | |
# Test ediff1d w/ a ndarray | |
x = np.arange(5) | |
test = ediff1d(x) | |
control = array([1, 1, 1, 1], mask=[0, 0, 0, 0]) | |
assert_equal(test, control) | |
assert_(isinstance(test, MaskedArray)) | |
assert_equal(test.filled(0), control.filled(0)) | |
assert_equal(test.mask, control.mask) | |
# | |
test = ediff1d(x, to_end=masked, to_begin=masked) | |
control = array([0, 1, 1, 1, 1, 0], mask=[1, 0, 0, 0, 0, 1]) | |
assert_(isinstance(test, MaskedArray)) | |
assert_equal(test.filled(0), control.filled(0)) | |
assert_equal(test.mask, control.mask) | |
def test_intersect1d(self): | |
# Test intersect1d | |
x = array([1, 3, 3, 3], mask=[0, 0, 0, 1]) | |
y = array([3, 1, 1, 1], mask=[0, 0, 0, 1]) | |
test = intersect1d(x, y) | |
control = array([1, 3, -1], mask=[0, 0, 1]) | |
assert_equal(test, control) | |
def test_setxor1d(self): | |
# Test setxor1d | |
a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) | |
b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) | |
test = setxor1d(a, b) | |
assert_equal(test, array([3, 4, 7])) | |
# | |
a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) | |
b = [1, 2, 3, 4, 5] | |
test = setxor1d(a, b) | |
assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1])) | |
# | |
a = array([1, 2, 3]) | |
b = array([6, 5, 4]) | |
test = setxor1d(a, b) | |
assert_(isinstance(test, MaskedArray)) | |
assert_equal(test, [1, 2, 3, 4, 5, 6]) | |
# | |
a = array([1, 8, 2, 3], mask=[0, 1, 0, 0]) | |
b = array([6, 5, 4, 8], mask=[0, 0, 0, 1]) | |
test = setxor1d(a, b) | |
assert_(isinstance(test, MaskedArray)) | |
assert_equal(test, [1, 2, 3, 4, 5, 6]) | |
# | |
assert_array_equal([], setxor1d([], [])) | |
def test_setxor1d_unique(self): | |
# Test setxor1d with assume_unique=True | |
a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) | |
b = [1, 2, 3, 4, 5] | |
test = setxor1d(a, b, assume_unique=True) | |
assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1])) | |
# | |
a = array([1, 8, 2, 3], mask=[0, 1, 0, 0]) | |
b = array([6, 5, 4, 8], mask=[0, 0, 0, 1]) | |
test = setxor1d(a, b, assume_unique=True) | |
assert_(isinstance(test, MaskedArray)) | |
assert_equal(test, [1, 2, 3, 4, 5, 6]) | |
# | |
a = array([[1], [8], [2], [3]]) | |
b = array([[6, 5], [4, 8]]) | |
test = setxor1d(a, b, assume_unique=True) | |
assert_(isinstance(test, MaskedArray)) | |
assert_equal(test, [1, 2, 3, 4, 5, 6]) | |
def test_isin(self): | |
# the tests for in1d cover most of isin's behavior | |
# if in1d is removed, would need to change those tests to test | |
# isin instead. | |
a = np.arange(24).reshape([2, 3, 4]) | |
mask = np.zeros([2, 3, 4]) | |
mask[1, 2, 0] = 1 | |
a = array(a, mask=mask) | |
b = array(data=[0, 10, 20, 30, 1, 3, 11, 22, 33], | |
mask=[0, 1, 0, 1, 0, 1, 0, 1, 0]) | |
ec = zeros((2, 3, 4), dtype=bool) | |
ec[0, 0, 0] = True | |
ec[0, 0, 1] = True | |
ec[0, 2, 3] = True | |
c = isin(a, b) | |
assert_(isinstance(c, MaskedArray)) | |
assert_array_equal(c, ec) | |
#compare results of np.isin to ma.isin | |
d = np.isin(a, b[~b.mask]) & ~a.mask | |
assert_array_equal(c, d) | |
def test_in1d(self): | |
# Test in1d | |
a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) | |
b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) | |
test = in1d(a, b) | |
assert_equal(test, [True, True, True, False, True]) | |
# | |
a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1]) | |
b = array([1, 5, -1], mask=[0, 0, 1]) | |
test = in1d(a, b) | |
assert_equal(test, [True, True, False, True, True]) | |
# | |
assert_array_equal([], in1d([], [])) | |
