Bhumika commited on
Commit
eee69c5
·
1 Parent(s): 46019b2

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - glue
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: roberta-base-finetuned-sst2
10
+ results:
11
+ - task:
12
+ name: Text Classification
13
+ type: text-classification
14
+ dataset:
15
+ name: glue
16
+ type: glue
17
+ args: sst2
18
+ metrics:
19
+ - name: Accuracy
20
+ type: accuracy
21
+ value: 0.944954128440367
22
+ ---
23
+
24
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
25
+ should probably proofread and complete it, then remove this comment. -->
26
+
27
+ # roberta-base-finetuned-sst2
28
+
29
+ This model was trained from scratch on the glue dataset.
30
+ It achieves the following results on the evaluation set:
31
+ - Loss: 0.3000
32
+ - Accuracy: 0.9450
33
+
34
+ ## Model description
35
+
36
+ More information needed
37
+
38
+ ## Intended uses & limitations
39
+
40
+ More information needed
41
+
42
+ ## Training and evaluation data
43
+
44
+ More information needed
45
+
46
+ ## Training procedure
47
+
48
+ ### Training hyperparameters
49
+
50
+ The following hyperparameters were used during training:
51
+ - learning_rate: 2e-05
52
+ - train_batch_size: 16
53
+ - eval_batch_size: 16
54
+ - seed: 42
55
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
+ - lr_scheduler_type: linear
57
+ - num_epochs: 5
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Accuracy | Validation Loss |
62
+ |:-------------:|:-----:|:-----:|:--------:|:---------------:|
63
+ | 0.1106 | 1.0 | 4210 | 0.9255 | 0.3326 |
64
+ | 0.1497 | 2.0 | 8420 | 0.9369 | 0.2858 |
65
+ | 0.1028 | 3.0 | 12630 | 0.3128 | 0.9335 |
66
+ | 0.0872 | 4.0 | 16840 | 0.3000 | 0.9450 |
67
+ | 0.0571 | 5.0 | 21050 | 0.3378 | 0.9427 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.11.3
73
+ - Pytorch 1.9.0+cu111
74
+ - Datasets 1.14.0
75
+ - Tokenizers 0.10.3