def test_in1d_invert(self): | |
# Test in1d's invert parameter | |
a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) | |
b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) | |
assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True)) | |
a = array([5, 5, 2, 1, -1], mask=[0, 0, 0, 0, 1]) | |
b = array([1, 5, -1], mask=[0, 0, 1]) | |
assert_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True)) | |
assert_array_equal([], in1d([], [], invert=True)) | |
def test_union1d(self): | |
# Test union1d | |
a = array([1, 2, 5, 7, 5, -1], mask=[0, 0, 0, 0, 0, 1]) | |
b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) | |
test = union1d(a, b) | |
control = array([1, 2, 3, 4, 5, 7, -1], mask=[0, 0, 0, 0, 0, 0, 1]) | |
assert_equal(test, control) | |
# Tests gh-10340, arguments to union1d should be | |
# flattened if they are not already 1D | |
x = array([[0, 1, 2], [3, 4, 5]], mask=[[0, 0, 0], [0, 0, 1]]) | |
y = array([0, 1, 2, 3, 4], mask=[0, 0, 0, 0, 1]) | |
ez = array([0, 1, 2, 3, 4, 5], mask=[0, 0, 0, 0, 0, 1]) | |
z = union1d(x, y) | |
assert_equal(z, ez) | |
# | |
assert_array_equal([], union1d([], [])) | |
def test_setdiff1d(self): | |
# Test setdiff1d | |
a = array([6, 5, 4, 7, 7, 1, 2, 1], mask=[0, 0, 0, 0, 0, 0, 0, 1]) | |
b = array([2, 4, 3, 3, 2, 1, 5]) | |
test = setdiff1d(a, b) | |
assert_equal(test, array([6, 7, -1], mask=[0, 0, 1])) | |
# | |
a = arange(10) | |
b = arange(8) | |
assert_equal(setdiff1d(a, b), array([8, 9])) | |
a = array([], np.uint32, mask=[]) | |
assert_equal(setdiff1d(a, []).dtype, np.uint32) | |
def test_setdiff1d_char_array(self): | |
# Test setdiff1d_charray | |
a = np.array(['a', 'b', 'c']) | |
b = np.array(['a', 'b', 's']) | |
assert_array_equal(setdiff1d(a, b), np.array(['c'])) | |
class TestShapeBase: | |
def test_atleast_2d(self): | |
# Test atleast_2d | |
a = masked_array([0, 1, 2], mask=[0, 1, 0]) | |
b = atleast_2d(a) | |
assert_equal(b.shape, (1, 3)) | |
assert_equal(b.mask.shape, b.data.shape) | |
assert_equal(a.shape, (3,)) | |
assert_equal(a.mask.shape, a.data.shape) | |
assert_equal(b.mask.shape, b.data.shape) | |
def test_shape_scalar(self): | |
# the atleast and diagflat function should work with scalars | |
# GitHub issue #3367 | |
# Additionally, the atleast functions should accept multiple scalars | |
# correctly | |
b = atleast_1d(1.0) | |
assert_equal(b.shape, (1,)) | |
assert_equal(b.mask.shape, b.shape) | |
assert_equal(b.data.shape, b.shape) | |
b = atleast_1d(1.0, 2.0) | |
for a in b: | |
assert_equal(a.shape, (1,)) | |
assert_equal(a.mask.shape, a.shape) | |
assert_equal(a.data.shape, a.shape) | |
b = atleast_2d(1.0) | |
assert_equal(b.shape, (1, 1)) | |
assert_equal(b.mask.shape, b.shape) | |
assert_equal(b.data.shape, b.shape) | |
b = atleast_2d(1.0, 2.0) | |
for a in b: | |
assert_equal(a.shape, (1, 1)) | |
assert_equal(a.mask.shape, a.shape) | |
assert_equal(a.data.shape, a.shape) | |
b = atleast_3d(1.0) | |
assert_equal(b.shape, (1, 1, 1)) | |
assert_equal(b.mask.shape, b.shape) | |
assert_equal(b.data.shape, b.shape) | |
b = atleast_3d(1.0, 2.0) | |
for a in b: | |
assert_equal(a.shape, (1, 1, 1)) | |
assert_equal(a.mask.shape, a.shape) | |
assert_equal(a.data.shape, a.shape) | |
b = diagflat(1.0) | |
assert_equal(b.shape, (1, 1)) | |
assert_equal(b.mask.shape, b.data.shape) | |
class TestNDEnumerate: | |
def test_ndenumerate_nomasked(self): | |
ordinary = np.arange(6.).reshape((1, 3, 2)) | |
empty_mask = np.zeros_like(ordinary, dtype=bool) | |
with_mask = masked_array(ordinary, mask=empty_mask) | |
assert_equal(list(np.ndenumerate(ordinary)), | |
list(ndenumerate(ordinary))) | |
assert_equal(list(ndenumerate(ordinary)), | |
list(ndenumerate(with_mask))) | |
assert_equal(list(ndenumerate(with_mask)), | |
list(ndenumerate(with_mask, compressed=False))) | |
def test_ndenumerate_allmasked(self): | |
a = masked_all(()) | |
b = masked_all((100,)) | |
c = masked_all((2, 3, 4)) | |
assert_equal(list(ndenumerate(a)), []) | |
assert_equal(list(ndenumerate(b)), []) | |
assert_equal(list(ndenumerate(b, compressed=False)), | |
list(zip(np.ndindex((100,)), 100 * [masked]))) | |
assert_equal(list(ndenumerate(c)), []) | |
assert_equal(list(ndenumerate(c, compressed=False)), | |
list(zip(np.ndindex((2, 3, 4)), 2 * 3 * 4 * [masked]))) | |
def test_ndenumerate_mixedmasked(self): | |
a = masked_array(np.arange(12).reshape((3, 4)), | |
mask=[[1, 1, 1, 1], | |
[1, 1, 0, 1], | |
[0, 0, 0, 0]]) | |
items = [((1, 2), 6), | |
((2, 0), 8), ((2, 1), 9), ((2, 2), 10), ((2, 3), 11)] | |
assert_equal(list(ndenumerate(a)), items) | |
assert_equal(len(list(ndenumerate(a, compressed=False))), a.size) | |
for coordinate, value in ndenumerate(a, compressed=False): | |
assert_equal(a[coordinate], value) | |
class TestStack: | |
def test_stack_1d(self): | |
a = masked_array([0, 1, 2], mask=[0, 1, 0]) | |
b = masked_array([9, 8, 7], mask=[1, 0, 0]) | |
c = stack([a, b], axis=0) | |
assert_equal(c.shape, (2, 3)) | |
assert_array_equal(a.mask, c[0].mask) | |
assert_array_equal(b.mask, c[1].mask) | |
d = vstack([a, b]) | |
assert_array_equal(c.data, d.data) | |
assert_array_equal(c.mask, d.mask) | |
c = stack([a, b], axis=1) | |
assert_equal(c.shape, (3, 2)) | |
assert_array_equal(a.mask, c[:, 0].mask) | |
assert_array_equal(b.mask, c[:, 1].mask) | |
def test_stack_masks(self): | |
a = masked_array([0, 1, 2], mask=True) | |
b = masked_array([9, 8, 7], mask=False) | |
c = stack([a, b], axis=0) | |
assert_equal(c.shape, (2, 3)) | |
assert_array_equal(a.mask, c[0].mask) | |
assert_array_equal(b.mask, c[1].mask) | |
d = vstack([a, b]) | |
assert_array_equal(c.data, d.data) | |
assert_array_equal(c.mask, d.mask) | |
c = stack([a, b], axis=1) | |
assert_equal(c.shape, (3, 2)) | |
assert_array_equal(a.mask, c[:, 0].mask) | |
assert_array_equal(b.mask, c[:, 1].mask) | |
def test_stack_nd(self): | |
# 2D | |
shp = (3, 2) | |
d1 = np.random.randint(0, 10, shp) | |
d2 = np.random.randint(0, 10, shp) | |
m1 = np.random.randint(0, 2, shp).astype(bool) | |
m2 = np.random.randint(0, 2, shp).astype(bool) | |
a1 = masked_array(d1, mask=m1) | |
a2 = masked_array(d2, mask=m2) | |
c = stack([a1, a2], axis=0) | |
c_shp = (2,) + shp | |
assert_equal(c.shape, c_shp) | |
assert_array_equal(a1.mask, c[0].mask) | |
assert_array_equal(a2.mask, c[1].mask) | |
c = stack([a1, a2], axis=-1) | |
c_shp = shp + (2,) | |
assert_equal(c.shape, c_shp) | |
assert_array_equal(a1.mask, c[..., 0].mask) | |
assert_array_equal(a2.mask, c[..., 1].mask) | |
# 4D | |
shp = (3, 2, 4, 5,) | |
d1 = np.random.randint(0, 10, shp) | |
d2 = np.random.randint(0, 10, shp) | |
m1 = np.random.randint(0, 2, shp).astype(bool) | |
m2 = np.random.randint(0, 2, shp).astype(bool) | |
a1 = masked_array(d1, mask=m1) | |
a2 = masked_array(d2, mask=m2) | |
c = stack([a1, a2], axis=0) | |
c_shp = (2,) + shp | |
assert_equal(c.shape, c_shp) | |
assert_array_equal(a1.mask, c[0].mask) | |
assert_array_equal(a2.mask, c[1].mask) | |
c = stack([a1, a2], axis=-1) | |
c_shp = shp + (2,) | |
assert_equal(c.shape, c_shp) | |
assert_array_equal(a1.mask, c[..., 0].mask) | |
assert_array_equal(a2.mask, c[..., 1].mask) | |